
Archive of Applied Mechanics (2023) 93:4497–4516
https://doi.org/10.1007/s00419-023-02506-0

ORIGINAL

Ritika Singh · Subir Das

Analysis of multiple parallel cracks in a functionally graded
magneto-electro-elastic plane using boundary collocation
method

Received: 14 February 2023 / Accepted: 5 October 2023 / Published online: 30 October 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract The fracture behavior of a functionally graded magneto-elastic plane with multiple parallel cracks is
examined in this article. Under anti-plane mechanical, in-plane electric, and magnetic loadings, it is assumed
that the cracks are either of the magneto-electrically impermeable or permeable types. Here, three distinct
crack configurations are taken into consideration. For each of the three crack configuration cases, the boundary
collocation and least square methods are used to obtain the semi-analytical expressions of the stress intensity
factors (SIFs) at the crack tips. SIFs are used to calculate the stress magnification factors (SMFs). The novelty
of the article is the study of shielding and amplification tendencies of cracks under the impact of functionally
graded parameter, geometric size, and electric and magnetic loads. The graphical illustrations of SMFs as a
function of gradient parameter, the distance between the cracks, and electric and magnetic loadings for three
different crack configurations are the key features of the article.

Keywords Boundary collocation method · Functionally gradedmagneto-electro-elastic plane · Impermeable
and permeable cracks · Parallel cracks · Stress magnification factors

1 Introduction

Intelligent materials made of piezoelectric and piezomagnetic materials have been widely used in medical
ultrasonic imaging, chips of magnetic sensors, magnetic-field probes, acoustic, hydrophones, sensors, electric
packaging, and actuators in the smart structures and components of energy harvesters [1]. The coupled proper-
ties of piezoelectric and piezomagnetic composites offer the scope to engineers to create intelligent structures,
composite materials, and devices that are capable of responding to internal and/or environmental changes.
One such composite material is magneto-electro-elastic material having the combined effects of piezoelectric,
piezomagnetic, and magneto-electric. Magneto-electro-elastic materials are used in electronic instrumenta-
tions and microwave and optoelectronics. Nowadays, the use of functionally graded materials (FGMs) in the
engineering field is unavoidable due to their capability of reducing the concentration of stress and increasing
fracture toughness.

Eventually, the concept of FGMs is extended to magneto-electro-elastic materials to enhance the reliability
of composites. These materials have continuously varying properties which are considered as functionally
graded magneto-electro-elastic (FGMEE) materials. These materials have the advantage that they have neither
internal seams nor desirable boundaries. However, owing to the brittleness, cracks inevitably exist in FGMEE
materials. For such types of materials having cracks subjected to magneto-electro-mechanical loadings, the
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magneto-electro-elastic field is concentrated near cracks, which causes the advancement of cracks. Also during
the manufacturing process, unavoidable initiations of cracks, holes, inclusions, dislocation, and other defects
occur. These defects cause premature failure of composites or structures at any moment that finally leads to
failure. Therefore, it is very much important to study the fracture behavior of FGMEE materials.

An anti-plane problem for an embedded and edge crack in a functionally graded magneto-electro-elastic
strip is studied in [2] by using the integral transform and dislocation density functions. A similar problem for
an embedded crack in a functionally graded piezoelectric/piezomagnetic plate was investigated in [3] using the
boundary collocation method. In [4], an anti-plane internal crack normal to the edge of a functionally graded
piezoelectric/piezomagnetic half-planewas considered inwhich the theory of energy density is applied to know
the fracture behavior. A discussion on the kinking phenomena of impermeable and permeable moving cracks
in an FGMEE strip under anti-plane mechanical loading and in-plane electric and also magnetic loadings was
presented in [5].

Since FGMEE materials are brittle in nature, they can usually contain multiple cracks with an extremely
high crack density. The interaction between these cracks may significantly affect their fracture behavior.
However, less number of articles are available in the literature on such multi-crack problems in composites
made of piezoelectric and piezomagnetic materials, and only a few studies are conducted [6–9]. Moreover,
due to the vulnerability, edge cracks are more catastrophic in comparison with embedded cracks. The problem
of periodic surface cracks under thermal loading in a functionally graded composite was studied in [10,11].

In general, the finite element method is used to calculate the crack tip SIF for cracked structures [12,
13]. However, due to various difficulties including the determination of a large number of unknowns, and
consideration of a large number of node points, this method is sometimes complex to calculate crack tip
SIF. To overcome this, the method of the integral equation and others [14–17] are used. One of them is the
boundary collocation method (BCM). In BCM, the exact solutions of governing partial differential equations
are used and approximations are restricted only to the boundaries. For approximation, the discretization of
boundaries is accomplished. For BCM it is not required to discretize the domain of the problem and therefore
the method is applied to problems with arbitrary boundary conditions and irregular domains. Therefore, BCM
is an advantageous method to study crack problems due to its simplicity, accuracy, and less computational
time. Muskhelishvili [18] has formulated some basic equations for solving the elasticity problem by using the
complex variable function. An initiative has been taken by Williams [19] and Isida [20] in their works during
solutions of the finite cracked plane problems. If the crack surface is subjected to some loading in a finite
cracked plane, then the complex potentials must satisfy the following conditions [21]:

1. The equilibrium and compatibility conditions in the occupied region of the crack plane.
2. Stress condition on the crack surface.
3. For multiply connected cracked plane, the single-valued condition of displacement around the crack.
4. The boundary conditions.

In most cases, the first three conditions are automatically satisfied. Only the boundary conditions need to
be checked. Along with that for better accuracy, the least square method is used. The least-square technique is
used to minimize the resultant force and also the displacement residuals along the boundary [22].

In light of the above discussion, the authors of the current article have concentrated on the issue of multiple
parallel cracks in a finite FGMEE plane. According to [2,3,5], the material properties are assumed to vary
exponentially along the x-axis. Both magneto-electrically impermeable and magneto-electrically permeable
crack surface conditions are adopted in this study. Additionally, three distinct crack configuration cases are
taken into account. In the first case, multiple parallel embedded cracks of the same length are considered, in the
second, multiple parallel edge cracks of the same length are considered, and in the third, multiple parallel edge
cracks of alternating lengths are taken into consideration. The problem is then reduced to power series form
as per the considered case which is subsequently solved numerically with the aid of BCM and the least square
approach. The semi-analytical forms of crack tip SIFs are obtained that help to determine the expressions of
crack tip SMFs. The outcome of the current study is also supported by an existing result for a specific case.
The shielding and amplification phenomena of cracks can be identified using the semi-analytical forms of
SMFs, which can be used to determine the likelihood of crack arrest. Through visual presentations for the
three different crack configurations under consideration, an effort has been made to illustrate the effects of the
gradient parameter, the distance between the cracks, and the electric and magnetic loadings on SMFs.
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Fig. 1 Functionally graded magneto-electro-elastic plane with multiple parallel cracks

2 Problem formulation

Consider a finite number (2N + 1) of parallel cracks having length bm − am (m = 0,±1, ...,±N ) in a
finite magneto-electro-elastic plane of width w and height 2h as shown in Fig. 1a. Any two parallel cracks
are separated by a distance of h0. The magneto-electro-elastic plane exhibits transversely isotropic behavior
and is poled in the z−direction. The surfaces of the cracks are subjected to anti-plane mechanical τ0, in-plane
electric D0, and magnetic B0 loadings, as shown in Fig. 1b. Therefore, this article addresses the problem of
an anti-plane elastic field coupled with in-plane electric and magnetic fields and the model is based on the
framework of magneto-electrostatics.

The constitutive equations for infinitely small deformations are given by

τmzk = c44
∂wm

∂k
+ e15

∂φm

∂k
+ f15

∂ψm

∂k
, (1)

Dmk = e15
∂wm

∂k
− ε11

∂φm

∂k
− g11

∂ψm

∂k
, (2)

Bmk = f15
∂wm

∂k
− g11

∂φm

∂k
− μ11

∂ψm

∂k
, (3)

where τmzk , Dmk , Bmk (k = x, y) are the anti-plane shear stress, in-plane electric displacement, and magnetic
inductions, respectively. Throughout the article m = 0, ±1, ...,±N denote the 2N + 1 number of parallel
edge cracks. The mechanical displacement, electric and magnetic potentials are denoted by wm , φm , and ψm ,
respectively. c44, e15, f15, ε11, g11, μ11 are the material constants viz., shear modulus, magnetic permeability,
dielectric, piezoelectric, piezomagnetic and magneto-electric constants, respectively, and expressed as

c44(x) = c440e
βx , e15(x) = e150e

βx , f15(x) = f150e
βx , (4)

ε11(x) = ε110e
βx , g11(x) = g110e

βx , μ11(x) = μ110e
βx , (5)

where β is the functionally graded parameter and c440, μ110, ε110, e150, f150, g110 represent the material
constants at x = 0.
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The equilibrium equations of the FGMEE plane for m = 0,±1, ...,±N in the absence of body force and
free charge can be written as

∂τmxz

∂x
+ ∂τmyz

∂y
= 0, (6)

∂Dmx

∂x
+ ∂Dmy

∂y
= 0, (7)

∂Bmx

∂x
+ ∂Bmy

∂y
= 0. (8)

With the aid of auxiliary functions ηm, χm, ζm defined by

ηm = c440wm + e150φm + f150ψm, (9)

χm = e150wm − ε110φm − g110ψm, (10)

ζm = f150wm − g110φm − μ110ψm, (11)

the following relations can be obtained employing Eqs. (1)–(3) as

τmzk = eβx ∂ηm

∂k
, Dmk = eβx ∂χm

∂k
, Bmk = eβx ∂ζm

∂k
. (12)

Therefore, Eqs. (6)–(8) reduce to

∇2ηm + β
∂ηm

∂x
= 0, (13)

∇2χm + β
∂χm

∂x
= 0, (14)

∇2ζm + β
∂ζm

∂x
= 0. (15)

The considered problem is solved for two different crack boundary conditions which are impermeable and
permeable types. The boundary conditions for the magneto-electrically impermeable cracks are given by

y ∈ [−h, h] :τmzx (am, y) = Dmx (am, y) = Bmx (am, y)

= τmzx (bm, y) = Dmx (bm, y) = Bmx (bm, y) = 0, (16)

x ∈ (am, bm) : τmzy(x, hm) = −τ0, Dmy(x, hm) = −D0, Bmy(x, hm) = −B0, (17)

x /∈ (am, bm) : wm(x, hm) = φm(x, hm) = ψm(x, hm) = 0, (18)

and for magneto-electrically permeable cracks those are given by

y ∈ [−h, h] :τmzx (am, y) = Dmx (am, y) = Bmx (am, y)

= τmzx (bm, y) = Dmx (bm, y) = Bmx (bm, y) = 0, (19)

x ∈ (am, bm) : τmzy(x, hm) = −τ0, (20)

x /∈ (am, bm) : wm(x, hm) = 0, (21)

x ∈ [0, w] : φm(x, hm) = ψm(x, hm) = 0, (22)

where hm = mh0.
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3 Problem solution

3.1 Solution for magneto-electrically impermeable cracks

Case I: Multiple parallel embedded cracks of equal length

Keeping in mind the geometry of the considered problem and the contributions of the articles [3,23,24], the
complex functions Φmj ( j = 1, 2, 3) for magneto-electrically impermeable parallel cracks are defined as

Φmj =
M∑

n=1

i Amjn

√{z − (am + ihm)}{z − (bm + ihm)}(z − ihm)n−1, (23)

where Amjn are the real unknowns to be determined, M is the number of summation term and z is a complex
number defined as z = x + iy for x, y ∈ �. Since the problem deals with the real-valued functions, the
mechanical displacement, electric and magnetic potentials are given by

wm = Re(Φm1), φm = Re(Φm2), ψm = Re(Φm3). (24)

It is clear that by the above choice of complex functions, the first three conditions as mentioned in section 1
is already satisfied. Only the boundary condition needs to be taken care of. Using (24), Eqs. (1)–(3) reduce to

τmzk = c44
∂Re(Φm1)

∂k
+ e15

∂Re(Φm2)

∂k
+ f15

∂Re(Φm3)

∂k
, (25)

Dmk = e15
∂Re(Φm1)

∂k
− ε11

∂Re(Φm2)

∂k
− g11

∂Re(Φm3)

∂k
, (26)

Bmk = f15
∂Re(Φm1)

∂k
− g11

∂Re(Φm2)

∂k
− μ11

∂Re(Φm3)

∂k
. (27)

The following expressions can be obtained with the help of Cauchy–Riemann equations

τmzk = c44Re

(
∂Φm1

∂k

)
+ e15Re

(
∂Φm2

∂k

)
+ f15Re

(
∂Φm3

∂k

)
, (28)

Dmk = e15Re

(
∂Φm1

∂k

)
− ε11Re

(
∂Φm2

∂k

)
− g11Re

(
∂Φm3

∂k

)
, (29)

Bmk = f15Re

(
∂Φm1

∂k

)
− g11Re

(
∂Φm2

∂k

)
− μ11Re

(
∂Φm3

∂k

)
. (30)

Equation (23) gives

∂Φmj

∂x
=

M∑

n=1

i Amjn Pmn,
∂Φmj

∂y
=

M∑

n=1

i2Amjn Pmn,

where Pmn =[2n(x + iy − ihm)n − (2n − 1)(am + bm)

× (x + iy − ihm)n−1 + 2(n − 1)ambm(x + iy − ihm)n−2]
/[2√{x + iy − (am + ihm)}{x + iy − (bm + ihm)}]. (31)
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Utilizing (31), Eqs. (28)–(30) can be expressed as

τmzx =
M∑

n=1

[c44Am1n + e15Am2n + f15Am3n] Re(i Pmn), (32)

Dmx =
M∑

n=1

[e15Am1n − ε11Am2n − g11Am3n] Re(i Pmn), (33)

Bmx =
M∑

n=1

[ f15Am1n − g11Am2n − μ11Am3n] Re(i Pmn), (34)

τmzy =
M∑

n=1

[c44Am1n + e15Am2n + f15Am3n] Re(i
2Pmn), (35)

Dmy =
M∑

n=1

[e15Am1n − ε11Am2n − g11Am3n] Re(i
2Pmn), (36)

Bmy =
M∑

n=1

[ f15Am1n − g11Am2n − μ11Am3n] Re(i
2Pmn). (37)

Case II: Multiple parallel edge cracks of equal length

For this crack configuration the complex functions Φmj ( j = 1, 2, 3) for magneto-electrically impermeable
parallel cracks are defined as

Φmj =
M∑

n=1

i Amjn

√{z − (bm + ihm)}(z − ihm)n−1, (38)

Following a similar procedure as of Case I, Eqs. (28)–(30) can be expressed as

τmzx =
M∑

n=1

[c44Am1n + e15Am2n + f15Am3n] Re(i Qmn), (39)

Dmx =
M∑

n=1

[e15Am1n − ε11Am2n − g11Am3n] Re(i Qmn), (40)

Bmx =
M∑

n=1

[ f15Am1n − g11Am2n − μ11Am3n] Re(i Qmn), (41)

τmzy =
M∑

n=1

[c44Am1n + e15Am2n + f15Am3n] Re(i
2Qmn), (42)

Dmy =
M∑

n=1

[e15Am1n − ε11Am2n − g11Am3n] Re(i
2Qmn), (43)

Bmy =
M∑

n=1

[ f15Am1n − g11Am2n − μ11Am3n] Re(i
2Qmn).

where Qmn = [(2n − 1)(x + iy − ihm)n−1 − 2(n − 1)bm(x + iy − ihm)n−2]
/[2√{x + iy − (bm + ihm)}]. (44)
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Fig. 2 Comparison of normalized SIFs at the crack tip a a0 and b b0 as a function of (b0 − a0)/(2h) for distinct values of βh
between the obtained results and existing results [2] for a single embedded crack in a functionally graded magneto-electro-elastic
strip

Fig. 3 Comparison of normalized SIFs at the crack tip b0 as a function of b0/h for distinct values of βh between the obtained
results and existing results [2] for a single edge crack in a functionally graded magneto-electro-elastic strip
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Fig. 4 Variations of SMFs at the crack tip a as a function of β/h under magneto-electrically a impermeable and b permeable
condition for Case I

Case III: Multiple parallel edge cracks of alternating length
In this case the expressions of complex functions, anti-plane shear stress, in-plane electric displacement, and
magnetic inductions are the same as obtained for the case of multiple parallel edge cracks of equal length. The
only change is in the value of bm whose value is same for all m in Case II whereas for this case b2m < b2m+1
(m = 0, ±1, ...,±N ).

3.2 Solution for magneto-electrically permeable cracks

Case I: Multiple parallel embedded cracks of equal length

The complex functions Φmj ( j = 1, 2, 3) for magneto-electrically permeable cracks are given by

Φm1 =
M∑

n=1

i[Am1n
√{z − (am + ihm)}{z − (bm + ihm)}

− (pAm2n + q Am3n)(z − ihm)](z − ihm)n−1, (45)

Φmj =
M∑

n=1

i Amjn(z − ihm)n, j = 2, 3, (46)
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Fig. 5 Variations of SMFs at the crack tip b as a function of β/h under magneto-electrically a impermeable and b permeable
condition for Case I

where p = e150/c440 and q = f150/c440. Analogous to the impermeable case, the following expressions are
obtained.

∂Φm1

∂x
=

M∑

n=1

i [Am1n Pmn − (pAm2n + q Am3n)Rmn] , (47)

∂Φm1

∂y
=

M∑

n=1

i2 [Am1n Pmn − (pAm2n + q Am3n)Rmn] , (48)

∂Φmj

∂x
=

M∑

n=1

i Amjn Rmn,
∂Φmj

∂y
=

M∑

n=1

i2Amjn Rmn,

j = 2, 3,

where Rmn = n(x + iy − ihm)n−1. (49)

Using (40)–(42), Eqs. (28)–(30) for permeable type cracks can be expressed as

τmzx =
M∑

n=1

c44Am1nRe(i Pmn) − [c44 pAm2n + c44q Am3n − e15Am2n − f15Am3n]Re(i Rmn), (50)
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Fig. 6 Variations of SMFs at the crack tip b as a function of β/h under magneto-electrically a impermeable and b permeable
condition for Case II

Dmx =
M∑

n=1

e15Am1nRe(i Pmn) − [e15 pAm2n + e15q Am3n + ε11Am2n + g11Am3n]Re(i Rmn), (51)

Bmx =
M∑

n=1

f15Am1nRe(i Pmn) − [ f15 pAm2n + f15q Am3n + g11Am2n + μ11Am3n]Re(i Rmn), (52)

τmzy =
M∑

n=1

c44Am1nRe(i
2Pmn) − [c44 pAm2n + c44q Am3n − e15Am2n − f15Am3n]Re(i2Rmn), (53)

Dmy =
M∑

n=1

e15Am1nRe(i
2Pmn) − [e15 pAm2n + e15q Am3n + ε11Am2n + g11Am3n]Re(i2Rmn), (54)

Bmy =
M∑

n=1

f15Am1nRe(i
2Pmn) − [ f15 pAm2n + f15q Am3n + g11Am2n + μ11Am3n]Re(i2Rmn). (55)
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Fig. 7 Variations of SMFs at the crack tip b as a function of β/h under magneto-electrically a impermeable and b permeable
condition for Case III

Case II: Multiple parallel edge cracks of equal length

For this case the complex functions Φmj ( j = 1, 2, 3) for magneto-electrically permeable cracks are given by

Φm1 =
M∑

n=1

i[Am1n
√{z − (bm + ihm)} − (pAm2n + q Am3n)(z − ihm)](z − ihm)n−1, (56)

Φmj =
M∑

n=1

i Amjn(z − ihm)n, j = 2, 3. (57)

Thus, Eqs. (28)–(30) reduce to

τmzx =
M∑

n=1

c44Am1nRe(i Qmn) − [c44 pAm2n + c44q Am3n − e15Am2n − f15Am3n]Re(i Rmn), (58)

Dmx =
M∑

n=1

e15Am1nRe(i Qmn) − [e15 pAm2n + e15q Am3n + ε11Am2n + g11Am3n]Re(i Rmn), (59)

Bmx =
M∑

n=1

f15Am1nRe(i Qmn) − [ f15 pAm2n + f15q Am3n + g11Am2n + μ11Am3n]Re(i Rmn), (60)
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Fig. 8 Variations of SMFs at the crack tip a as a function of h0/h under magneto-electrically a impermeable and b permeable
condition for Case I

τmzy =
M∑

n=1

c44Am1nRe(i
2Qmn) − [c44 pAm2n + c44q Am3n − e15Am2n − f15Am3n]Re(i2Rmn), (61)

Dmy =
M∑

n=1

e15Am1nRe(i
2Qmn) − [e15 pAm2n + e15q Am3n + ε11Am2n + g11Am3n]Re(i2Rmn), (62)

Bmy =
M∑

n=1

f15Am1nRe(i
2Qmn) − [ f15 pAm2n + f15q Am3n + g11Am2n + μ11Am3n]Re(i2Rmn). (63)

Case III: Multiple parallel edge cracks of alternating length

Again, in this case, the expressions of complex functions, anti-plane shear stress, in-plane electric displacement,
and magnetic inductions are the same as of Case II with only a change in the value of bm .

4 Stress magnification factors

The stress intensity factors at the crack tips are determined by

K (m)
I I I (am) = lim

x→am

√
2π(am − x) τmzy(x, hm), (64)
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Fig. 9 Variations of SMFs at the crack tip b as a function of h0/h under magneto-electrically a impermeable and b permeable
condition for Case I

K (m)
I I I (bm) = lim

x→bm

√
2π(x − bm) τmzy(x, hm). (65)

In terms of Amjn , the crack tip stress intensity factors for multiple parallel embedded cracks of equal length
for magneto-electrically impermeable cracks are given by

K (m)
I I I (am) = eβam

√
π(bm − am)

2

M∑

n=1

an−1
m (c440Am1n + e150Am2n + f150Am3n) , (66)

K (m)
I I I (bm) = −eβbm

√
π(bm − am)

2

M∑

n=1

bn−1
m (c440Am1n + e150Am2n + f150Am3n) , (67)

and for magneto-electrically permeable cracks those are given by

K (m)
I I I (am) = eβam

√
π(bm − am)

2

M∑

n=1

an−1
m c440Am1n, (68)

K (m)
I I I (bm) = −eβbm

√
π(bm − am)

2

M∑

n=1

bn−1
m c440Am1n . (69)
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Fig. 10 Variations of SMFs at the crack tip b as a function of h0/h under magneto-electrically a impermeable and b permeable
condition for Case II

The crack tip stress intensity factors for multiple parallel edge cracks of equal as well as alternating lengths
for magneto-electrically impermeable cracks are determined by

K (m)
I I I (bm) = −eβbm

√
π

2

M∑

n=1

bn−1
m (c440Am1n + e150Am2n + f150Am3n) , (70)

and for magneto-electrically permeable cracks they are determined by

K (m)
I I I (bm) = −eβbm

√
π

2

M∑

n=1

bn−1
m c440Am1n . (71)

The stress magnification factors at the crack tips [14,15] are determined by

M (m)(am) = K (m)
I I I (am)

K (m)∗
I I I (am)

, M (m)(bm) = K (m)
I I I (bm)

K (m)∗
I I I (bm)

, (72)

where K (m)∗
I I I (am) and K (m)∗

I I I (bm) are the crack tip SIFs of the mth crack in the absence of remaining cracks
for the concerned case.
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Fig. 11 Variations of SMFs at the crack tip b as a function of h0/h under magneto-electrically a impermeable and b permeable
condition for Case III

5 Numerical results and discussion

The boundary collocation method is used to solve Eqs. (31)–(36), (39)–(44), (46)–(47). It is sufficient to take
into account only the positive portion of the y-axis due to geometric symmetry. For numerical computation,
some points on the external boundaries of the plane and crack surfaces are chosen. Here, Amjn’s are the
unknowns to be determined. If the number of equations is equal to the total number of unknowns, then the
unknowns can be determined by using the concept of matrix inversion [24]. Usually, to improve the accuracy
more points are to be taken so that the number of equations is greater than the total number of unknowns, and
the least square method is employed to obtain the coefficients [22]. The parameters are assumed to be c440 =
54 GPA, e150 = 7.8 C/m2, ε110 = 3.64×10−9 C2/Nm2, f150 = 175 N/Am, μ110 = −1.97×10−4 Ns2/C2,
g110 = 0.8×10−11 Ns/(VC), τ0 = 4.2×106 N/m2 [7].While determining Amjn’s,M is chosen in such a way
that three decimal digit accurate values of crack tip SMFs are acquired. For Case I am/h = 0.2, bm/h = 0.4,
Case II bm/h = 0.4 and Case III b2m/h = b01 = 0.2, b2m+1/h = b02 = 0.4 are taken.

5.1 Validation

This section of the article presents a validation to compare the acquired results with the results provided
in [2]. The integral transform and dislocation density functions were used in [2] to tackle the problem of a
magneto-electrically impermeable or permeable embedded and edge crack perpendicular to the boundary of a
functionally graded magneto-electro-elastic strip.
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Fig. 12 Variations of SMFs as a function of λd for Case I at the crack tip a a and b b

By taking into consideration a single crack, N = 0 in the direction of x-axis, and for h >> b0, the
current problem is reduced to [2]. For c440 = 44 GPA, e150 = 5.8 C/m2, ε110 = 6.46 × 10−9 C2/Nm2,
f150 = 275 N/Am, μ110 = −2.97 × 10−4 Ns2/C2, g110 = 0.5 × 10−11 Ns/(VC), τ0 = 4.2 × 106 N/m2,
λd = 0 and λb = 0 [7], the findings of both the studies are compared for both embedded and edge crack
configurations. It can be seen from Figs. 2 and 3 that the results obtained by our proposed method are in good
agreement with the existing results provided in [2] when the normalizing factor of SIFs for embedded and
edge crack is taken into account as τ0

√
π(b0 − a0)/2 and τ0

√
πb0, respectively.

5.2 SMFs vs. functionally graded parameter β

Figures4, 5, 6, and 7 illustrate how functionally graded parameters affect crack tip SMFs in both magneto-
electrically impermeable and permeable conditions. As β/h increases, SMF increases at the left crack tips in
Case I, as shown in Fig. 4. In contrast, it decreases at the right crack tips with the increasing value of β/h for
all three cases as demonstrated from Figs. 5, 6 and 7. This shows that the likelihood of crack amplification
increases at the left crack tip as the value of the functionally graded parameter increases, whereas the likelihood
of crack shielding increases at the right crack tip.

Upon examination of the results, it is evident that for the negative value of β/h the possibility of crack
shielding is high for inner cracks in comparison with the outer ones whereas for the positive value of β/h the
possibility of crack amplification is high for outer cracks in comparison with the inner ones at the left crack
tips under Case I. On the other hand at the right crack tip for the negative value of β/h the possibility of crack
amplification is high for inner cracks while for the positive value of β/h the possibility of crack shielding is
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Fig. 13 Variations of SMFs at the crack tip b as a function of λd for a Case II and b Case III

high for outer cracks for the Cases I and II. In Case III, it is noted that for negative values of the functionally
graded parameter, the crack amplification phenomenon is high for longer cracks, while for positive values, the
shielding phenomenon is high for shorter cracks.

Additionally, under magneto-electrically impermeable and permeable conditions, the magnitude of the
SMFs at the crack tips varies in all cases. This indicates that the crack arrest tendency differs betweenmagneto-
electrically impermeable and permeable conditions.

5.3 SMFs versus crack spacing h0

Figures8, 9, 10, and 11 illustrate how crack spacing affects the likelihood of crack arrest. For both the imper-
meable and permeable type cracks, it is observed that as the spacing between the cracks increases the crack
tip SMFs started to decrease which arises the possibility of cracks’ arrest. In Cases I and III only shielding
behavior is noticed while both shielding and amplification behavior is noticed in Case II.

Additionally, in Cases I and II, under both magneto-electrically impermeable and permeable conditions,
the magnitude of the crack tip SMFs for outer cracks is greater than that for inner cracks. For Case III, it
can be shown that the shorter cracks have an elevated magnitude of crack tip SMFs than the longer ones.
The magneto-electrically impermeable and permeable conditions significantly affect the tendency of cracks to
arrest, as shown in Figs. 8, 9, 10, and 11.
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Fig. 14 Variations of SMFs as a function of λb for Case I at the crack tip a a and b b

5.4 SMFs versus electric load λd and magnetic load λb

The shielding and amplification behavior of permeable type cracks is unaffected by the electric and magnetic
loads. However, the effects of both loads are depicted in Figs. 12, 13, 14 and 15 for the impermeable type
cracks. As per the figure keeping the magnetic load fixed, if the electric load increases, then the cracks started
to arrest at both crack tips, whereas, for fixed electric load and increasing magnetic load, the cracks are started
to propagate. In other words, electric loads resist the propagation of cracks, whereas magnetic load enhances
the propagation of cracks.

6 Concluding remarks

The possibility of multiple parallel magneto-electrically impermeable and permeable cracks being arrested
for three different configurations of cracks is examined in this article under the impact of gradient parameter,
the distance between the cracks, and electric and magnetic loadings. The semi-analytical forms of SIFs and
therefore SMFs are obtained for all three crack configuration cases by expressing the displacement and potential
functions in terms of power series and applying boundary collocation and least square methods. The following
are the findings of the current study:

• The semi-analytical expressions of SIFs aid in calculating the crack tip SMFs for the cases under consid-
eration.

• In all three crack configuration scenarios, the change in the values of the functionally graded parameter
has a considerable impact on the likelihood of crack arrest.
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Fig. 15 Variations of SMFs at the crack tip b as a function of λb for a Case II and b Case III

• The graphical displays of SMFs as a function of crack distance show that the interaction of cracks plays
a non-negligible role in the shielding and amplifying nature of parallel cracks of different configurations.
The crack arrest is less likely to occur as the distance between the cracks gets smaller because the cracks
start to amplify.

• With an increase in the electric load and a decrease in the magnetic load, the cracks have a greater tendency
to arrest.

• The distinction between parallel cracks, which are magneto-electrically impermeable and permeable for
different cases, is graphically illustrated using SMFs.

• The innermost cracks have the smallest magnitude, and the outermost cracks have the largest magnitude
when there are multiple parallel embedded and edge cracks of equal length. The shorter edge cracks have
a magnitude greater than the longer ones when there are multiple parallel edge cracks of varying lengths.
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