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Abstract There are inevitably all kinds of uncertainties in the gear transmission system. These uncertainties
will have an important impact on the vibration response of the system. In this paper, the vibration response
characteristics of herringbone gear transmission system with uncertain parameters are investigated. A six-
degree-of-freedom dynamic model of single-stage herringbone gear-shaft-bearing system is established based
on the finite element method. The stochastic agent model of the system is constructed by polynomial chaotic
expansion (PCE), and the effects of gear meshing stiffness, bearing stiffness and damping parameters uncer-
tainty on the vibration response of the system are analyzed. The results show that the uncertainty of gear
meshing stiffness leads to the offset of the boundary value of the vibration amplitude of the system, and the
uncertainty of bearing damping mainly affects the vibration amplitude of the main resonance region of the
system. The uncertainty of bearing stiffness has little effect on the vibration amplitude of the system. And the
hybrid uncertainty has comprehensive effect on the vibration amplitude of the system.

Keywords Herringbone gear · Dynamic modeling · Vibration analysis · Uncertain parameters

1 Introduction

Herringbone gear is widely used in aviation, heavy machinery transmission and other fields, due to its small
meshing impact, smooth transmission torque, high bearing capacity, and low axial force [1]. The dynamic
characteristics of gear transmission directly affect the working performance of the whole equipment. With
the development of mechanical equipment to large-scale, high reliability, high precision and long life, the
requirements for the dynamic performance of gear transmission system are also increasing. It is becoming
more and more important to accurately predict the dynamic performance of the system. In-depth dynamic
research on the gear transmission system can lay a foundation for the safety, optimal design, and reliability
evaluation of the mechanical equipment.

Extensive research works have been done on dynamic modeling and vibration analysis of gear transmission
system [2, 3]. For the dynamics of herringbone gear transmission system, Choi et al. [4] used the finite element
method to analyze the transverse, torsional and axial vibration characteristics of herringbone teeth. Sondkar
and Kahraman [5] put forward a three-dimensional dynamic model of herringbone gear planetary system with
gear meshing, bearing, and supporting accessories, and studied the effects of planetary phase angle, error
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Fig. 1 Schematic diagram of the herringbone system

and gear supporting conditions on the dynamic response of gear system. Chen et al. [6, 7] investigated the
influence of runout and pitch error on the dynamic response of herringbone gear. Wang et al. [8] established
a dynamic model of double helical gears considering axial vibration and side clearance. Dong et al. [9] built
up a dynamic model of herringbone teeth based on Timoshenko beam and lumped parameter method, and
verified it by experiments. Wang et al. [10] presented a model of double helical gears by taking the axial
vibration and backlash into account. Liu et al. [11] developed an improved dynamic analysis model of double
helical gear reducer using hybrid user-defined element method (HUELM). Yin et al. [12, 13] developed
a bending–torsional–axial coupling model for dynamic analysis of double-helical gear system. They then
carried out theoretical and experimental research on the dynamic characteristics of herringbone gear system
by considering the oil film effect among meshing teeth.

However, most of the above researches on gear system dynamics are treated as deterministic problems. In
practical engineering, uncertain factors widely exist in mechanical systems such as gear transmission [14–17],
due to errors in manufacturing, processing, assembly, wear, lubrication and changes in operating environment.
These uncertainties will affect the dynamic characteristics of the gear system. Guerine et al. [18] investigated
the effects of random uncertainty of mass, damping coefficient, bending stiffness and torsion stiffness on the
dynamic response of single-stage spur gear system. Yang et al. [19] studied the dynamic characteristics of
gear transmission system under the combined action of deterministic and random excitations. Beyaoui et al.
[20] explored the impact of random perturbation caused by aerodynamic torque excitation on the dynamic
response of fan gear system. Mabrouk et al. [21] investigated the dynamic behavior of a bevel gear system with
uncertainty associated to the performance coefficient of the input aerodynamic torque based on the projection
on polynomial chaos. Fang et al. [22] proposed a dynamic model of spur gear pair and investigated the random
effects of load and friction on its transient characteristics. Hajnayeb and Sun [23] studied the vibration caused
by random machining error of gear tooth profile based on a simplified model of gear pair, and obtained the
transfer function between manufacturing error and common measuring position. Wei et al. [24] provided a
dynamic model of spur gear systemwith uncertain parameters, and studied the dynamic response of the system
by using Chebyshev inclusion function. Fu et al. [25] explored the dynamic characteristics of wind turbines
system under aleatory and epistemic uncertainties.

The above researches on the dynamic uncertainty of gear system are mainly focused on the spur gear
system, while the research on the uncertainty of herringbone gear system is relatively less. In addition, most
of the above studies are based on the pure torsion dynamic model of gear. In this paper, a dynamic model
of herringbone gear-shaft-bearing system is established. The uncertainty of the system is modeled by PCE
method, and the effects of gear meshing stiffness, bearing stiffness, and damping on the vibration response of
the system are analyzed.

2 Dynamic model of gear transmission system

The herringbone gear transmission system investigated in this paper is shown in Fig. 1, which consists of a pair
of herringbone gears, two gear shafts and two pairs of journal bearings. The design parameters of the system
are listed in Table 1.



Dynamic modeling and vibration analysis 223

Table 1 Design parameters of the herringbone system

Parameter Pinion Gear

Gear
Teeth number 46 93
Module (mm) 7
Pressure angle (°) 25
Helix angle (°) 23.38
Face width (mm) 205 200
Shaft
Diameter of axis segment from left to
right (mm)

410, 200, 240, 200, 240, 200, 300, 364,
300, 364, 300, 200, 240, 120, 195

290, 250, 723, 630, 723, 360, 250, 360,
290, 250, 290, 250, 548

Length of axis segment from left to
right (mm)

105, 113, 24, 31, 25, 237, 15, 205, 100,
205, 15, 290, 30, 23, 17

24, 313, 200, 100, 200, 40, 200, 15, 41,
17, 24, 250, 548

Material parameter
Young’s modulus (GPa) 210
Poisson’s ratio 0.3

Fig. 2 Typical rotor configuration and coordinate system

2.1 Shaft model

As shown in Fig. 2, the shaft model is based on Timoshenko beam element by using the finite element method,
which is divided into 41 nodes, each node has 6 degrees of freedom, including three translations and two
rotations, expressed as x, y, z, θx, θy and θz. Using the Lagrange equation, the free vibration equation of the
rotor can be expressed as

Ms
..

Xs + Cs
.

Xs + K sXs � 0, (1)

where Ms, Cs and Ks are the mass matrix, damping matrix and stiffness matrix of shaft, respectively.
The mass matrix of the shaft Ms can be written as:

Ms � diag
{
ms1, ms1, ms1, Ixs1, Iys1, Izs1, ms2, ms2, ms2, Ixs2, Iys2, Izs2

}
,

where msi and Iski are the mass and moment of inertia of the ith beam element, respectively, i � 1,2, k � x, y,
z.

According to the theory of elasticity, the 12×12 stiffness matrix of Timoshenko beam element Ks can be
obtained.
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Fig. 3 Gear mesh model
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− AE
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L
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⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (2)

{
ax � ay � 12E I

L3(1+ϕ)
, cx � cy � 6E I

L2(1+ϕ)

ex � ey � (4+ϕ)E I
L(1+ϕ)

, fx � fy � (2−ϕ)E I
L(1+ϕ)

(3)

where E is the Young’s modulus;μ is the Poisson’s ratio; A is the element cross-sectional area; L is the element
length; G is the shear modulus; J is the torsional moment of inertia; I is the moment of inertia of diameter; ϕ
is the shear influence factor, ϕ � 12EI/(GAKL2); K is the shearing coefficient, K � 6(1 + μ)/ (7 + 6μ).

The damping matrix of the shaft can be expressed as Cs � γKs, where γ is the proportional damping
coefficient, where γ is 1×10–5 [26].

2.2 Gear model

2.2.1 Gear model

The gear mesh model is shown in Fig. 3, the gear consists of a pinion and a gear, which are represented by
mesh stiffness kpg and meshing damping cpg along the mesh line. The rotation angular velocity of the pinion
and gear are ω1 and ω2, respectively. The torque of the pinion and gear are T1 and T2, respectively. The static
transmission error of gear epg(t) can be expressed as

epg(t) � epg sin(ωpzpt), (4)

The relative displacement of the gear pair along the line of action can be written as
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V � [cosβpg sin ϕpg, ± cosβpg cosϕpg, sin βpg, ∓ rp sin βpg sin ϕpg,

rbp sin βpg cosϕpg, ± rbp cosβpg, − cosβpg sin ϕpg, ∓ cosβpg cosϕpg,

− sin βpg, ∓ rbg sin βpg sin ϕpg, − rbg sin βpg cosϕpg, ± rbg cosβpg] (5)

where rbp and rbg are the radius of the base circle of the pinon and the gear; β is the helix angle of the base
circle; ϕpg is the angle between the end joint line and the y-axis, which varies with the rotation of the pinon

ϕpg �
{

ϕpg − αpg counterclockwise
−ϕpg + αpg, clockwise , (6)

The motion coupling equation of gear pair can be expressed as

Mpg
..

X
pg
+
(
Cpg + Gpg

)
Ẋpg + K pgXpg � Fm, (7)

where Mpg is the gear mass matrix; Cpg is the gear mesh damping matrix; Gpg is the gyroscopic matrix; Kpg
is the mesh stiffness matrix; Fm is the static transmission error excitation. They can be written as

Mpg � diag
{
mp,mp,mp, Ixp, Iyp, Izp,mg ,mg ,mg , Ixg , Iyg , Izg

}
, (8)

Xpg � {
xp, yp, z p, θxp, θyp, θzp, xg , yg , zg , θxg , θyg , θzg

}T, (9)

K pg � kpg.V T .V , (10)

Cpg � Cpg.V T .V , (11)

Gpg �
[
gp 0
0 gg

]
, (12)

g p,g �

⎡

⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Izp,gωp,g 0 0
0 0 −Izp,gωp,g 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦
, (13)

Fm � kpgV T epg(t) + cpgV T ėpg(t), (14)

F � [
0 0 0 0 0 Tp 0 0 0 0 0 Tg

]
, (15)

2.2.2 Gear mesh stiffness

The main calculation methods for gear mesh stiffness include the potential energy method, the finite element
method and the Ishikawa method [27]. Although the calculation cost of the finite element method is high, its
calculation result is relatively more accurate. In this subsection, the gear mesh stiffness is obtained by using the
finite element method. In order to reduce the calculation time, only the three-dimensional local mesh model
of the gear is established, as shown in Fig. 4. Ignoring the influence of tooth profile error on contact analysis,
the static transmission error during load is equal to the deformation of gear teeth, and the mesh stiffness Kn of
gear can be expressed as the ratio of the load on the gear to the mesh deformation of gear teeth

Kn � Fn
δn

, (16)

where Fn is the normal load of the tooth surface; δn is the normal comprehensive elastic deformation of the
tooth surface, which includes the contact elastic deformation caused by the local Hertz contact, the contact
position deformation caused by the loaded bending of the gear teeth and the contact position displacement
caused by the hub deformation [28].

Consider a mesh cycle where the pinon from the mesh of one gear tooth to the mesh of the next tooth.
In one circle, the rotation angle of the pinon is 7.826°. The angle is divided into 10 parts equally, and 11
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Fig. 4 Finite element model of the herringbone gear pair

Fig. 5 Mesh stiffness of the herringbone pair

discrete angle positions are obtained. Each angle position is loaded and solved, and the angular deformation
is extracted. Then, the torsional mesh stiffness KT can be calculated

KT � Tm
	θ

. (17)

where Tm is the drag torque; 	θ is the angular deformation of gear mesh point.
The Fn and 	θ can be calculated by the following equations

Fn � Tm
rp cosαncosβpg

, 	θ � δn

rp
, (18)

where r is the indexing circle radius of the pinon; αn is the normal pressure angle.
Substituting Eqs. (16) and (18) to Eq. (17), the mesh stiffness can be obtained

Kn � KT .
4cosβpg

(
mnzp

)2 cosαn

, (19)

where mn the normal modulus; zp is the teeth number of the pinion.
With a drag torque of 26191Nm, the equivalent meshing stiffness of three completemesh cycles is obtained

according to the abovemethod, as shown in Fig. 5. For the convenience of modeling, the average mesh stiffness
is Km � 2.28×107 N/mm. By substituting this stiffness value to Eq. (10), the gear meshing stiffness matrix
can be obtained.
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Fig. 6 Calculation results of the bearing stiffness and damping

Table 2 Bearing stiffness and damping

Bearing 1 and 2 Bearing 3 and 4

Stiffness (N/mm) kxx � 5.859×105 kxy � 1.194×105

kyx � − 1.093×105 kyy � 8.763×105
kxx � 6.968×105 kxy � − 1.480×105

kyx � − 8.701×105 kyy � 5.709×105

Damping (N-s/mm) cxx � 1.015×103 cxy � − 7.841×105

cyx � − 7.841×102 cyy � 3.259×103
cxx � 1.849×103 cxy � − 1.714×105

cyx � − 1.714×102 cyy � 3.241×103

2.3 Bearing model

In this subsection, the DyRoBeS software is applied to calculate the stiffness and damping of the bearing.
DyRoBeS is a commercial software for bearing and rotor dynamic characteristics analysis, which is widely
used in rotor dynamic field.

The fluid film journal bearings are used in the investigated herringbone gear transmission system. For
simplicity, the bearing is simplified to massless spring and damping. The stiffness and damping of the bearings
can be obtained by using the DyRoBeS bearingmodule. The calculation results are shown in Fig. 6 and Table 2.
According to the node position of the bearing in the actual transmission system, the stiffness and damping
matrix of the bearings are then integrated to the system matrix.

2.4 Gear-shaft-bearing model

The mass matrix, damping matrix, gyroscopic matrix, stiffness matrix and mesh effect of each shaft segment,
as well as the stiffness and damping matrix of bearings are assembled according to the node position, and the
dynamic equation of the system is obtained.

M
..

X +(C + 
G)Ẋ + KX � q, (20)

whereM,C,G, andKare themassmatrix, dampingmatrix, gyroscopicmatrix and stiffnessmatrix of the system,
respectively; q is the excitation includes static transmission error excitation and external torque excitation.

Equation (20) can be transformed into frequency domain analysis and expressed as

A(ω)X(ω) � Q(ω), (21)

where

A(ω) � −ω2M + iω(C + G) + K , (22)

X � Xeiωt , Q � Qeiωt , (23)
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3 Uncertainty model

The model parameters such as mass, stiffness and damping in Eq. (20) are uncertain due to the influence
of geometric factors or material parameters. These factors lead to the uncertainty of the response of the
system. Therefore, in the dynamic analysis of gear-rotor system, the A, X, and Q should be regarded as a
random process. If the uncertain parameters in the gear rotor system are represented as random variables, the
stochastic dynamics equation of the system can be expressed as

A(τ )X(τ ) � Q(τ ), (24)

where

A(τ ) � −ω2M(τ ) + iω(C(τ ) + G(τ )) + K (τ ), (25)

where τ is the random characteristic of the uncertain parameters.
There are many methods for uncertainty analysis of stochastic processes, the most common of which is

Monte Carlo method. However, the MCS method has a large amount of calculation, thus it is usually used as
a reference method for uncertainty analysis. PCE method is a relative novel method for uncertainty analysis.
With its good mathematical basis and the ability to accurately describe the randomness of random variables
with arbitrary distribution, PCE has been more and more widely used in the field of dynamic analysis in recent
years [29]. PCE is an uncertainty propagation method based on polynomial chaotic theory. It possesses good
mathematical basis and the ability to accurately describe the randomness of random variables with arbitrary
distribution. In PCE, the sum of orthogonal polynomials corresponding to the distribution of input parameters
is used to approximately represent a random output process. In this section, the PCEmethod is used to construct
the uncertainty model of the gear system.

3.1 Model building

The Askey scheme is the foundation of PCE model construction [30]. It points out the optimal orthogonal
polynomial basis function corresponding to different distribution types of random variables. The PCE model
can be constructed by selecting the corresponding orthogonal basis function according to the distribution type
of input variables. For a random variable Y, the Hermite polynomial can be expressed as

Y (θ) � c0 I0 +
∞∑

i1�1

ci1 I1
(
ξi1(θ)

)
+

∞∑

i1�1

i1∑

i2�1

ci1i2 I2
(
ξi1(θ), ξi2(θ)

)
,

+
∞∑

i1�1

i1∑

i2�1

i2∑

i3�1

ci1i2i3 I3
(
ξi1(θ), ξi2(θ), ξi3(θ)

)
+ · · · (26)

where θ represents the random variable, which will be omitted in the following equations for simplicity; In(
ξi1(θ), ξi2(θ), . . . , ξin (θ)

)
denotes a mixed orthogonal polynomial of order n, which is a function of multi-

dimensional standard random variables ξi1 , ξi2 , . . . , ξin .
In general, the dimension of ξ � [ξi1 , ξi2 , . . . , ξin ] is the same as that of the random input variable

X � [X1, X2, . . . , Xn] in the original random space. Therefore, Eq. (26) can be simplified as

Y �
∞∑

i�0

ciψi (ξ). (27)

where Ci and ψi correspond to αi1i2 ...in and In
(
ξi1 , ξi2 , ξi3 , . . .

)
in Eq. (27), respectively; Ci is the chaotic

polynomial coefficient to be solved, when it is calculated, MCS can be run on the chaotic polynomial model,
and the random probability characteristic of the output response Y can be obtained.

The number of terms in Eq. (27) is infinite, in order to reduce the amount of calculation, it is usually
truncated at a certain order p, and the corresponding model can be expressed as

�

Y �
P∑

i�0

ciψi (ξ). (28)
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The number of coefficients in a truncated polynomial can be determined by the following equation

N � (d + p)!

d! p!
. (29)

where d is the dimension of the random variable.
The random parameters can be expanded byKarhunen–Loevemethod, and the stochastic dynamic equation

of gear-rotor system is obtained
( ∞∑

i�0

{A}iψi (ξ(τ ))

)⎛

⎝
∞∑

j�0

{X} jψ j (ξ(τ ))

⎞

⎠ �
( ∞∑

k�0

{Q}kψk(ξ(τ ))

)

, (30)

where ψi (ξ(τ )) denotes the chaotic orthogonal polynomial of order p, which is composed of the product of
1-dimensional orthogonal polynomial corresponding to each dimensional random variable; {A}nn represents
the coefficient of the nn’th orthogonal polynomial corresponding to ψnn(ξ(τ )) and nn � i,j, k.

3.2 PCE coefficients calculation

In this subsection, the stochastic response surface method (SRSM) is used to calculate the PCE coefficients.
The calculation process is mainly divided into three steps: the selection of sample points, the calculation of
response value and the estimation of PCE coefficient.

The Latin hypercube design (LHD) approach is used to extract the sample points. The sampling points
should be selected in the standard random space, which means that each dimension in the space is a standard
random variable from the Askey scheme. Selecting N sample points in the standard random space can be
expressed as

ξs �
[
ξ s1 , · · · , ξ sj , · · · , ξ sN

]T
. (31)

The original random variable is usually not a standard random variable. In order to obtain the real response
value, the sampling point on the standard random space ξ should be transformed into its original random space
X

Xs �
[
Xs
1, · · · , Xs

j , · · · , Xs
N

]T
. (32)

The transformed sample points are then brought into the original response function, and the response value
at the sample is

F(X) �
[
F

(
Xs
1

)
, · · · , F

(
Xs

j

)
, · · · , F(

Xs
N

)]T
. (33)

The PCE coefficients can be estimated by least quadratic regressionmethod. The sample points and function
response values are substituted into (28), and the following equation can be obtained

Ac � Y . (34)

where

A �

⎡

⎢⎢⎢
⎣

�0
(
ξ s1

)
�1

(
ξ s1

) · · · �P
(
ξ s1

)

�0
(
ξ s2

)
�1

(
ξ s2

) · · · �P
(
ξ s2

)

...
... · · · ...

�0
(
ξ sN

)
�1

(
ξ sN

) · · · �P
(
ξ s3

)

⎤

⎥⎥⎥
⎦

. (35)

c �

⎡

⎢⎢
⎣

c0
c1
...
cN

⎤

⎥⎥
⎦. (36)
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Fig. 7 Campbell diagram of the system

Y �

⎡

⎢⎢⎢
⎣

F
(
Xs
1

)

F
(
Xs
2

)

...
F

(
Xs
N

)

⎤

⎥⎥⎥
⎦

. (37)

According to the least square regression, the PCE coefficient can be calculated

c �
(
AAT

)−1
ATY . (38)

4 Uncertainty analysis of vibration response

The mesh stiffness and bearing stiffness are important parameters that affect the dynamic characteristics of
gear rotor system. In engineering, due to assembly error, bearing clearance tolerance, gear wear, operating
conditions and other factors, the mesh stiffness and bearing stiffness and damping of gear system are actually
uncertain parameters, which will lead to errors if deterministic parameters are used in dynamic modeling. In
this section, the uncertainty of gear rotor vibration response is investigated by considering the uncertainty of
meshing stiffness, bearing stiffness and damping.

The dynamic model of the herringbone gear rotor system with deterministic parameters in Table 1 is
established and solved. The Campbell diagram of the system is then obtained and shown in Fig. 7. The first
eight critical speeds of the systemare 525 r/min, 5709 r/min, 5929 r/min, 7603 r/min, 9217 r/min, 116,190 r/min,
12135 r/min, respectively. It can be seen that the gear rotor system will experience many oscillations when
increasing speed. The frequency response of each node of the system is shown in Fig. 8. In order to facilitate
the analysis, the vibration response in the X direction of node 11 is selected to study. At the same time, the
third critical speed 5929r/min and its nearby speed region [5600 6100] r/min are selected to study, and the
corresponding vibration response is shown in Fig. 9. It should be pointed out that logarithmic coordinates are
used here to better reflect the variation of amplitude with rotational speed.

4.1 Mesh stiffness uncertainty

Considering the uncertainty of the meshing stiffness, it is expressed as interval parameters [km-ξkm km,
km + ξkm km], km and ξkm are average meshing stiffness and deviation coefficient, respectively. The order p
of PCE is set to 6 in this paper and the results are compared with those obtained with the Monte Carlo method
(20,000 samplings). It can be seen from Fig. 10, when ξkm � 0.1, the PCE-mean curves are superposed almost
perfectly with those of Monte Carlo. It should be noted that only ξkm � 0.1 is selected here for simplicity.
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Fig. 8 Frequency response of the system

Fig. 9 Vibration amplitude of the system with deterministic parameters

Fig. 10 Amplitude–frequency response of the system with uncertain mesh stiffness when ξkm � 0.1
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Fig. 11 Amplitude–frequency response of the system with uncertain mesh stiffness

Fig. 12 Amplitude–frequency response of the system with uncertain bearing stiffness when ξkb � 0.1

Fig. 13 Amplitude–frequency response of the system with uncertain bearing stiffness
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Fig. 14 Amplitude–frequency response of the system with uncertain bearing damping when ξ cb � 0.1

Fig. 15 Amplitude–frequency response of the system with uncertain bearing damping

When ξkm � 0.05, 0.1 and 0.15, the upper and lower boundaries of the amplitude–frequency response
of the system are obtained as shown in Fig. 11. Note that the sampling points are encrypted here for better
comparison. It can be seen that the interval value of the vibration amplitude increases with the increase of
ξkm, especially near the resonance region of the system, which indicates that the dynamic characteristics of
the system near the resonance region are more sensitive to the uncertainty of mesh stiffness. It can also be
found that when ξkm increases, the upper boundary of the response region of the resonance region shifts to
the right and the lower boundary of the region shifts to the left, compared with the system response results
under deterministic parameters. This is mainly because the mesh stiffness leads to the change of the natural
frequency, which has a direct impact on the resonance peak.

4.2 Bearing stiffness uncertainty

Considering the uncertainty of the bearing stiffness, in order to simplify the analysis, the four stiffnesses of the
bearing take the same deviation coefficient. The uncertainty of bearing stiffness can be expressed as [kb-ξkbkb,
kb + ξkbkb], kb and ξkb are the average bearing stiffness and deviation coefficient, respectively. It can be seen
from Fig. 12, when ξkb � 0.1, the PCE-mean curves are superposed almost perfectly with those ofMonte Carlo
method. When ξkb � 0.05, 0.1 and 0.15, the upper and lower boundaries of the amplitude–frequency response
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(a)

(b)

(c)

Fig. 16 Amplitude–frequency response of the system with hybrid uncertainty. a Amplitude–frequency response with ξkm �
0.05, 0.1, 0.15 and ξkb � ξ cb � 0.05. b Amplitude–frequency response with ξkb � 0.05, 0.1, 0.15 and ξkm � ξ cb � 0.05.
c Amplitude–frequency response with ξ cb � 0.05, 0.1, 0.15 and ξkm � ξkb � 0.05
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of the system are obtained as shown in Fig. 13. It can be seen that there is no obvious deviation between the
upper and lower boundary values of the vibration amplitude of the system, indicating that the uncertainty of
bearing stiffness has little influence on the frequency domain response of the gear system.

4.3 Bearing damping uncertainty

Considering the uncertainty of the bearing damping, the four dampings take the same deviation coefficient.
The uncertainty of bearing damping can be expressed as [cb-ξ cb cb, cb + ξ cb cb], cb and ξ cb are the average
damping and deviation coefficient of bearing, respectively. It can be seen from Fig. 14, when ξ cb � 0.1, the
PCE-mean curves are superposed almost perfectly with those of Monte Carlo. When ξ cb � 0.05, 0.1 and 0.15,
the vibration response of the system is obtained as shown in Fig. 15. It can be seen that there is no obvious
deviation between the upper and lower boundary values of the vibration amplitude of the system. In addition,
the impact of the uncertainty of bearing damping on the frequency domain response of the system is mainly
concentrated in the resonance region, but has no obvious effect on other speed regions. The reason for this
difference is that changing the bearing damping will change the amplitude of the dynamic response, especially
in the resonance region.

4.4 Hybrid uncertainty

Considering the uncertainty of gear meshing stiffness, bearing stiffness and damping, taking different deviation
coefficients, the amplitude–frequency response of the system is obtained as shown in Fig. 16. It can be seen
that the upper and lower boundary values of the vibration amplitude of the system are obviously offset under
different deviation coefficients. In Fig. 16a, the deviation of the upper and lower boundary value of the system
amplitude is the most obvious when ξkm changes, indicating that the uncertainty of mesh stiffness has a greater
influence on the natural frequency of the system. The deviations of the upper and lower limits of the system
amplitude in Fig. 16b and c are mainly due to the impact of ξkm. In addition, the amplitude variation in Fig. 16c
is more obvious than that in Fig. 16b. This is mainly because the uncertainty of bearing damping has a greater
influence on the amplitude of the dynamic response of the system.

5 Conclusions

There are a large number of uncertainties in the gear transmission system, which makes the stiffness, damping
and load parameters of the system have a certain degree of uncertainty. It is of great significance for gear
system design and reliability analysis to correctly estimate the influence of these uncertain parameters on the
dynamic characteristics of the system. In this paper, the dynamic models of gear, shaft and bearing aiming in
a herringbone gear transmission system, are established, respectively, and the dynamic model of the system
is obtained after integration. The uncertainty of the system is modeled by the PCE method, and the influence
of the uncertain parameters on the vibration response of the system is analyzed. The main conclusions are as
follows:

1. The influence level of the uncertainty of different parameters is different.With the increase of the uncertainty
of mesh stiffness, the upper boundary of the vibration response region of the system resonance region shifts
to the right and the lower boundary of the interval shifts to the left.

2. The influence of the uncertainty of bearing damping on the frequency domain response of the system
is mainly concentrated in the resonance region, but has no obvious effect on other speed regions. The
uncertainty of bearing stiffness has little influence on the system response.

3. The influence of mixed uncertainty on the vibration response of the system is comprehensive, and the
greater the uncertainty deviation coefficient of a parameter, the greater the influence on the vibration
response of the system.
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