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Abstract The present paper dealswith themodal analysis of sigmoid functionally graded (S-FGM) rectangular
plate resting on elastic foundation by using the dynamic stiffness method (DSM). The DSM is formulated
based on the exact solutions of the governing differential equations, and thereby it results in the very accurate
computation of the natural frequencies. To obtain theDSM results for thicker plates, the study incorporates first-
order shear deformation theory (FSDT) which includes the important effects of transverse shear deformation
and rotatory inertia. The governing equations and the associated natural boundary conditions are derived using
Hamilton’s principle, and the solution is sought in the Levy form where two opposite edges of the plate are
simply supported. The present study also contributes by highlighting mistakes in the classical plate theory
(CPT)-based DSM formulation published in a recent work and presents a correct CPT-based mathematical
formulation. For both these cases, the frequency-dependent dynamic stiffness matrix of the S-FGM plate gives
rise to the transcendental eigenvalue problem, which is solved by using the Wittrick and Williams algorithm.
Comparison with the available literature establishes the accuracy of the method. In addition, a parametric study
is presented for various geometric and stiffness parameters of the elastically supported S-FGM plates using
both CPT- and FSDT-based formulations, and accurate frequency results are reported.

Keywords Free vibration · S-FGM plate · Elastic foundation · Classical plate theory · First-order shear
deformation theory · Dynamic stiffness method

1 Introduction

The paper focuses on the exact modal analysis of a sigmoid functionally graded (S-FGM) rectangular plate
resting on Winkler–Pasternak foundation by using the dynamic stiffness method (DSM). The present study
is of practical relevance as the functionally graded material is now considered to be an advanced class of
material used mainly in the design of structural components that are subjected to thermo-mechanical loads. In
the design of weight-sensitive structures in aerospace, naval, automotive, and other allied industries, the use
of both laminated composite material and functionally graded materials is almost inevitable as they provide
superior strength and stiffness properties in comparison with other conventional materials. However, laminated
structures often experience issues related to debonding and the development of residual stresses at the interfaces,
which eventually leads to the initiation of cracks within the material. To overcome the issue of debonding,
the idea of functionally graded material (FGM) had been conceived [1]. In general, FGM plates are produced
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by proper mixing of metal and ceramic constituents, effectively eliminating the concept of discrete layers
in laminates [2], which eventually produces a smooth variation of mechanical properties along the preferred
direction [3,4]. The metal constituents possess superior strength and fracture resistance, whereas ceramic
constituents provide high thermal resistance [5]. Furthermore, it offers the added benefit of tailoring thematerial
properties for specific requirements [6]. Due to superior mechanical, electrical, and thermal properties over
traditional materials, the structures made of functionally graded material have found their usages in many
industrial applications [7]. When operated in external environments, these FGM structures are subjected to
severe conditions resulting in excessive noise and vibration. Therefore, the vibration characteristics of FGM
materials must be thoroughly studied in order to design the structure properly.

Severalmicromechanicalmodels basedonpower-law function (P-FGM) [8–11], sigmoid function (S-FGM)
[12–14], and exponential function (E-FGM) [15,16] are proposed for the estimation of spatial distribution of
material constituents along the thickness direction of the FGM plate. Based on these mathematical functions,
the effective material properties are determined. A thorough literature study reveals that the static and dynamic
analysis of FGMplates based on the power-lawmicromechanical model is quite significant in number, whereas
very few literature are available that carried out the analysis of FGM plate based on the sigmoid microme-
chanical model. In the sigmoid micromechanical model, the volume fraction is defined using two power-law
functions, one from the middle surface to the top surface and other from the bottom surface to the middle
surface. The separate functions for the distribution of the volume fraction in each half of the plate ensure the
smooth distribution of interfacial stresses and make it more applicable for layered FGM [17] structures. Note
that a study of free vibration behavior of S-FGM plate using a classical plate theory (CPT)-based dynamic
stiffness method has been attempted by Chauhan et al. in their recent paper [18]. However, a careful anal-
ysis reveals that the formulation presented in that paper is inappropriate and the reported numerical results
for S-FGM plates are incorrect. In this context, the main objectives of the present study are twofold: (i) To
highlight possible mistakes in the CPT-based dynamic stiffness (DS) formulation in recent work of Chauhan
et al. [18], and (ii) to present correct results using the dynamic stiffness formulations based on both CPT
and FSDT, i.e., the higher-order shear deformation theory. Using the FSDT, the present work advances the
previously published work [18], which includes the DSmatrix formulation applicable to thicker S-FGM plates
by incorporating the important effects of transverse shear deformation and rotatory inertia.

Therefore, the main focus of the present study is to study the free vibration analysis of the S-FGM plate
resting on the Winkler–Pasternak foundation using both CPT- and FSDT-based dynamic stiffness method.
Plates resting on elastic foundations have been used in many structural applications ranging from railroad
tracks to nuclear reactors. Initially, a Winkler model for railroad interaction was developed to investigate the
effect of underlying layers on plate vibration. In this model, several independent and unconnected springs are
placed beneath the structure to study the effect of elastic foundation [19,20]. However, the Winkler model
does not represent a realistic situation because of the independent and unconnected springs. Later, in Pasternak
model a shear layer is introduced to accommodate the longitudinal and lateral displacement of springs [21,22].
In recent times, the plate supported by the Winkler–Pasternak foundation increasingly found its application
in foundation engineering. Several researchers carried out the static and dynamic analysis of isotropic and
orthotropic plates resting on Winkler–Pasternak foundation. Xiang [23] presented the closed-form solution of
the pre-stressed simply supported plate resting on elastic foundation. Lam et al. [24] analyzed the static and
dynamic behavior of the plate using the Green function. Malekzadeh et al. [25] analyzed the free vibration of
plate, having continuous thickness variation and supported on a two-parameter foundation, using a FSDT-based
differential quadraturemethod.Baferani et al. [26] employed an analyticalmethod for the free vibration analysis
of P-FGM plate based on third-order shear deformation theory. Jung et al. [27] presented a refined higher-order
shear deformation theory to analyze the vibration behavior of S-FGMplate resting on elastic foundation. There
are several other studies available in the literature which deal with the vibration analysis of plates resting on
elastic foundations. However, a careful survey of the past works reveals that a majority of these works adopted
different numerical methods such as the finite element method and the finite strip method [28–30] for studying
the static and dynamic behavior of elastically supported plates. It must be noted that these numerical methods
require a large mesh size for the convergence of solutions, which in turn increases the computational cost.
Furthermore, these methods provide an approximate solution, especially at higher frequencies, due to several
assumptions made en route to the solution. On the contrary, the dynamic stiffness method can be adopted as a
solution methodology to obtain very accurate solutions with reasonable computational time [31–34] and this
method is the primary focus of the present work. DSM utilizes the closed-form solutions of the governing
differential equation while maintaining the accuracy and exactness of the result as opposed to FEM [35,36].
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In a nutshell, this study presents an exact dynamic stiffness matrix formulations based on both CPT and
FSDT and discusses the free vibration results for the elastically supported S-FGMplates in detail. The dynamic
stiffness matrix is derived for a Levy-type plate, where two opposite edges are simply supported. It must be
noted here that the CPT-based DS matrix formulation presented in the recent work of Chauhan et al. [18] is
inappropriate, and it leads to incorrect frequency results for the S-FGM plates resting on elastic foundations.
Therefore, the present work should be treated as a correction to the work of Chauhan et al. [18] to apply
the dynamic stiffness method for the free vibration analysis of elastically supported S-FGM plates. Over and
above, the present study further enriches the existing literature by introducing a FSDT-based dynamic stiffness
formulation, for the elastically supported S-FGM plates, which has broader applications than the CPT-based
formulation. Thus, the novelty of the present study lies in presenting, first time in the literature, mathematically
correct dynamic stiffness formulations based on both CPT and FSDT for the free vibration analysis of FGM
plates resting on Winkler–Pasternak elastic foundation. By implementing the exact DSM formulations, very
accurate frequency results are obtained for various values of geometric and stiffness parameters of the elastically
supported FGM plates and these results can serve as benchmark for any future comparative studies.

2 Scope and contributions of the present work

As discussed earlier, in this work, exact dynamic stiffness formulations based on both CPT and FSDT are pre-
sented for the free vibration analysis of S-FGM plate resting onWinkler–Pasternak foundation. The governing
differential equations and the boundary conditions are derived using Hamilton’s principle. Assuming Levy-
type BCs, a system of linear differential equations is obtained, which leads to the formation of the dynamic
stiffness matrix for a plate element. These element stiffness matrices are properly assembled to form the
frequency-dependent global dynamic stiffness matrix, which is solved by employing well-known Wittrick–
Williams algorithm [37,38]. Based on the feature of the Sturm sequence, the Wittrick–Williams algorithm
makes sure that all the natural frequencies within a given frequency range are computed without missing any
single frequency. Using this DSM approach, parametric studies have been carried out to obtain the natural
frequencies of S-FGM plate resting on elastic foundation by varying geometrical and stiffness parameters of
the plate. In short, the key contributions of the present work can be listed as follows:

• For the first time in the literature, separate dynamic stiffness matrix formulations based on the kinematic
variables of CPT and FSDT are presented for the S-FGM plate resting on Winkler–Pasternak foundation.

• Due to the transcendental nature of the dynamic stiffness matrix, Wittrick–Williams algorithm is employed
in the present work for the accurate computation of natural frequencies for the elastically supported S-FGM
plate.

• Some incorrect frequency results in the published literature [18] are highlighted. The possible reasons for
the incorrectness are also discussed in detail.

• New set of results are obtained for both uniform and non-uniformS-FGMplate resting on elastic foundation
by varying different plate parameters and elastic foundation coefficients. These results are presented in
both tabulated and graphical forms, and a number of important conclusions are drawn.

With this note, the mathematical details for the DSM formulation are presented below for the vibration
analysis of S-FGM plate resting on elastic foundation.

3 Materials and method

In this section, material property variations within the S-FGM plate are described followed by the detailed
mathematical formulation for both CPT- and FSDT-based dynamic stiffness approach.

3.1 The plate geometry and the material property description

The length, width, and thickness of the functionally graded rectangular plate element, as shown in Fig. 1, are L ,
b, and h, respectively. As mentioned earlier, the functionally graded materials are made up by varying volume
fraction of the material constituents along the thickness direction which also causes change in mechanical
properties of the plate. In this study, the idealized mathematical model termed as sigmoid law (S-FGM) has
been used to describe the variation of material properties in the thickness direction of the plate.
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Fig. 1 A functionally graded rectangular plate element supported on elastic foundation showing both the geometric midsurface
and the physical neutral surface

The volume fractions of the material constituents along the thickness direction in S-FGM plate are defined
as:

Vt (z) = 1 − 1
2

( h−2z
h

)p ; for 0 ≤ z ≤ h/2
Vb(z) = 1

2

( h+2z
h

)p ; for − h/2 ≤ z ≤ 0
(1)

Here, 0 ≤ p ≤ ∞ is a parameter, known as sigmoid-function exponent (or sigmoid volume fraction index), and
determines the proportion of ceramic andmetal in the thickness direction of the plate. Thematerial constituents
vary as one proceeds from bottom to top of the plate. As a function of z-coordinate, the equivalent material
properties are calculated using the rule of mixture:

X1(z) = Vt (z)Xc + [1 − Vt (z)]Xm; for 0 ≤ z ≤ h/2
X2(z) = Vb(z)Xc + [1 − Vb(z)]Xm; for − h/2 ≤ z ≤ 0 (2)

Here, Xc and Xm refer to the material property (e.g., Young’s modulus (E), density (ρ), Poisson’s ratio (μ),
etc.) values of the pure ceramic and pure metal, respectively. Interestingly, the behavior of the plate changes
from homogeneous isotropic to bimetallic plate as the value of p increases from 0 to ∞. The homogeneous
isotropic plate will take the average property of the material constituents, whereas the bimetallic plate consists
of ceramic constituent at the top half and metallic counterparts at the bottom half.

3.2 Governing equations derivation

Hamilton’s principle is used for the derivation of the governing equations and the natural BCs, which is
expressed as:

δ

∫ t2

t1
(T − P − Vef )dt = 0. (3)

Here, T stands for the kinetic energy and expressed as

T = 1

2

∫

A

∫

z
ρ(u̇2 + v̇2 + ẇ2)dzdA, (4)

where ρ represents the equivalent mass density (see Eq. (2)) of the plate, and (.) denotes the time derivative.
In Eq. (3), P denotes the potential energy which is expressed as

P = 1

2

∫

A

∫

z
σ T εdzdA, (5)
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Fig. 2 a Displacement field variable and rotation within the plate element. b Notation and the direction used for the forces and
moments

where

σ T = [σxx σyy σxy σyz σxz] and εT = [εxx εyy γxy γyz γxz]. (6)

The stress–strain constitutive relation used for the development of governing differential equation and natural
boundary conditions is mentioned in Appendix A. In Eq. (3), Vef represents the potential energy associated
with the presence of elastic foundation and expressed as:

Vef = 1

2

∫

A

∫

z

(

kww2 + kp

((
∂w

∂x

)2
+
(

∂w

∂y

)2))

dzdA, (7)

where kw and kp are the Winkler and Pasternak stiffness coefficients of the elastic foundation, respectively.
In the subsequent sections, the formulations considering the displacement field based on CPT and FSDT

are discussed. First, the dynamic stiffness matrix is developed considering the kinematic variables according to
CPT and subsequently for FSDT. Figure 2 shows the notations and sign conventions used for the displacement
and force components within the plate in a Cartesian coordinate system. For mathematical simplicity, without
compromising on the correctness of the method, the concept of physical neutral surface is used for defining
the displacement components.

3.3 Concept of physical neutral surface

Due to the variation in the material stiffness along the thickness direction, the transverse motion and the in-
plane displacements are, in general, coupled in FGMplate [39], which increases the complexity of the dynamic
stiffness formulation. Abrate [40] observed that by aptly shifting the reference plane from plate’s mid-surface
to a new reference surface known as physical neutral surface [41], the stretching-bending coupling in the FGM
plate can be avoided. The physical neutral surface position, defined by zpns = z − z0 [39], is determined by
using the concept that the resultant force in the axial direction is zero. Here, z0 is the distance between the
plate’s geometric mid-surface and the physical neutral surface (see Fig. 1). It can be shown that the net axial
force will be zero when the first moment of the material stiffness (i.e., Young’s modulus) about the reference
surface is zero. Mathematically, we write

∫ h/2−z0

−h/2−z0
zpnsE(zpns)dzpns =

∫ h/2

−h/2
(z − z0)E(z)dz = 0, (8)

which leads to,

z0 =
∫ h/2
−h/2 E(z)zdz
∫ h/2
−h/2 E(z)dz

=
∫ h/2
0 E1(z)zdz + ∫ 0−h/2 E2(z)zdz
∫ h/2
0 E1(z)dz + ∫ 0−h/2 E2(z)dz

= h(Ec − Em)

2(Ec + Em)

[
1

2
− 1

(p + 1)(p + 2)

] (9)
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3.4 Development of dynamic stiffness matrix based on classical plate theory (CPT)

Taking reference at the physical neutral surface, the displacement field based on the classical plate theory is
expressed as:

u = −zpns
∂w0

∂x
= −(z − z0)

∂w0

∂x

v = −zpns
∂w0

∂y
= −(z − z0)

∂w0

∂y

w = w0(x, y, t)

(10)

Applying the Hamilton’s principle, as described in Sect. 3.2, the governing differential equation is developed
for the S-FGM plate resting on elastic foundation as

Dsfgm(w0,xxxx + 2w0,xxyy + w0,yyyy) + I0ẅ0 + kww0 − kp(w0,xx + w0,yy) = 0 (11)

The natural boundary conditions are:

Vx : [−Dsfgm(w0,xxx + (2 − μ)w0,xyy) + kpw0,x ]δw
Mxx : −Dsfgm(w0,xx + μw0,yy)δφy

(12)

Here, Dsfgm is the flexural rigidity, and I0 is the transverse inertia of the S-FGM plate and their expressions
are given in Appendix B.

The solution which satisfies the simply supported BCs at y = 0 and y = L is given by:

w0(x, y, t) =
∞∑

m=1

Wm(x)eiωt sin(αm y), (13)

where αm = mπ/L; (m = 1, 2, .........,∞). This leads to an ordinary differential equation expressed as:

d4Wm(x)

dx4
−
(
2α2

m + kp
Dsfgm

)
d2Wm(x)

dx2
+
(

α4
m + kw

Dsfgm
− α2

mkp
Dsfgm

− I0ω2

Dsfgm

)
Wm(x)=0. (14)

Depending on the nature of the roots, two distinct cases are possible:
Case 1.

(
α2
m + kp

2Dsfgm

)
≥
√√
√√
(

k2p
4D2

sfgm

+ I0ω2

Dsfgm
− kw

Dsfgm

)

(15)

In this case, all the four roots are real (t1m, −t1m, t2m, −t2m)

t1m =

√√
√√√
(

α2
m + kp

2Dsfgm

)
+
√√√
√
(

k2p
4D2

sfgm

+ I0ω2

Dsfgm
− kw

Dsfgm

)

t2m =

√√
√√
√
(

α2
m + kp

2Dsfgm

)
−
√√
√√
(

k2p
4D2

sfgm

+ I0ω2

Dsfgm
− kw

Dsfgm

)
(16)

The solution for the case where all the roots are real is expressed as:

Wm(x) = A1m cosh(t1mx) + A2m sinh(t1mx) + A3m cosh(t2mx) + A4m sinh(t2mx) (17)

Case 2.

(
α2
m + kp

2Dsfgm

)
<

√√√
√
(

k2p
4D2

sfgm

+ I0ω2

Dsfgm
− kw

Dsfgm

)

(18)
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In this case, two real and imaginary roots are possible (t1m, −t1m, i t2m, −i t2m)

t1m =

√√
√√√
(

α2
m + kp

2Dsfgm

)
+
√√√
√
(

k2p
4D2

sfgm

+ I0ω2

Dsfgm
− kw

Dsfgm

)

t2m =

√√
√√
√−

(
α2
m + kp

2Dsfgm

)
+
√√
√√
(

k2p
4D2

sfgm

+ I0ω2

Dsfgm
− kw

Dsfgm

)
(19)

The solution for this case is:

Wm(x) = A1m cosh(t1mx) + A2m sinh(t1mx) + A3m cos(t2mx) + A4m sin(t2mx) (20)

The dynamic stiffness matrix for case 2 is developed here. The formulation of dynamic stiffness matrix for case
1 follows exactly similar procedure, and it is omitted here. Once the displacementw0 is known, the expressions
for the rotation φy , shear force Vx , and the bending moment Mxx are developed. Rotation:

φym = �ym sin(αm y)

= −[A1mt1m sinh(t1mx) + A2mt1m cosh(t1mx) − A3mt2m sin(t2mx) + A4mt2m cos(t2mx)] (21)

Shear force:

Vx = −Dsfgm

(
d3Wm

dx2
+ (μ − 2)αm

dWm

dx

)
+ kp

dWm

dx

= −Dsfgm

[
A1m

(
t31m − (2 − μ)α2

mt1m + kpt1m
Dsfgm

)
sinh(t1mx)

+A2m

(
t31m − (2 − μ)α2

mt1m + kpt1m
Dsfgm

)
cosh(t1mx)

+A3m

(
t32m − (2 − μ)α2

mt2m + kpt2m
Dsfgm

)
sin(t2mx)

−A4m

(
t32m − (2 − μ)α2

mt2m + kpt2m
Dsfgm

)
cos(t2mx)

]

(22)

Bending moment:

Mxxm (x, y) = Mxxm sin(αm y)

= −Dsfgm
[
A1m(t21m − μα2

m) cosh(t1mx) + A2m(t21m − μα2
m) sinh(t1mx)

−A3m(t22m + μα2
m) cos(t2mx) − A4m(t22m + μα2

m) sin(t2mx)
]

(23)

Now, the displacement BCs are:

At x = 0 : Wm = W̃1, �ym = �̃y1,

At x = b : Wm = W̃2, �ym = �̃y2 .
(24)

Similarly, the force BCs:

At x = 0 : Vxm = −Ṽ1, Mxxm = −M̃1,

At x = b : Vxm = Ṽ2, Mxxm = M̃2.
(25)

Substituting Eq. (24) into Eqs. (20) and (21) yields the following matrix for the displacement components.
⎡

⎢⎢
⎣

W̃1
�̃y1
�̃x1
W̃2

⎤

⎥⎥
⎦ =

⎡

⎢
⎣

1 0 1 0
0 −t1m 0 −t2m

Ch1 Sh1 C2 S2
−t1mSh1 −t1mCh1 t2mS2 −t2mC2

⎤

⎥
⎦

⎡

⎢
⎣

A1m
A2m
A3m
A4m

⎤

⎥
⎦ (26)
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i.e.,

δe = XeAe, (27)

where Ch1 = cosh(timb) and Sh1 = sinh(timb) with i = 1, 2. Again, substituting Eq. (25) into Eq. (22) and
(23) yields the following matrix relation for the force components.

⎡

⎢
⎢
⎣

Ṽ1
M̃xx1
Ṽ2

M̃xx2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎣

0 −R1 0 R2
−L1 0 L2 0
R1Sh1 R1Ch1 R2S2 −R2C2
L1Ch1 L1Sh1 −L2S2 −L2C2

⎤

⎥
⎦

⎡

⎢
⎣

A1m
A2m
A3m
A4m

⎤

⎥
⎦ (28)

i.e.,

Fe = YeAe, (29)

where
Ri = −Dsfgm

(
t3im − (2 − μ)α2

mtim + kptim
Dsfgm

)
and Li = −Dsfgm(t2im − μα2

m) with i = 1, 2.

Finally, the dynamic stiffness matrix, Ke, for a single-plate element is obtained by combining Eqs. (27) and
(29) as

Fe = Keδe, (30)

where

Ke = YeX−1
e . (31)

In expanded form, one can write

Ke =

⎡

⎢⎢
⎣

K̃11 K̃12 K̃13 K̃14
K̃22 K̃23 K̃24

Sym K̃33 K̃34
K̃44

⎤

⎥⎥
⎦ =

[[K̃ e
t t ](2∗2) [K̃ e

ts](2∗2)
[K̃ e

st ](2∗2) [K̃ e
ss](2∗2)

]
. (32)

The explicit expression for each term of Eq. (32) is not mentioned here due to their larger algebraic expressions.

3.5 Development of dynamic stiffness matrix based on FSDT

Taking reference at the physical neutral surface, the kinematic variables for defining motion of the rectangular
plate element are expressed according to the first-order shear deformation theory (FSDT) as [35]:

u = zpnsφy(x, y, t) = (z − z0)φy(x, y, t),

v = −zpnsφx (x, y, t) = −(z − z0)φx (x, y, t),

w = w0(x, y, t).

(33)

Here, u, v, and w denote the displacement components within the FGM plate in the respective direction,
and φx and φy are the rotations of the transverse normals along y− and x−axis, respectively. Now, through
the application of the Hamilton’s principle, the following three coupled partial differential equations for the
transverse motion of the FGM plate are obtained:

Âs(w0,yy + w0,xx + φy,x − φx,y ) − kww0 + kp(w0,xx + w0,yy) = I0ẅ0

Dsfgm(φy,xx + ((1 − μ)/2)φy,yy − ((1 + μ)/2)φx,xy ) − Âs(w0,x + φy) = I2φ̈y

Dsfgm((1 − μ)/2)φx,xx + φx,yy − ((1 + μ)/2)φy,xy ) + Âs(w0,y − φx ) = I2φ̈x

(34)

The natural boundary conditions are given as:

Qx : Âs(w0,x + φy) + kpw0,x ,

Mxx : Dsfgm(φy,x − μφx,y )

Mxy : Dsfgm((1 − μ)/2)(φx,x − φy,y )

(35)
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The sign conventions used for defining the displacements and forces are shown in Fig. 2. In these equations,
Dsfgm is the bending stiffness; Âs is the coefficient of extensional stiffness; I0 and I2 are the transverse
and rotational inertia of the plate. Mathematical expression of the stiffness and inertia terms is provided in
Appendix B.

The solution of Eqs. (34) and (35) will be expressed for Levy form of BCs, where two distinct sides of the
plate at y = 0 and y = L are simply supported (S) and the remaining other two sides at x = 0 and x = b can
be either clamped (C), simply supported (S), or free (F).

Solutions that automatically satisfy the Levy-type BCs, i.e., the simply supported condition at both y = 0
and y = L edges, are expressed as:

w0(x, y, t) =
∞∑

m=1

Wm(x)eiωt sin(αm y),

φy(x, y, t) =
∞∑

m=1

�ym (x)eiωt sin(αm y),

φx (x, y, t) =
∞∑

m=1

�xm (x)eiωt cos(αm y),

(36)

where ω represents the angular frequency of the plate, and αm = mπ
L with m = 1, 2, 3, 4, ....∞.

Three coupled ordinary differential equations are obtained after substituting Eq. (36) into Eq. (34), and they
can be expressed in matrix form as shown below:
⎡

⎢⎢
⎣

Âs (�2 − α2
m) + I0ω2 − kw + kp(�2 − α2) Âs� Âsαm

− Âs� Dsfgm

(
�2 −

(
(1−μ)

2

)
α2
m

)
− Âs + I2ω2 (1+μ)

2 Dsfgmαm�
Âsαm − (1+μ)

2 Dsfgmαm� Dsfgm

(
(1−μ)

2 �2 − α2
m

)
− Âs + I2ω2

⎤

⎥⎥
⎦

⎡

⎣
Wm

�ym
�xm

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ ,

(37)

where � = d
dx is a differential operator.

The determinant of Eq. (37) leads us to the following differential equation (Eq. (38)):

(�6 + p1�4 + p2�2 + p3)� = 0. (38)

Here, � represents Wm or �ym or �xm , and p1, p2, and p3 are

p1 = (2 Âs
2 − Dsfgm(3α2

mkp + kw)(−1 + μ) + (I2kp(−3 + μ) + Dsfgm I0(−1 + μ))ω2

+ Âs(−3α2
mDsfgm(−1 + μ) − (−3 + μ)(kp − I2ω

2)))/(Dsfgm( Âs + kp)(−1 + μ)),

p2 = (α2
mD

2
sfgm(3α2

mkp + 2kw)(−1 + μ) + Dsfgm(−2α2
m(I2kp(−3 + μ) + Dsfgm I0(−1 + μ)

− I2kw(−3 + μ))ω2 + I2(−2I2kp + Dsfgm I0(−3 + μ))ω4 − 2 Âs(2α
2
mDsfgm + kp − I2ω

2)

+ Âs(Dsfgm(2α2
mkp(−3 + μ) + kw(−3 + μ) + 3α4

mDsfgm(−1 + μ)) + (4I2kp

− Dsfgm(I0 + 2α2
m I2)(−3 + μ))ω2 − 2I 22ω4)))/(D2

sfgm( Âs + kp)(−1 + μ)),

p3 = (2 Âs + α2
mDsfgm(1 − μ) − 2I2ω

2)((α2
mkp + kw − I0ω

2)(α2
mDsfgm − I2ω

2)

+ Âs(α
4
mDsfgm + α2

mkp + kw − (I0 + α2
m I2)ω

2)))/(D2
sfgm( Âs + kp)(−1 + μ)).

(39)

Substituting a trial solution in form of eδ in Eq. (38), the following auxiliary equation is obtained.

δ6 + p1δ
4 + p2δ

2 + p3 = 0. (40)

Again, substituting η = δ2 into Eq. (40) reduces it into a cubic polynomial.

η3 + p1η
2 + p2η + p3 = 0. (41)
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The three roots of Eq. (41) are given by

η1 = −1

3

⎛

⎝p1 + 3

√
t1 + √

t2
2

+ 3

√
t1 − √

t2
2

⎞

⎠ ,

η2 = −1

3

⎛

⎝p1 + ζ2
3

√
t1 + √

t2
2

+ ζ1
3

√
t1 − √

t2
2

⎞

⎠ ,

η3 = −1

3

⎛

⎝p1 + ζ1
3

√
t1 + √

t2
2

+ ζ2
3

√
t1 − √

t2
2

⎞

⎠ ,

(42)

with,

ζ1 = i
√
3 − 1

2
, ζ2 = − i

√
3 + 1

2
t1 = 2p31 − 9p1 p2 + 27p3, t2 = t21 − 4 f 3, f = p21 − 3p2.

(43)

Now, the solution of the system of the ordinary differential equations can be written as

Wm(x) = F1e
m1x + F2e

−m1x + F3e
m2x + F4e

−m2x + F5e
m3x + F6e

−m3x

�ym (x) = G1e
m1x + G2e

−m1x + G3e
m2x + G4e

−m2x + G5e
m3x + G6e

−m3x

�xm (x) = H1e
m1x + H2e

−m1x + H3e
m2x + H4e

−m2x + H5e
m3x + H6e

−m3x .

(44)

wheremi = √
ηi , and F1−F6,G1−G6, H1−H6 are integration constants. These constants are interrelated to

each other, and the relation among the constants is found by substituting Eq. (44) into Eq. (37). Simultaneously,
solving all the equations and equating each of the term to zero yields the equation in terms of one set of constants,
i.e., (G1 − G6). The relation between constants is expressed as:

F1 = �1G1, F2 = −�1G2, H1 = �1G1, H2 = −�1G2,

F3 = �2G3, F4 = −�2G4, H3 = �2G3, H4 = −�2G4,

F5 = �3G5, F6 = −�3G6, H5 = �3G5, H6 = −�3G6,

(45)

The extended expressions of �i and �i in terms of material properties are given in Appendix C. Once the
relation among the constants (Eq. (45)) is found, the solutions of the system of ordinary differential equation,
i.e., Eq. (44), can only be expressed in terms of six integral constants. The solutions in terms of only six integral
constant can be expressed as:

Wm(x) = �1G1e
m1x − �1G2e

−m1x + �2G3e
m2x − �2G4e

−m2x + �3G5e
m3x − �3G6e

−m3x ,

�ym (x) = G1e
m1x + G2e

−m1x + G3e
m2x + G4e

−m2x + G5e
m3x + G6e

−m3x ,

�xm (x) = �1G1e
m1x − �1G2e

−m1x + �2G3e
m2x − �2G4e

−m2x + �3G5e
m3x − �3G6e

−m3x ,

(46)

Similarly, the expression for forces and moments is found by substituting Eqs. (36) and (46) into Eq. (35).
Thus, we get

Qxm (x, y) = Qxm (x) sin(αm y)

= (�1m1( Âs + kp) + Âs)G1e
m1x + (�1m1( Âs + kp) + Âs)G2e

−m1x + (�2m2( Âs + kp)

+ Âs)G3e
m2x + (�2m2( Âs + kp) + Âs)G4e

−m2x + (�3m3( Âs + kp) + Âs)G5e
m3x

+ (�3m3( Âs + kp) + Âs)G6e
−m3x ) sin(αm y),

Mxxm (x, y) = Mxxm (x) sin(αm y)

= Dsfgm((μαm�1 + m1)G1e
m1x − (μαm�1 + m1)G2e

−m1x + (μαm�2 + m2)G3e
m2x

− (μαm�2 + m2)G4e
−m2x + (μαm�3 + m3)G5e

m3x − (μαm�3 + m3)G6e
−m3x ) sin(αm y),

Mxym (x, y) = Mxym (x) cos(αm y)

= Dsfgm((1 − μ)/2)((�1m1 − αm)G1e
m1x + (�1m1 − αm)G2e

−m1x + (�2m2 − αm)G3e
m2x

+ (�2m2 − αm)G4e
−m2x + (�3m3 − αm)G5e

m3x + (�3m3 − αm)G6e
−m3x ) cos(αm y).

(47)
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Once the expression for displacements and forces is obtained, general BCs in terms of algebraic form are used,
which can be formulated as:

At x = 0 : Wm = W̃1, �ym = �̃y1, �xm = �̃x1

At x = b : Wm = W̃2, �ym = �̃y2 , �xm = �̃x2 (48)

At x = 0 : Qxm = −Q̃1, Mxxm = −M̃xx1, Mxym = −M̃xy1

At x = b : Qxm = Q̃2, Mxxm = M̃xx2 , Mxym = M̃xy2

(49)

The sign convention used for denoting displacements and force components is shown in Fig. 2. By applying
BCs for displacements (i.e., substitution of Eq. (48) into Eq. (46)), the following matrix relation is obtained:

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

W̃1
�̃y1
�̃x1
W̃2
�̃y2
�̃x2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢
⎣

�1 −�1 �2 −�2 �3 −�3
1 1 1 1 1 1
�1 −�1 �2 −�2 �3 −�3

�1em1b −�1e−m1b �2em2b −�2e−m2b �3em3b −�3e−m3b

em1b e−m1b em2b e−m2b em3b e−m3b

�1em1b −�1e−m1b �2em2b −�2e−m2b �3em3b −�3e−m3b

⎤

⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎣

G1
G2
G3
G4
G5
G6

⎤

⎥⎥⎥
⎥⎥
⎦

(50)

i.e.,

δe = XeGe. (51)

By applying the force and moment BCs, (i.e., substitution of Eq. (49) into Eq. (47)), the following relationship
is obtained:

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

Q̃x1
M̃xx1
M̃xy1
Q̃x2
M̃xx2
M̃xy2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢
⎣

−X1 −X1 −X2 −X2 −X3 −X3
−Y1 Y1 −Y2 Y2 −Y3 Y3
−Z1 −Z1 −Z2 −Z2 −Z3 −Z3
X1em1b X1e−m1b X2em2b X2e−m2b X3em3b X3e−m3b

Y1em1b −Y1e−m1b Y2em2b −Y2e−m2b Y3em3b −Y3e−m3b

Z1em1b Z1e−m1b Z2em2b Z2e−m2b Z3em3b Z3e−m3b

⎤

⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎣

G1
G2
G3
G4
G5
G6

⎤

⎥⎥⎥
⎥⎥
⎦

(52)

i.e.,

Fe = YeGe, (53)

where Xi = (�imi ( Âs + kp) + Âs), Yi = Dsfgm(αmμ�i + mi ), Zi = Dsfgm((1 − μ)/2)(�imi − αm), with
i = 1, 2, 3.

Lastly, the dynamic stiffness matrix, denoted by Ke, for a single FGM plate element is derived from Eqs.
(51) and (53) as

Fe = Keδe, (54)

where

Ke = YeX−1
e . (55)

In matrix form,

Ke =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

K̂ ∗
11 K̂ ∗

12 K̂ ∗
13 K̂ ∗

14 K̂ ∗
15 K̂ ∗

16
K̂ ∗
22 K̂ ∗

23 K̂ ∗
24 K̂ ∗

25 K̂ ∗
26

K̂ ∗
33 K̂ ∗

34 K̂ ∗
35 K̂ ∗

36
K̂ ∗
44 K̂ ∗

45 K̂ ∗
46

Sym K̂ ∗
55 K̂ ∗

56
K̂ ∗
66

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=
[[K̂ e

t t ](3∗3) [K̂ e
ts](3∗3)

[K̂ e
st ](3∗3) [K̂ e

ss](3∗3)
]

. (56)

The explicit expression for each term of the symmetric dynamic stiffness matrix, Ke, is not mentioned here
due to their larger algebraic expressions.
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Fig. 3 A pictorial representation of assembly process of DSM

4 Procedure for the computation of modal characteristics of S-FGM plate

It is apparent that the dynamic stiffness matrix derived above is frequency dependent and transcendental in
nature. Therefore, an appropriate procedure is to be followed to compute the frequency values accurately. This
section briefly discusses the procedure adopted in the present study to compute natural frequencies and mode
shapes of the S-FGM plate. Appropriate boundary conditions are enforced on the global dynamic stiffness
matrix, which is obtained after assembling individual dynamic stiffnessmatrix of the plate segment. Thereafter,
the Wittrick–Williams (W–W) algorithm is used for the computation of natural frequencies of S-FGM plate.

4.1 Assembly procedure

This section discusses the procedure used in DSM to assemble the individual dynamic stiffness matrix of each
plate segment to form a global dynamic stiffness matrix. The assembly procedure used in DSM is quite similar
to that of the assembly procedure used in FEM. In the place of point nodes in FEM, line nodes are used in
DSM. A pictorial depiction of the assembly procedure of DSM is presented in Fig. 3.

It should be noted that DSM results are generally mesh independent, which means that even with a single
element for uniform geometry a convergent result can be obtained. In the case of non-uniform geometry,
however, very few elements are required to obtain convergent results which reduces the computational cost
significantly.
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Fig. 4 Wittrick–Williams algorithm for the computation of the natural frequency

4.2 Application of Levy-type boundary conditions

In Levy form of BCs, two distinct sides of the FGM plate, at y = 0 and y = L , are simply supported, whereas
two remaining sides of the plate, at x = 0 and x = b, can be either clamped (C) or simply supported (S) or
free (F). In this study, the penalty method is used to apply these Levy-type boundary constraints. The penalty
method allocates a large stiffness to the appropriate term of the leading diagonal of the global dynamic stiffness
matrix for the purpose of neutralizing the specific degree of freedom. To be specific, following three cases are
considered here.

• For ‘Free (F)’ edge: No variable needs to be penalized.
• For ‘Simply supported (S)’ edge: For CPT, W∗ is penalized; for FSDT, W∗ and �x∗ are penalized.
• For ‘Clamped (C)’ edge: For CPT,W∗, and�y∗ are penalized; for FSDT,W∗,�y∗, and�x∗ are penalized.
Here, the letter ‘∗’ signifies the line node on which the appropriate penalty is to be enforced in order to apply
the required boundary constraints.

4.3 Procedure to compute natural frequencies and mode shapes

The assembled global dynamic stiffness matrix is transcendental in nature which leads to the transcendental
eigenvalue problem. The well-known Wittrick–Williams algorithm [37,38] is used to solve such a transcen-
dental eigenvalue problem. The W–W algorithm ensures that no natural frequency, even the coincident one,
is missed in a given frequency range. The procedure for the implementation of W–W algorithm and the
development of modeshape is described in many previously published literature [35,36]. Just for the sake of
completeness, W–W algorithm is summarized in Fig. 4.

5 Results and discussion

In this section, the natural frequency results for the S-FGM plate resting on elastic foundation for various plate
geometries and stiffness parameters are discussed. First, the natural frequencies obtained using DSM based
on both CPT and FSDT are validated with the published results. In the subsequent section, the discrepancies
in the obtained results and the published results [18] are highlighted. The possible reasons for the mismatch
in these results are also discussed. Thereafter, various inferences are made for the free vibration behavior of
plates using line diagrams and modeshapes plots.
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Table 1 The material property description of S-FGM plate, adopted from [18]

Material constituents Material density Young’s modulus Poisson’s ratio
Constituents (kg/m3) (GPa) μ

Alumina: Al2O3 ρc = 3800 Ec = 380 0.3
Aluminum: Al ρm = 2707 Em = 70 0.3

For better understanding of the results, the following two non-dimensional forms for the natural frequency
parameters are used in this study: ω̄ = ωh

√
ρm/Em , ω̂ = ωb2

√
(ρch/Dc)with Dc = Ech3/(12(1−μ2)). And,

the non-dimensional form for the elastic foundation parameters is used as: Kw = kwb4/Dc and Kp = kpb2/Dc.
The material properties considered for the constituents of S-FGM plate are mentioned in Table 1.

5.1 Comparison with the published results

In this subsection, the natural frequencies results are comparedwith that of existing literaturewherever possible.
Table 2 shows the comparison of the natural frequency results of the S-FGM plate obtained using DSM to that
of the results mentioned in Kumar and Jana [14]. Kumar and Jana [14] studied the free vibration behavior of
the S-FGM plate using a CPT-based DSM approach. It can be seen that the CPT-based DSM computed results
agree perfectly with the published results. Table 2 also contains the natural frequency results of the S-FGM
plate using FSDT-based DSM. It is noted that the natural frequency results obtained using DSM based on
kinematic variables of FSDT are lesser as compared to that of CPT-based DSM results. This is because FSDT
includes the effect of the transverse shear deformation on the vibration of the plate, whereas CPT neglects the
transverse shear effect.

For the validation of present analysis results, particularly for the case of plate resting on elastic foundation,
the results reported in Baferani et al. [26] have been considered. In that reference the results are reported for
FGM plate with power-law (P-FGM) material model. For comparison purposes, we also consider the same
material model as given in [26] and the comparison is shown in Table 3. It can be noted that Baferani et al. [26]
obtained the accurate natural frequency values of the P-FGM plate resting on Winkler–Pasternak foundation
using third-order shear deformation theory. In Table 3, the DSM computed natural frequency results of the
square P-FGM plate resting on elastic foundation are compared, with that available in [26], for varying plate
thickness ratio (h/b), and varying elastic foundation parameters. It can be seen that the FSDT-based DSM
results and the published results are in very good agreement.

Table 4 presents a comparison between the dimensionless fundamental frequency of a SSSS S-FGM plate
placed on an elastic foundation and the corresponding values reported in the work of Jung et al. [27]. The
comparison considers different coefficients of the elastic foundation (i.e., Kw and Kp) and volume fractions
(p) of material components. The fundamental frequencies of the S-FGM plates are evaluated using DSM
based on CPT and FSDT. It can be seen that the results obtained using DSM are in good agreement with the
published result. As expected, it can been observed that the present CPT and FSDT-based DSM results are
higher than that of the results reported in Jung et al. [27] which are based on higher-order shear deformation
theory (HSDT).

The above three comparative studies establish that the present method has the capability to compute the
natural frequency results very accurately for the FGM plates resting on Winkler–Pasternak foundation. We
now proceed to highlight some incorrect results in a recently published paper and discuss the possible reasons
for this incorrectness.

5.2 Comments on incorrectly published results

It is emphasized here that Chauhan et al. [18] have attempted to present a CPT-based DSM formulation for
the natural frequency computation of S-FGM plate resting on the elastic foundation. However, a careful study
can reveal that the mathematical formulation presented in [18], particularly for the elastic foundation cases, is
inappropriate. For this reason, most of the results especially those related to the elastic foundation cases are
incorrect. Hence, an attempt has been made to present the correct results through the present DSM formulation
based on both CPT and FSDT. The results are reported in Table 5. From Table 5, it can be observed that the
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difference in the natural frequency results especially for the plate resting on the elastic foundation parameter
is very high. In some cases the difference in both the CPT-based results is as high as 34%. It can be pointed
out that this inaccuracy is due to the incorrect mathematical formulation presented in that paper and some of
these mistakes are highlighted below.

• The term kw
∂2w0
∂t2

, associated with theWinkler stiffness coefficient, mentioned in Eq. (15) of reference [18]
should be kww0 as shown in Eq. (11) of the present paper.

• The term kp(
∂4w0

∂x2∂t2
+ ∂4w0

∂y2∂t2
) associated with the Pasternak stiffness coefficient mentioned in Eq. (15) of

reference [18] should be kp(
∂2w0
∂x2

+ ∂2w0
∂y2

) as shown in Eq. (11) of the present paper.
• One term associated with the elastic coefficient is missing from the natural BCs equation given in Eq. (16)
of reference [18]. The correct expressions are given in Eq. (12) of this paper.

• For Levy-type plate, the reduced governing differential equation i.e., Eq. (18) of Ref. [18] is also incorrect.
The correct form of the equation is shown in Eq. (14) of the present paper.

• Furthermore, the important inertia term is missing from the rest of the formulation (i.e., from Eq. (19) to
(21)) in reference [18]. The correct mathematical expressions are provided in Sect. 3.4 of this paper.

Note that the above mistakes may not be treated as typographical errors as similar mistakes have been
found in another recent paper [42] published by the same group of authors. Therefore, in this study, these
mistakes in the CPT-based DSM formulation presented in reference [18] have been identified and the correct
formulation is presented. For the frequency analysis of S-FGM plate, correct results are obtained using both
CPT- and FSDT-based DSM formulation. Importantly, the present DSM results are validated with the available
literature and they are found to be in good agreement with that of the published results.

5.3 Parametric study

This section discusses the frequency results for S-FGM plates by changing the plate geometry and stiffness
parameters of the elastic foundation. Frequency results for the square S-FGM plates can be found in Table
5 for all six Levy type BCs, whereas Tables 6 and 7 show the natural frequency results of the S-FGM plate
resting on elastic foundation for two different aspect ratios i.e., L/b = 0.5 and L/b = 2, respectively. The
natural frequency results are shown for varying volume fractions of the material constituents. It can be seen
that the natural frequency for the plate with higher aspect ratio (L/b = 2) is lesser as compared to that of the
plate with smaller aspect ratio (L/b = 0.5) as we keep all other parameters same. The reason for this behavior
is that the plate with larger dimensions offers lesser bending stiffness as compared to that of the plate with
smaller dimensions. One noteworthy point is that the natural frequency results for the DSM based on FSDT
are lesser as compared to the result obtained using DSM based on CPT. This trend is as per expectation as
FSDT-based formulation considers the shear deformation of the plate, whereas CPT ignores the shear effect.

The effect of elastic foundation on the modeshape of the S-FGM plate can be seen from Fig. 5. Here, the
modeshape for the SFSF BCs of the S-FGM plate is shown for the varying coefficients of elastic foundation.
From the modeshape plots, it can be seen that the plate with shear foundation offers more bending stiffness as
compared to the Winkler foundation.

Figure 6 shows the plot of non-dimensional fundamental frequency with varying volume fraction of the
material constituents of S-FGM plate for different elastic modulus parameters and BCs. Figure 6a shows the
variation of fundamental frequency with volume fraction p of SSSS S-FGM plate for different elastic modulus
coefficients. It can be seen that as the volume fraction increases, the fundamental frequency of the plate
decreases. This is due to the increase inmetal constituents in the plate as the volume fraction increases. Presence
of higher metallic constituents leads lower bending stiffness due to its lower value of the Young’s modulus in
comparison with that of the ceramic constituent. Figure 6b shows the plot of non-dimensional fundamental
frequency for different Levy-type BCs with volume fraction for a plate resting on elastic foundation. It is also
observed that the SCSC plate has the highest fundamental frequency and SFSF plate has the lowest.

Figure 7 shows the effect of elastic modulus on the fundamental frequency of a S-FGM plate for varying
aspect ratios. Figure 7a shows the variation for the S-FGMplate resting onWinkler foundation, whereas Fig. 7b
shows the variation for S-FGM plate resting on Pasternak foundation. It can be observed that the fundamental
frequency of the S-FGM plate decreases as the size of the plate increases and this behavior is expected. We
know that plate with smaller sizes provides more resistance to bending as compared to that of plate with larger
dimensions. Comparison of Fig. 7a and b also shows that the influence of Pasternak foundation on the natural
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Fig. 5 Modeshapes of the SFSF square plate for varying elastic foundation parameters. (h = 0.05b, p = 2)

Fig. 6 a Plot of non-dimensional fundamental frequency (ω̃) for different elastic modulus with varying volume fraction of SSSS
plate. (L = b, h = 0.05b). b Plot of non-dimensional fundamental frequency (ω̃) for different boundary conditions with varying
volume fraction. For this case, the elastic modulus coefficient is taken as (Kw, Kp) = (100, 10). (L = b, h = 0.05b)
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Fig. 7 Plot of non-dimensional fundamental frequency (ω̃) for elastic modulus with aspect ratio (L/b). a Different Winkler
elastic modulus parameter, keeping Pasternak modulus parameter constant vs aspect ratio and b different Pasternak elastic
modulus parameter keeping, Winkler elastic modulus parameter constant vs aspect ratio. Here, SSSS plate is considered with
h = 0.05b, p = 2

frequency is more as compared to the Winkler foundation. This is due to the fact that the Winkler foundation
consists of independent and unconnected springs, whereas the Pasternak foundation has shear layers which
exhibits both longitudinal and lateral spring effects leading to higher bending stiffness compared to theWinkler
foundation.

Figure 8 shows the modeshapes for different BCs of a S-FGM plate resting on Winkler–Pasternak foun-
dation. It can be noted that, except SFSF plate, there is no visible change in the modeshape for other BCs
when one compares the modeshapes of S-FGM plate with and without the Winkler–Pasternak foundation.
Modeshapes plots for all these BCs are not shown here for space constraint.

5.4 Comparison study for different plate configurations

It can be emphasized here that the dynamic stiffness method has a potential advantage in the assembly process
where dissimilar plate elements can be suitably assemble to study the vibration behavior of plate having non-
uniform configurations. To this end, the present section considers two different S-FGM plate configurations
as shown in Fig. 9 and present a comparative study of their free vibration characteristics. Table 8 shows the
non-dimensional fundamental frequency of stepped plate without elastic foundation shown in Fig. 9a, whereas
Table 9 reports the natural frequencies of the plate resting on partial elastic foundation shown in Fig. 9b.
These tables show how the fundamental frequencies vary depending on the boundary conditions, thickness
ratios, and various elastic foundation coefficients. The frequency results are computed using the dynamic
stiffness method and are evaluated using both classical plate theory and the first-order shear deformation
theory. The gradual effect of the step thickness on the fundamental frequency of the S-FGM stepped plate
can be observed from Table 8, whereas the effect of the Pasternak foundation is quite noticeable as compared
to the Winkler foundation in Table 9. The Pasternak foundation offers higher bending stiffness as compared
to the Winkler foundation. Additionally, by comparing the data from Tables 8 and 9, it can be inferred that,
when all other parameters are held constant, the frequency value for the stepped thickness (h2/h1) is more
or less comparable to that of the elastic foundation. It can also be observed that to match the frequency of
the partially supported S-FGM plate with Kp = 100, a sufficiently higher thickness ratio (h2/h1) is required.
This is because the Pasternak foundation provides a very high bending stiffness due to the presence of shear
layer which exhibits both longitudinal and transverse stiffness effects. Nevertheless, the other effects such as
the decrease in fundamental frequency as the volume fraction increases, and the fact that SCSC plate has the
highest frequency, while SFSF exhibits the lowest frequency, remain unchanged. The reasons behind these
patterns align with explanations provided in the previous section.

Figure 10 shows the modal behavior of different configurations of the S-FGM plate. Figure 10a shows the
modeshape of the uniform thickness plate without elastic foundation, while Fig. 10b showcases the modeshape
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Fig. 8 Mode shape for different BCs of square S-FGM plate resting on Winkler–Pasternak foundation. (h = 0.05b, Kw =
100, Kp = 100)

Fig. 9 Two different non-uniform plate configurations considered in this study: a stepped plate and b plate resting on partial
elastic foundation
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Fig. 10 Modeshapes of different configurations of square S-FGM plates: a uniform plate without elastic foundation, b stepped
plate without elastic foundation (h2 = 2h1), c plate resting on homogeneous elastic foundation (b1 = 0.5b), and d plate resting
on non-homogeneous elastic foundation. (L = b, h = 0.05b, p = 2)

of the stepped plate with h2 = 2h1. Evidently, the peak of the modeshape plot of the stepped plate (i.e., Fig.
10b) has shifted to the left side the plate. This shift is attributed to the increased plate thickness, at the right half
of the plate, which introduces greater resistance against bending. Figure 10c and d shows the modeshape of
the uniform thickness plate resting on homogeneous and non-homogeneous elastic foundation, respectively.
The effect of partial elastic foundation on the modeshape of the plate can be clearly seen in Fig. 10c where the
peak of modeshape plot of the plate has been shifted toward the unsupported portion of the plate.

6 Conclusions

This study presents the exact formulation of the dynamic stiffness matrix for the free vibration analysis of
S-FGM plate supported on elastic foundation. The distribution of material properties in the thickness of the S-
FGM plate is defined using two separate power-law distribution for the two half of the plate which is normally
called as sigmoid-law (S-FGM) property distribution. The effective elastic properties are estimated using the
rule of mixture. The dynamic stiffness method is applied for two cases where the plate kinematic variables
are defined for one case using CPT and for the other case using FSDT. For both these cases, the frequency-
dependent dynamic stiffness matrix gives rise to the transcendental eigenvalue problem, which is solved by
using the Wittrick and Williams algorithm.

It can be emphasized that the present DSM computed results, for the S-FGM plate resting on elastic
foundation, are compared with the available results and an excellent agreement has been found. One important
contribution of the present study is that it points out some incorrect mathematical formulation in a recently
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published paper [18] and discusses all the possible mistakes in detail. It is also shown that the error in the
frequency computation in that paper is as high as 34 %. Therefore, the present paper serves as correction to the
work presented in [18]. The present work further enhances the previously published work by implementing
a FSDT-based dynamic stiffness formulation for the elastically supported S-FGM plates. As FSDT considers
the effect of transverse shear, the reported results will be applicable to thin as well as moderately thick FGM
plates.

Furthermore, a thorough parametric analysis of fundamental frequencies influenced by power-law expo-
nent, plate aspect ratios, and elastic foundation stiffness parameters is performed. From this analysis, several
inferences are made using different tables and line diagrams. From the reported results, it can be seen that
Pasternak foundation adds more restraint to bending compared to the Winkler foundation. This is because,
unlike the Winkler model, which consists of independent and unconnected springs, the Pasternak foundation
introduces a shear layer that accounts for both longitudinal and transverse spring effects. Furthermore, com-
parison of the two non-uniform configurations, considered in the study, shows that the introduction of stepped
thickness enhances the frequency values. However, the frequency increase due to the presence of partial Paster-
nak foundation remains higher than that of the stepped plate as the Pasternak foundation provides a very high
stiffness due to the presence of the shear layer. Lastly, it is reemphasized that, due to the exact mathematical
formulation, the natural frequencies obtained using DSM are considered to be very accurate and these results
can be used as a benchmark for future design purposes.
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Appendix A: Stress–strain constitutive relation

The stress–strain constitutive relation for the FGM plate is expressed as [36]:
⎡

⎣
σxx
σyy
σxy

⎤

⎦

⎡

⎣
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤

⎦

⎡

⎣
εxx
εyy
γxy

⎤

⎦ . (A.1)

In addition we will have,

σyz = Q44γyz and σxz = Q55γxz (A.2)

The reduced stiffness components are expressed in terms of material constants, written as:

Q11 = Q22 = E(z)

1 − μ2 ; Q12 = μE(z)

1 − μ2 ;

Q44 = Q55 = Q66 = E(z)

2(1 + μ)
.

(A.3)

Appendix B: Expression for bending stiffness and inertia term

I0 =
∫ h/2

−h/2
ρ(z)dz; I2 =

∫ h/2

−h/2
(z − z0)

2ρ(z)dz,

Dsfgm =
∫ h/2

−h/2
(z − z0)

2Q11(z)dz; Âs =
∫ h/2

−h/2
ks Q44(z)dz.

(B.1)
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Here, ks (= 5/6) is the shear correction factor [43];

Appendix C: Explicit expressions of �i and �i

Mathematical expression of �i and �i with i = 1, 2, 3, used in Eq. (45), is given below.

�i = ( Âs(−2 Âs + 2I2ω
2 + Dsfgm(−1 + μ)(αm − mi )(αm + mi )))/(mi (2A

2
s

− AsDsfgm(1 + μ)(αm − mi )(αm + mi ) + Dsfgm(1 + μ)(−α2
mkp − kw + I0ω

2 + kpm
2
i ))),

�i = (αmmi (2 Âs
2 − α2

m Âs Dsfgm(1 + μ) − Dsfgm(1 + μ)(α2
mkp + kw − I0ω

2) + Dsfgm( Âs

+ kp)(1 + μ)m2
i ))/(2α

4
mDsfgm( Âs + kp) + α2

m(2( Âskp + Dsfgmkw − (Dsfgm I0

+ I2( Âs + kp))ω
2) + Dsfgm( Âs + kp)(−3 + μ)m2

i − (−kw + I0ω
2 + ( Âs + kp)m

2
i )(2 Âs

− 2I2ω
2 + Dsfgm(−1 + μ)m2

i )).

(C.1)
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