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Abstract In this study, the frictionless contact and crack problem of an elastic homogeneous semi-infinite
plane has been investigated according to the elasticity theory. The problem has been solved as a superposition
of the separate solutions of the contact and crack problem. The aim of this study is to find sub-punch stress
distributions and stress intensity factors due to opening mode and shear mode for different loading conditions
and geometric sizes. There are two rigid punches on the semi-infinite plane and P and Q loads are transferred to
the semi-infinite plane by these punches. Problemhas been considered as plain strain because of the geometry of
the problem. The effect of the mass forces has not been included, the stress and displacement expressions to be
used for the contact problem have been obtained by using Navier equations and Fourier integral transformation
technique, and the boundary conditions determined for the problem has been applied. The equations to be used
for the crack problem have been specified and the boundary conditions for the crack problem have been applied
to these equations. The problem has been reduced to an integral equation system consisting of four singular
integral equations where contact stresses and crack displacements are unknown. Numerical solution of the
integral equation system has been realized by using Jacobi polynomials. Numerical results on sub-punch stress
distributions and stress intensity factors have been obtained for different loading conditions, geometric sizes
and presented by graphics.

Keywords Contact Problem · Crack Problem · Homogeneous semi-infinite plane · Jacobi Polynomials

1 Introduction

Contact problems have found many application areas in engineering structures. Examples of these application
areas are highways, railways, airport runways, fuel tanks, spherical and cylindrical balls and cylindrical shafts.
Elementary theory is inadequate in solving the stress and strain problem in engineering structures. Therefore,
there is a need for the theory of elasticity. Although the expressions of elasticity are long and complex, with
the developing numerical methods and computer technology, the solution of contact and crack problems has
become easier and many studies have been made possible.

Many studies have been done on contact problems for various materials. First study on contact problems
in homogeneous materials was put forward by Heinrich Hertz [23] and he maintained the theory for elastic
bodies and frictionless surfaces. Erdoğan [19] proposed a method for solving the system of singular integral
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Karadeniz Technical University, Civil Engineering, 61080, Ortahisar, Trabzon, Turkey
e-mail: ayhanustun@ktu.edu.tr

G. Adıyaman
e-mail: gadiyaman@ktu.edu.tr
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equations encountered in complex boundary value problems in rigid body mechanics and potential theory. The
problem of symmetrical contact for elastic strips with different properties were discussed by Adams and Bogy
[1]. Shield and Bogy [43] examined the contact problem of the layer that sits on an elastic semi-infinite plane
and is pressed with a rigid punch. Papadopoulos et al. [39] studied about a finite element algorithm for the
static solution of two-dimensional frictionless contact problems involving bodies undergoing arbitrarily large
motions and deformations. Elsharkawy [18] investigated the frictional contact problem in an elastics half-
plane covered with thin elastic layers. Ma and Korsunsky [33] (2006) studied the contact problem in the elastic
half-plane covered with a thin layer on which the elastic punch, singular force and friction forces are affected.
The continuous contact problem in the elastic half-plane covered with a functionally graded elastic layer was
investigated by Ke and Wang [31]. El-Borgi et al. [14] examined the contact problem between the elastic
functional graded layer and the homogeneous semi-infinite plane. Özşahin et al. [38] investigated the contact
problem of composite elastic layer consisting of layers with different heights and elastic constants resting on
two rigid flat punches. Chidlow and Teodorescu [8] studied about the two-dimensional frictionless contact
problem of an inhomogeneous elastic composite layer under a rigid punch. Çömez and Erdöl [9] examined
frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous substrate. Birinci
et al. [6] examined continuous and discontinuous cases of a contact problem for two elastic layers supported
by a Winkler foundation using both analytical method and finite element method (FEM). El-Borgi and Çömez
[16] studied the frictional contact problem of the graded layer that fits into a homogeneous semi-infinite plane
and is loaded with a cylindrical rigid punch. Kaya et al. [29] used the finite element method (FEM) to address
the problem of frictionless contact of a homogeneous layer that fits on an elastic semi-infinite plane and is
loaded with three rigid flat punches.

Advances and research in materials science have led to the invention of materials that form the basis
of the twenty-first century’s high-tech field. However, with these developments, the need for materials with
special characteristics has increased rapidly. The lack of a homogeneous material that provides high strength
and thermal resistance, which is required especially in spacecraft, has led researchers to new searches. As a
result of these researches, functionally graded materials (FGM) have emerged. The concept of FGM can be
defined as a new material with metal/ceramic composition with graded structural functions. The metal in this
material pair has toughness, electrical conductivity, and machinability; ceramic has low density, high strength
and thermal resistance. In FGM, the material structure and properties change gradually/gradually within the
material. With the advancing technology, many contact problems have been addressed for these materials. A
receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate was
studied by Rhimi et al. [41]. El-Borgi et al. [15] examined frictional receding contact plane problem between
a functionally graded layer and a homogeneous substrate. Öner et al. [34] addressed analytical solution of a
contact problem and comparison with the results from finite element method (FEM). The symmetrical double
contact problem of functionally graded layers was examined by Liu et al. [32]. In the problem, using the Hankel
integral transform method and matrix transfer method, the problem was transformed into two singular integral
equation systems. A receding contact problem between a functionally graded layer and two homogeneous
quarter planes was studied by Adıyaman et al. [3]. The continuous and discontinuous contact problem of
a functionally graded layer resting on a rigid foundation was studied by Karabulut et al. [27]. Çömez [10]
addressed the problem of frictional and non-friction contact of the functional graded layer seated on a rigid
plane and loaded with a rigid cylindrical punch. The plane contact problem between a finite-thickness laterally
graded solid and a rigid stamp of an arbitrary tip-profile was investigated by Arslan [4]. Kaya et al. [30]
examined the continuous contact problem of two layers with different material properties, loaded with two
rigid flat blocks and resting on a rigid plane using linear elasticity theory and the finite element method (FEM).
The receding contact problems in functionally graded layered mediums were evaluated by means of different
numerical solutions by Yaylacı et al. [46, 47]. Yaylacı et al. [46, 47] examined comparative study of analytical
method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem.
Yaylacı et al. [48] studied about evaluation of the contact problem of functionally graded layer resting on rigid
foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods.

With the increase in studies inmaterials science, anisotropicmaterials that do not show the samemechanical
properties all over the materials have emerged and many academic studies have been made on these materials.
The frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic half-
plane was studied by Kahya et al. [26]. Akbarov et al. [2] examined dynamics of a system comprising an
orthotropic layer and orthotropic half-plane under the action of an oscillating moving load. A semi-smooth
newtonmethod for orthotropic plasticity and frictional contact at finite strains was studied by Seitz et al. (2015).
Hayashi et al. [24] addressed adhesive contact analysis for anisotropic materials considering surface stress and
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surface elasticity. On the analytical and finite element solution (FEM) of plane contact problem of a rigid
cylindrical punch sliding over a functionally graded orthotropic medium was examined by Güler et al. [22].
Arslan [5] addressed frictional contact problem of an anisotropic laterally graded layer loaded by a sliding rigid
stamp. Öner [35, 36] studied about two-dimensional frictionless contact analysis of an orthotropic layer under
gravity. Frictionless contact mechanics of an orthotropic coating/isotropic substrate system was examined by
Öner [35, 36]. Öner et al. [37] studied about double receding contact problem for two functionally graded
layers pressed by a uniformly distributed load. Karabulut et al. [28] addressed continuous and discontinuous
contact problem of a functionally graded (FG) orthotropic layer indented by a rigid cylindrical punch using
FEM and analytical solution.

Because of very expensive losses associated with fractures, studies on crack problems were especially
concentrated during the Second World War. Griffith [21] found that existing cracks in the material play an
important role in the loss of strength. Studies are generally aimed at finding the maximum load that a structural
member with cracks can carry and determining under which loading conditions the crack begins to grow. In
recent years, great progress has been made in the theory of discollations and it has become easier to examine
objects with cracks in them. The rapid progress of aviation and the establishment of the space industry have
made studies in this direction more necessary. Kadıoğlu and Erdoğan [25] investigated the problem of cracks
at the interface of overlapping orthotropic layers. Chen and Erdoğan [7] researched the problem of cracks on
the surface of the homogeneous layer graded layer. El-Borgi et al. [17] addressed the problem of cracks in an
infinite, functionally graded environment under thermo-mechanical loading. The problem of the crack between
the homogeneous semi-infinite plane and the functionally graded layer was examined by Theotokoglou and
Paulino [45]. Dağ [12] developed a new calculationmethod based on the equivalent area integral method for the
Mod-I crack analysis of orthotropic functionally graded materials subjected to thermal stresses. Apatay (2010)
addressed the problem of crack in frictional contact with rigid flat punch on a homogeneous layer. The crack
problem in the frictional contact state of the functional graded layer sitting on a homogeneous semi-infinite
plane was studied by Dağ et al. [13]. Romdhane et al. [40] examined the problem of cracks embedded in a
functionally graded orthotropic layer sitting on a homogeneous layer, subjected to static normal and tangential
surface loading. Talezadehlari et al. [44] investigated the frictional contact crack problem of the functional
graded layer, which sits on a homogeneous substrate and loaded with a rigid punch. Punch profiles were taken
as circular and flat and separate solutions were made. Sarıkaya and Dağ [42] investigated the crack problem
in orthotropic elastic medium exposed to frictional contact with rigid flat punch.

When the literature studies are examined, it is seen that no problem is studied in the loading conditions
and geometry in this study. This study will be a good guide for those who want to work on contact and crack
problems. The author’s aim is addressing contact crack problem between two rigid flat punch and the semi-
infinite plane. The problem is considered as plain strain state because dimension of the problem on z-axis is
considered as a unit. By using Navier equations and Fourier integral transform techniques, general stress and
displacement expressions to be used for the contact and crack problem of the semi-infinite plane has been
obtained. The problem has been reduced to an integral equation system consisting of four singular integral
equations by applying the specified boundary conditions for the crack and contact problem to the general
equations, in which the contact stresses and crack displacements are unknown. The numerical solution of the
integral equation system has been performed by using Jacobi polynomials.

2 Description and formulation of the problem

The singular loads are transferred to the homogeneous semi-infinite plane by means of punches in the form
of P and Q. Problem is not symmetrical according to y axis. The punches contact the homogeneous semi-
infinite plane at intervals [a, b] and [c, d], respectively. Crack depth is expressed with e and mass forces are
neglected. The problem has been addressed without the effect of friction. In addition, it has been assumed that
the thickness in the z-axis direction is a unit.

The problem has been solved as the superposition of two different problems in Fig. 1.
The crack problem can also be examined as the superposition of Problem 3 and Problem 4 in Fig. 2.
If themass forces are neglected, equilibriumequations for a two-dimensional elasticity problemare founded

as:

∂σx

∂x
+

∂τxy

∂y
� 0

(1a)



4402 A. Üstün

Fig. 1 Geometry of contact-crack problem between two rigid punch and semi-infinite plane

Fig. 2 Superposition of the Contact-Crack Problem as Problem 1 and Problem 2

∂σy

∂y
+

∂τxy

∂x
� 0 (1b)

Using the stress components, displacement–strain relations and constitutive equations in the equilibrium
equations, the stress relations are obtained as:

σx (x , y) � λe + 2μ

(
∂u

∂x

)
(2a)



Analytical solution for contact and crack problem 4403

σy(x , y) � λe + 2μ

(
∂v

∂y

)
(2b)

τxy � μ

{
∂u

∂y
+

∂v

∂x

}
(2c)

The u and v in the expressions represent the displacements in the x and y directions, respectively. μ is
the shear modulus of the homogeneous semi-infinite plane, e is the volume change ratio and λ is the Lâme
constant. Lâme constant and volume change ratio are given as below, respectively:

λ � Eν

(1 + ν)(1 − 2ν)
(3a)

e � ∂u

∂x
+

∂v

∂y
(3b)

ν is Poisson ratio in these expressions. If the necessary derivatives of the stress equations are taken and
replaced by (1a) and (1b) in the equilibrium equations, Eqs. (4a) and (4b) obtained as:

(λ + μ)

(
∂e

∂x

)
+ μ∇2u � 0 (4a)

(λ + μ)

(
∂e

∂y

)
+ μ∇2v � 0 (4b)

∇ is partial differential operator and it is defined in two-dimensional problems as:

∇2 � ∂2

∂x2
+

∂2

∂y2
(5)

There is a situation where the size of the problem in one direction, the z-coordinate direction, is too
large compared to the dimensions of the problem in the other two directions (x and y coordinate). Therefore
plane strain state is valid for this problem. Navier equations mentioned above are valid for two-dimensional
problems. As seen in the above expressions, Navier equations make the solution difficult as part of it forms
a set of differential equations. To facilitate the solution, the Fourier integral transform is applied to the u
and v displacement components and the Navier equations are transformed into a set of ordinary differential
equations. Fourier transforms of the displacement expressions u and v:

u(x , y) � 1

2π

+∞∫
−∞

φ(ξ, y)eiξxdξ (6a)

v(x , y) � 1

2π

+∞∫
−∞

ψ(ξ, y)eiξxdξ (6b)

ξ is the Fourier transform variable. Inverse Fourier transforms of these expressions:

φ(ξ, y) �
+∞∫

−∞
u(ξ, y)e−iξxdx (7a)

ψ(ξ, y) �
+∞∫

−∞
v(ξ, y)e−iξxdx (7b)

When these equations are applied to Eqs. (4a) and (4b), a set of ordinary differential equations is formed
as:

−(λ + 2μ)ξ2φ + μφ′′ + (λ + μ)iξψ′ � 0 (8a)

(λ + 2μ)ψ′′ − ξ2μψ + (λ + μ)iξφ′ � 0 (8b)
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If the necessary definitions are made for the solution of this set of equations and converted to matrix format,
the characteristic equation is obtained as:

s4 − 2ξ2s2 + ξ4 � 0 (9)

The roots of this characteristic equation are obtained as s1 � s2 � |ξ| and s3 � s4 � −|ξ|. In this case,
the solution of the ordinary differential equation φ(ξ, y) and ψ(ξ, y) are obtained as:

ψ(ξ, y) � [A1 + A2y]e
−|ξ|y + [A3 + A4y]e

|ξ|y (10a)

φ(ξ, y) �
[
−i A1

|ξ|
ξ
e−|ξ|y

]
+

[
i A2

(
κ

ξ
− y

|ξ|
ξ

)
e−|ξ|y

]

+

[
i A3

( |ξ|
ξ
e|ξ|y

)]
+

[
i A4

(
κ

ξ
+ y

|ξ|
ξ

)
e|ξ|y

]
(10b)

If these expressions are substituted in Eqs. (7a) and (7b), the displacement expressions of semi-infinite
plane are obtained as:

u1(x , y) � 1

2π

+∞∫
−∞

{
i

[
−A1

|ξ|
ξ

+ A2

(
κ

ξ
− |ξ|

ξ
y

)]
e−|ξ|y + i

[
A3

|ξ|
ξ

+ A4

(
κ

ξ
+

|ξ|
ξ
y

)]
e|ξ|y

}
eiξ xdξ (11a)

v1(x , y) � 1

2π

+∞∫
−∞

{
[A1 + A2y]e

−|ξ|y + [A3 + A4y]e
|ξ |y}eiξxdξ (11b)

Considering the vertical axis for the elastic semi-infinite plane, the displacements must be zero for y→ -∞.
When this condition is used, A1 and A2 will be equal to zero. If the displacement expressions are written in
their places in the expressions (2a), (2b) and (2c), the stress relations of the homogeneous semi-infinite plane
are as follows:

σx1 (x , y) � −μ

2π

+∞∫
−∞

[2A3|ξ|+A4((κ + 3) + 2|ξ|y)]e|ξ|y+iξxdξ (12a)

σy1 (x , y) � μ

2π

+∞∫
−∞

[2A3|ξ|+A4((κ − 1) + 2|ξ|y)]e|ξ|y+iξxdξ (12b)

τxy1 (x , y) � μi

2π

+∞∫
−∞

[
2A3|ξ|+A4

[ |ξ |
ξ
(κ + 1) + 2ξy

]]
e|ξ|y+iξxdξ (12c)

Index 1 in these equations indicates that the equations belong to Problem 1 in Fig. 3. κ is Kolosov constant
and it is defined as κ � 3 − 4ν for plain strain situation.

3 Solution of contact problem

The boundary conditions for Problem 1 for y � 0 can be written as:

σy1 (x , 0) �
⎧⎨
⎩

−p(x), b < x < a
−q(x), c < x < d

0, other

⎫⎬
⎭ (13a)

τxy1 (x , 0) � 0, (−∞ < x < +∞) (13b)

∂

∂x
v1(x , 0) � 0, (b < x < a) (13c)

∂

∂x
v1(x , 0) � 0, (c < x < d) (13d)
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Fig. 3 Crack Problem

The equilibrium equations for the problem are as follows:

a∫
b

p(t)dt � −P (14a)

d∫
c

q(t)dt � −Q (14b)

The expressions p(x) and q(x) in the boundary conditions are the unknown contact stresses between punches
and semi-infinite plane. When the boundary conditions (13a) and (13b) are applied to the stress expressions
of the homogeneous semi-infinite plane and the inverse Fourier transforms of these equations are taken, two
equations with two unknowns are obtained as:

2|ξ|A3 + (κ − 1)A4 � − 1

μ

a∫
b

p(t)e−iξt dt− 1

μ

d∫
c

q(t)e−iξt dt (15a)

2|ξ|A3 +

[ |ξ|
ξ
(κ + 1)

]
A4 � 0 (15b)

When this set of equations is solved, A3 and A4 coefficients are obtained. If these coefficients are written
in the expression of the derivative of Eq. (11b) with respect to x, Eq. (12a), Eq. (12b), Eq. (12c) and integrals
are converted to the interval (0, +∞) and the closed integrals of stress and displacement expressions are taken,
stress and displacement expressions are obtained as:

σx1 (x , y) �
a∫

b

p(t)dt
1

2π

[
2(−y)

y2 + (t − x)2
+
2y

[
y2 − (t − x)2

]
y2 + (t − x)2

]

+

d∫
c

q(t)dt
1

2π

[
2(−y)

y2 + (t − x)2
+
2y

[
y2 − (t − x)2

]
y2 + (t − x)2

]
(16a)

σy1 (x , y) �
a∫

b

p(t)dt
1

2π

[
2y

y2 + (t − x)2
+
2y

[
y2 − (t − x)2

]
y2 + (t − x)2

]
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+

d∫
c

q(t)dt
1

2π

[
2y

y2 + (t − x)2
+
2y

[
y2 − (t − x)2

]
y2 + (t − x)2

]
(16b)

τxy1 (x , y) � 1

π

a∫
b

p(t)dt

[
−2y2(t − x)[
y2 + (t − x)2

]2
]
+

1

π

d∫
c

q(t)dt

[
−2y2(t − x)[
y2 + (t − x)2

]2
]

(16c)

∂v1(x , y)

∂x
� − 1

4πμ

a∫
b

p(t)dt

[
−4y2(t − x)[
y2 + (t − x)2

]2 − (1 + κ)
(t − x)[

y2 + (t − x)2
]
]

− 1

4πμ

d∫
c

q(t)dt

[
−4y2(t − x)[
y2 + (t − x)2

]2 − (1 + κ)
(t − x)[

y2 + (t − x)2
]
]

(16d)

Since the closed integrals of the kernels of the integral equations are taken, the singularity that occurs in
the integral equations is directly eliminated. Closed integration operations will also be applied to the crack
problem.

4 Solution of crack problem

Stress and displacement expressions to be used for the crack problem:
For x>0,

ux>0
3 (x , y) � 1

2π

+∞∫
−∞

[
i |ξ|
ξ

B3 + (
iκ

ξ
+
i |ξ|
ξ

x)B4

]
e−|ξ|x+iξydξ (17a)

vx>0
3 (x , y) � 1

2π

+∞∫
−∞

(B3 + B4x)e
−|ξ|x+iξydξ (17b)

σ x>0
x3 (x , y) � − μi

2π

+∞∫
−∞

[
2ξB3 +

[
(κ + 1)|ξ|+2ξ2x] B4

ξ

]
e−|ξ|x+iξydξ (17c)

σ x>0
y3 (x , y) � μi

2π

+∞∫
−∞

[
2ξB3 +

[−(3 − κ)|ξ|+2ξ2x] B4

ξ

]
e−|ξ|x+iξydξ (17d)

τx>0
xy3 (x , y) � −μ

2π

+∞∫
−∞

[2|ξ|B3 + [(κ − 1) + 2|ξ|x]B4]e
−|ξ|x+iξydξ (17e)

For x<0,

ux<0
3 (x , y) � 1

2π

+∞∫
−∞

[
− i |ξ|

ξ
B1 + (

iκ

ξ
− i |ξ|

ξ
x)B2

]
e|ξ|x+iξydξ (18a)

vx<0
3 (x , y) � 1

2π

+∞∫
−∞

(B1 + B2x)e
|ξ|x+iξydξ (18b)

σ x<0
x3 (x , y) � μi

2π

+∞∫
−∞

[
−2ξB1 +

[
(κ + 1)|ξ|−2ξ2x

] B2

ξ

]
e|ξ|x+iξydξ (18c)

σ x<0
y3 (x , y) � −μi

2π

+∞∫
−∞

[
−2ξB1 + −[

(3 − κ)|ξ|+2ξ2x] B2

ξ

]
e|ξ|x+iξydξ (18d)
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τx<0
xy3 (x , y) � μ

2π

+∞∫
−∞

[2|ξ|B1 + [−(κ − 1) + 2|ξ|x]B2]e
|ξ|x+iξydξ (18e)

Boundary conditions for Problem 3 are as follows:

σ x>0
x3 (0, y) � σ x<0

x3 (0, y), (−∞ < y < +∞) (19a)

τx>0
xy3 (0, y) � τx<0

xy3 (0, y), (−∞ < y < +∞) (19b)

2μ

κ + 1

∂

∂y

(
ux>0
3 (x , y) − ux<0

3 (x , y)
) �

{
f1(y), e < y < 0
0, other

}
(19c)

2μ

κ + 1

∂

∂y

(
vx>0
3 (x , y) − vx<0

3 (x , y)
) �

{
f2(y), e < y < 0
0, other

}
(19d)

These expressions can be defined as functions of the horizontal and vertical displacement difference in the
crack. If these boundary conditions are applied to stress and displacement expressions, four sets of equations
with four unknowns are obtained as:

−2ξB1 + [(κ + 1)
|ξ|
ξ
]B2 + 2ξB3 + [(κ + 1)

|ξ|
ξ
]B4 � 0 (20a)

2|ξ|B1 + [−(κ − 1)]B2 + 2|ξ|B3 + (κ − 1)ξB4 � 0 (20b)

−|ξ|B1 + κB2 − |ξ|B3 − κB4 � κ + 1

2μ

0∫
e

f1(t)e
−iξt dt (20c)

−iξB1 + iξB2 � κ + 1

2μ

0∫
e

f2(t)e
−iξt dt (20d)

The coefficients B1, B2, B3 and B4 are obtained by solving these equations. If these coefficients are replaced
in stress and displacement expressions and reduced to the intervals of integrals (0, + ∞) and closed integrals
of stress and displacement expressions are taken as is done in the contact problem, stress and displacement
expressions for problem 3 are obtained as:

σx3 (x , y) � − 1

π

0∫
e

f1(t)dt

[
(y − t)

[
3x2 + (y − t)2

]
[
x2 + (y − t)2

]2
]

− 1

π

0∫
e

f2(t)dt

[
x
[−x2 + (y − t)2

]
[
x2 + (y − t)2

]2
]

(21a)

σy3 (x , y) � 1

π

0∫
e

f1(t)dt

[
(y − t)

[
x2 + (y − t)2

]
[
x2 + (y − t)2

]2
]

− 1

π

0∫
e

f2(t)dt

[
x
[
x2 + 3(y − t)2

]
[
x2 + (y − t)2

]2
]

(21b)

τxy3 (x , y) � 1

π

0∫
e

f1(t)dt

[
x
[
x2 − (y − t)2

]
[
x2 + (y − t)2

]2
]
+

1

π

0∫
e

f2(t)dt

[
(y − t)

[
x2 − (y − t)2

]
[
x2 + (y − t)2

]2
]

(21c)

∂v3(x , y)

∂x
� 1

4μπ

0∫
e

f1(t)dt

[
(1 − κ)x3 − x(3 + κ)(y − t)2[

x2 + (y − t)2
]2

]

+
1

4μπ

0∫
e

f2(t)dt

[
(1 − κ)x2 − (3 + κ)(y − t)2[

x2 + (y − t)2
]2

]
(21d)

The following equations must also be provided in order to solve the problem with the crack:

σy2 (x , 0) � σy3 (x , 0) + σy4 (x , 0) � 0, (−∞ < x < +∞) (22a)

τxy2 (x , 0) � τxy3 (x , 0) + τxy4 (x , 0) � 0, (−∞ < x < +∞) (22b)
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The superscripts 2, 3 and 4 in these expressions show that the expressions belong to Problem 2, Problem
3 and Problem 4, respectively. When Eqs. (22a) and (22b) are applied, respectively:

1

π

0∫
e

(−t)(x2 − t2)

(x2 + t2)2
f1(t)dt +

1

π

0∫
e

x3 + 3xt2

(x2 + t2)2
f2(t)dt +

μ

2π

+∞∫
−∞

[2|ξ|C1 + (κ − 1)C2]e
iξxdξ � 0 (23a)

1

π

0∫
e

x3 − xt2

(x2 + t2)2
f1(t)dt +

1

π

0∫
e

(−t)(x2 − t2)

(x2 + t2)2
f2(t)dt +

μi

2π

+∞∫
−∞

[
2ξC1 + (κ + 1)

|ξ|
ξ
C2

]
eiξxdξ � 0 (23b)

As can be understood from Eqs. (23a) and (23b), the stress expressions for Problem 4 are the same as the
displacement and stress expressions obtained for the contact problem in the first section, provided that the
coefficients are different. When the inverse Fourier transforms of Eqs. (23a) and (23b) are taken, two equations
with two unknowns emerge. With the solution of the equation set, the coefficients C1 and C2 are found. When
these coefficients are replaced in stress and displacement expressions and the integrals are reduced to the
interval (0, ∞) and closed integrals of stress and displacement expressions are taken, stress and displacement
expressions for Problem 2 are obtained as:

σx2 (x , y) � 1

π

0∫
e

f1(t)dt

[
16yt(y + t)3 − 2(y + t)(y2 + 10yt + 3t2)

[
(y + t)2 + x2

]
[
(y + t)2 + x2

]3

+
(3y + 5t)

[
(y + t)2 + x2

]2
[
(y + t)2 + x2

]3
]

+
1

π

0∫
e

f2(t)dt

[
16xyt(y + t)2 − 2x

(
3t2 + 4yt − y2

)[
(y + t)2 + x2

]
[
(y + t)2 + x2

]3

− x
[
(y + t)2 + x2

]2
[
(y + t)2 + x2

]3
]

(24a)

σy2 (x , y) � 1

π

0∫
e

f1(t)dt

[
−16yt(y + t)3 − 2(y + t)

(−y2 − 6t y + t2
)[
(y + t)2 + x2

]
[
(y + t)2 + x2

]3

− (−y + t) +
[
(y + t)2 + x2

]2
[
(y + t)2 + x2

]3
]

+
1

π

0∫
e

f2(t)dt

[
−16xyt(y + t)2 − 2x

(
y2 + t2

)[
x2 + (y + t)2

]
[
(y + t)2 + x2

]3

− x
[
(y + t)2 + x2

]2
[
(y + t)2 + x2

]3
]

(24b)

τxy2 (x , y) � 1

π

0∫
e

f1(t)dt

[
−16xyt(y + t)2 − 2x

(
4yt + y2 + t2

)[
(y + t)2 + x2

]
[
(y + t)2 + x2

]3

− x
[
(y + t)2 + x2

]2
[
(y + t)2 + x2

]3
]

+
1

π

0∫
e

f2(t)dt

[
−16xyt(y + t)3 − 2(y + t)

[−y2 + 6yt + t2
]
[(y + t)2 + x2][

(y + t)2 + x2
]3



Analytical solution for contact and crack problem 4409

+
(t − y)

[
(y + t)2 + x2

]2
[
(y + t)2 + x2

]3
]

(24c)

∂v2

∂x
(x , y) � 1

4μπ

0∫
e

f1(t)dt

[
x
[
(κ + 3)

(
y4 − 8yt3

) − 6(κ + 8)y2t2[
(y + t)2 + x2

]3

+
(κ − 1)x4 + 2(κ + 1)x2

(
y2 − t2

) − (1 + 3κ)t4 + 8yt
(
x2 − 2y2

)]
[
(y + t)2 + x2

]3
]

+
1

4μπ

0∫
e

f2(t)dt

[
(κ + 3)y5 + 2(κ + 1)x2

(
y3 + t3

)
[
(y + t)2 + x2

]3 +
(κ − 1)x4(y − t) + 6(κ − 3)yx2t(y + t)[

(y + t)2 + x2
]3

+
2(9κ + 23)t2y3 + 2(11κ + 21)t3y2 + (13κ + 5)t4y[

(y + t)2 + x2
]3 +

(7κ + 21)t y4 + (1 + 3κ)t5[
(y + t)2 + x2

]3
]

(24d)

5 Numerical solution of ıntegral equations

Boundary conditions from which the p(t), q(t), f1(t) and f2(t) unknowns in the crack-contact problem are
obtained as:

σx (0, y) � σx1 (0, y) + σx2 (0, y) � 0, (e < y < 0) (25a)

τxy(0, y) � τxy1 (0, y) + τxy2 (0, y) � 0, (e < y < 0) (25b)

∂v(x , 0)

∂x
� 0, (b < x < a) (25c)

∂v(x , 0)

∂x
� 0, (c < x < d) (25d)

If these boundary conditions are applied to the sum of expressions belonging to the derivative of stress and
vertical displacement found for Problem 1 and Problem 2; Eqs. (26a), (26b), (26c) and (26d) are obtained as:

1

π

0∫
e

f1(t1)

t1 − y1
dt1 +

1

π

0∫
e

f1(t1)K11(t1, y1)dt1

+
1

π

a∫
b

p(t3)K13(t3, y1)dt3

+
1

π

d∫
c

q(t4)K14(t4, y1)dt4 � 0
(
e < y1 < 0

)

(26a)

1

π

0∫
e

f2(t2)

t2 − y2
dt2 +

1

π

0∫
e

f2(t2)K22(t2, y2)dt2

+
1

π

a∫
b

p(t3)K23(t3, y2)dt3

+
1

π

d∫
c

q(t4)K24(t4, y2)dt4 � 0
(
e < y2 < 0

)

(26b)
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1

π

0∫
e

f1(t1)K31(t1, y3)dt1 +
1

π

0∫
e

f2(t2)K32(t3, x3)dt2

+
1

π

a∫
b

p(t3)

t3 − x3
dt3 +

1

π

d∫
c

q(t4)

t4 − x3
dt4 � 0 (b < x3 < a)

(26c)

1

π

0∫
e

f1(t1)K41(t1, x4)dt1 +
1

π

0∫
e

f2(t2)K42(t2, x4)dt2

+
1

π

a∫
b

p(t3)

t3 − x4
dt3 +

1

π

d∫
c

q(t4)

t4 − x4
dt4 � 0 (c < x4 < d)

(26d)

When the equilibrium equations are arranged as:

a∫
b

p(t3)dt3 � −P (27a)

d∫
c

q(t4)dt4 � −Q (27b)

Dimensionless quantities are be defined to be able to numerically solve integral equations as:

y1 � − e

2
s1 +

e

2
(28a)

y2 � − e

2
s2 +

e

2
(28b)

t1 � − e

2
r1 +

e

2
(28c)

t2 � − e

2
r2 +

e

2
(28d)

t3 � (a − b)

2
r3 +

a + b

2
(28e)

t4 � (d − c)

2
r4 +

d + c

2
(28f)

x3 � a − b

2
s3 +

a + b

2
(28g)

x4 � d − c

2
s4 +

d + c

2
(28h)

g1(r1) � a − b

P
f1(− e

2
r1 +

e

2
) (28i)

g2(r2) � a − b

P
f2(− e

2
r2 +

e

2
) (28j)

g3(r3) � (a − b)

P
P

[
a − b

2
r3 +

b + a

2

]
(28k)

g4(r4) � a − b

P
Q

[
d − c

2
r4 +

d + c

2

]
(28l)

In these expressions, g1(r1) and g2(r2) represent dimensionless quantities due to unknown stress intensity
factors at the crack ends, g3(r3) and g4(r4) expressions indicate dimensionless quantities due to unknown
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contact stresses between punch and semi-infinite plane. When these dimensionless quantities are written in
Eqs. (26a), (26b), (26c) and (26d), respectively:

− 1

π

1∫
−1

g1(r1)

r1 − s1
dr1 +

1∫
−1

M11(r1, s1)g1(r1)dr1 +

1∫
−1

M13(r3, s1)g3(r3)dr3

+

1∫
−1

M14(r4, s1)g4(r4)dr4 � 0

(29a)

− 1

π

1∫
−1

g2(r2)

r2 − s2
dr2 +

1∫
−1

M22(r2, s2)g2(r2)dr2 +

1∫
−1

M23(r3, s2)g3(r3)dr3

+

1∫
−1

M24(r4, s2)g4(r4)dr4 � 0

(29b)

1∫
−1

g1(r1)M31(r1, s3)dr1 +

1∫
−1

g2(r2)M32(r2, s3)dr2 − 1

π

1∫
−1

g3(r3)

r3 − s3
dr3

+
1

π

1∫
−1

g4(r4)[
(d−c)
2 r4 + d+c

2

]
−

[
(b−a)

2 s3 + b+a
2

] d − c

2
dr4 � 0

(29c)

1∫
−1

g1(r1)M41(r1, s4)dr1 +

1∫
−1

g2(r2)M42(r2, s4)dr2

− 1

π

1∫
−1

g3(r3)[ a−b
2 r3 + b+a

2

] − [ d−c
2 s4 + d+c

2

] a − b

2
dr3 +

1

π

1∫
−1

g4(r4)

r4 − s4
dr4 � 0

(29d)

Numerical solution of integral equations is done with the help of Jacobi polynomials. Solution of integral
equations are sought as:

g1(r1) � (1 − r1)−1/2

∞∑
n�0

An P
(−1/2,0)
n (r1) (30a)

g2(r2) � (1 − r2)
−1/2

∞∑
n�0

Bn P
(−1/2,0)
n (r2) (30b)

g3(r3) � (1 − r3)
−1/2(1 − r3)

−1/2
∞∑
n�0

Cn P
(−1/2,−1/2)
n (r3) (30c)

g4(r4) � (1 − r4)
−1/2(1 − r4)

−1/2
∞∑
n�0

DnP
(−1/2,−1/2)
n (r4) (30d)

In these equations Pn Jacobi polynomial, An, Bn, Cn andDn are unknown constants.When Eqs. (30a)-(30d)
are written in Eqs. (29a)-(29d), 4N + 2 a linear equation is obtained that consists of 4N + 2 unknowns and 4N
+ 2 equations where g1(r1), g2(r2), g3(r3) and g4(r4) is unknown.

The first unknown constant in the expansion of with Jacobi polynomials defined in Eq. (30c) using Eq. (14a)
and Eq. (28 k) is obtained as:

C0 � −2
/

π (31a)

Similarly, the first unknown constant in the expansion of with Jacobi polynomials defined in Eq. (30d)
using Eq. (14b) and Eq. (28 l) is obtained as:

D0 � 2P
/
Qπ (31b)
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When Eqs. (30a)-(30d), (30a), (30b) are written in Eqs. (29a) and (29d):

N∑
n�0

An

{

(−1/2)
(n + 1)

π
√
2
(n + 1/2)

F(n + 1, − n +
1

2
;
3

2
;
1 − s1

2
)

}

+

1∫
−1

[
− 1

π

e

2
K11

(
− e

2
r1 +

e

2
, − e

2
s1 +

e

2

)]
(1 − r1)

−1/2P (−1/2,0)
n (r1)dr1

+
N∑

n�1

Cn

1∫
−1

[
− 1

π

a − b

2
K13

[
a − b

2
r3 +

b + a

2
, − e

2
s1 +

e

2

]]
x(1 − r3)

−1/2(1 + r3)
−1/2P (−1/2,−1/2)

n (r3)dr3

+
N∑

n�1

Dn

1∫
−1

1

π

d − c

2
K14

[
d − c

2
r4 +

d + c

2
, − e

2
s1 +

e

2

]
x(1 − r4)

−1/2(1 + r4)
−1/2Pn(r4)dr4

� 2

π

1∫
−1

[
− 1

π

a − b

2
K13

[
a − b

2
r3 +

a + b

2
,
e

2
s1 +

e

2

]]
x(1 − r3)

−1/2(1 + r3)
−1/2P (−1/2,−1/2)

0 (r3)dr3

+

[
− (a − b)2Q

(d − c)Pπ

] 1∫
−1

[
1

π

(d − c)

2
K14

[
d − c

2
r4 +

d − c

2
,
e

2
s1 +

e

2

]]

x(1 − r4)
−1/2(1 − r4)

−1/2P (−1/2,−1/2)
0 (r4)dr4

(32a)

N∑
n�0

Bn

{

(−1/2)
(n + 1)

π
√
2
(n + 1/2)

F(n + 1, − n +
1

2
;
3

2
;
1 − s2

2
)

}

+

1∫
−1

[
− 1

π

e

2
K22

(
− e

2
r2 +

e

2
, − e

2
s2 +

e

2

)]
(1 − r2)

−1/2P (−1/2,0)
n (r2)dr2

+
N∑

n�1

Cn

1∫
−1

[
− 1

π

a − b

2
K23

[
a − b

2
r3 +

b + a

2
,
e

2
s2 +

e

2

]]
(1 − r3)

−1/2(1 + r3)
−1/2P (−1/2,−1/2)

n (r3)dr3

+
N∑

n�1

Dn

1∫
−1

1

π

a − b

2
K24

[
d − c

2
r4 +

d + c

2
, − e

2
s2 +

e

2

]
x(1 − r4)

−1/2(1 + r4)
−1/2P (−1/2,−1/2)

n (r4)dr4

�
(

− 2

π

) 1∫
−1

[
− 1

π

a − b

2
K23

[
a − b

2
r3 +

a + b

2
,
e

2
s2 +

e

2

]]
x(1 − r3)

−1/2(1 + r3)
−1/2P (−1/2,−1/2)

0 (r3)dr3

+
2P

Qπ

1∫
−1

[
1

π

(a − b)

2
K24

[
a − b

2
r4 +

a + b

2
,
e

2
s2 +

e

2

]]
x(1 − r4)

−1/2(1 + r4)
−1/2P (−1/2,−1/2)

0 (r4)dr4

(32b)
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N∑
n�0

An

1∫
−1

(
− 1

π

e

2
K31

[
− e

2
r1 +

e

2
,
a − b

2
s3 +

b + a

2

])
(1 − r1)

−1/ 2P(−1/ 2,0)
n (r1)dr1

+
N∑

n�0

Bn

1∫
−1

(
− 1

π

e

2
K32

[
− e

2
r2 +

e

2
,
a − b

2
s3 +

b + a

2

])
(1 − r2)

−1/2P (−1/2,0)
n (r2)dr2

+

(
−1

2

) N∑
n�1

Cn P
(−1/2,−1/2)
n−1 (s3) +

N∑
n�1

Dn

1∫
−1

1

π

[
1( d−c

2 r4 + d+c
2

) − ( a−b
2 s3 + b+a

2

)
]

x
d − c

2
(1 − r4)

−1/2(1 + r4)
−1/2P (−1/2,−1/2)

n (r4)dr4

�
[
− (a − b)2Q

(d − c)Pπ

] 1∫
−1

1

π

[
1( d−c

2 r4 + d−c
2

) − ( a−b
2 r4 + a+b

2

)
]

x

(
d − c

2

)
(1 − r4)

−1/2(1 + r4)
−1/2P (−1/2,−1/2)

0 (r4)dr4

(32c)

N∑
n�0

An

1∫
−1

(
− 1

π

e

2
K41

[
− e

2
r1 +

e

2
,
d − c

2
s4 +

d + c

2

])
(1 − r1)

−1/2P (−1/2,0)
n (r1)dr1

+
N∑

n�0

Bn

1∫
−1

(
− 1

π

e

2
K42

[
− e

2
r2 +

e

2
,
d − c

2
s4 +

d + c

2

])
(1 − r2)

−1/2P (−1/2,0)
n (r2)dr2

+
1

π

N∑
n�1

Cn

1∫
−1

[
1( a−b

2 r3 + a+b
2

) − ( d−c
2 s4 + d+c

2

)
](

a − b

2

)
(1 − r3)

−1/2(1 + r3)
−1/2

x P (−1/2,−1/2)
n (r3)dr3 +

1

2

N∑
n�1

DnP
(1/2,1/2)
n−1 (s4)

� 2

π

1∫
−1

(
− 1

π

)
1( a−b

2 r3 + a+b
2

) − ( d−c
2 s4 + d+c

2

) x
(
b − a

2

)
(1 − r3)

−1/2(1 − r3)
−1/2P (−1/2,−1/2)

0 (r3)dr3

(32d)

G is the gamma function and F is the hypergeometric function. The roots of Jacobi polynomials in equations
are defined as:

s1i � s2i � cos

(
π

2

(
2i − 1

N + 1

))
i � 1, . . . .., N + 1 (33a)

s3i � s4i � cos

(
π

2

(
2i − 1

N

))
i � 1, . . . .., N (33b)

6 Stress ıntensity factors

The Mod-I and Mod-II (opening and sliding mode) stress intensity factors at the crack tips can be defined as
[20] and [11]:

k1 � lim
y→e

√
2(y − e)σx (0, y) (34a)

k2 � lim
y→e

√
2(y − e)τxy(0, y) (34b)
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Fig. 4 Sub-punch stress distribution in both punches according to the change of crack depth (κ � 2, ν � 0.25, a/b � 0.5, c/b �
-1, d/b � -1.5, P/Q � 2)

Normalized stress intensity factors are obtained as:

k1
√−e

P
� −e

a − b

N∑
n�0

An P
(−1/2,0)
n (1) (35a)

k2
√−e

P
� −e

a − b

N∑
n�0

Bn P
(−1/2,0)
n (1) (35b)

7 Numerical results

In this section, using the formulations given in the previous section, crack depth, punch widths, different
loading conditions and the stress intensity factors at the crack tip depending on the variation of the distance
between the punches and the crack and the stress distribution under the punch are examined. According to
these parameters, numerical values are given as tables and graphs and the findings are examined.

In Fig. 4, the stress distributions formed under the punches according to the variation of the crack depth
are given. As can be seen from the figure, it is seen that the change in crack depth does not have a significant
effect on the sub-punch stress distributions.

The effect of the change of P / Q ratio on sub-punch stress distributions is investigated in Fig. 5. As the P/Q
ratio increased; although there is no significant change in the sub-punch stresses in the punch affected by the P
load, there is a decrease in the sub-punch stresses in the punch affected by the Q load. The reason why there is
no change in the sub-block stresses in the block affected by the P load; for example, when the load P increases
by 2 times, the stresses increase by 2 times, but since the nondimensionalization of the contact stresses is done
with P, P in the expression (p(x)/(P/b)) also increases by 2 times. Since the numerator and denominator have
doubled, they simplify each other. For this reason, the stress distribution under the block does not change in
the block affected by the P load.

The effect of the change in the width of the punch to which the Q load is applied on the stress distributions
under the punches is examined in Fig. 6. As the width of the punch to which the Q load is applied increases,
the sub-punch stresses occurring in the same punch decreases, while the sub-punch stresses occurring under
the punch where the P load is applied do not cause a significant change.

The effect of P/Q ratio change on k1
√−e/P and k2

√−e/P is investigated in Table 1 and Fig. 7. When the
table and figure are examined, as the P/Q ratio increases, k1

√−e/P stress intensity factor decreases. When the
P/Q ratio is lower than 0.379811, k2

√−e/P stress intensity factor takes negative values. Therefore, k2
√−e/P
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Fig. 5 The sub-punch stress distribution in both punches according to the change of the P/Q ratio (κ � 2, ν � 0.25, a/b � 0.5,
c/b � -1, d/b � -1.5, e/b � -0.5)

Fig. 6 The sub-punch stress distribution in both punches according to the change of the punch width to which the Q load is
applied (κ � 2, ν � 0.25, P/Q � 0.25, a/b � 0.5, c/b � -1, e/b � -0.5)

stress intensity factor takes positive values for P/Q � 0.5 and P/Q � 1.5, while it takes negative values for P/Q
� 0.25.

In Table 2 and Fig. 8., the effect on the stress intensity factors k1
√−e/P and k2

√−e/P according to the
change of P/Q ratio is examined when the punch positions and punch widths are the same. When the punches
is not symmetrical, as the P/Q ratio increased k1

√−e/P stress intensity factor decreases. As the e/b ratio, the
crack depth, increases; k1

√−e/P and absolute value of k2
√−e/P increases. Also, for P/Q � 1, k2

√−e/P
value is found to be zero as expected.

In Table 3 and Fig. 9, the effect of the change of punch width to which the P load is applied on the stress
intensity factors is examined. As the width of the punch applied on the P load increases; the effect of the P
load on the crack will decrease according to the effect of the Q load on the crack and crack opening will occur.
Therefore, as the width of this punch increases, k1

√−e/P stress intensity factor increases. k2
√−e/P stress

intensity factor which take negative value decreases.
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Table 1 Change of k1
√−e/P and k2

√−e/P stress intensity factors for different P/Q ratio (κ � 2, ν � 0.25, a/b � 0.5, c/b � −
1, d/b � −1.5)

e/b P/Q � 0.25 P/Q � 0.50 P/Q � 1.5
k1

√−e
P

k2
√−e
P

k1
√−e
P

k2
√−e
P

k1
√−e
P

k2
√−e
P

0.1 0.0476 0.0002 0.0347 0.0011 0.0261 0.0016
0.2 0.1852 0.0012 0.1339 0.0077 0.0997 0.0121
0.3 0.3991 0.0015 0.2854 0.0221 0.2095 0.0358
0.4 0.6725 −0.0027 0.4749 0.0425 0.3431 0.0727
0.5 0.9889 −0.0154 0.6896 0.0657 0.4900 0.1199
0.6 1.3320 −0.0400 0.9193 0.0883 0.6427 0.1738
0.7 1.6963 −0.0784 1.1563 0.1075 0.7962 0.2314
0.8 2.0663 −0.1312 1.3950 0.1217 0.9474 0.2902
0.9 2.4375 −0.1978 1.6316 0.1302 1.0943 0.3488
1.0 2.8048 −0.2769 1.8634 0.1328 1.2358 0.4060

Fig. 7 Change of k1
√−e/P and k2

√−e/P stress intensity factors for different P/Q ratio (κ � 2, ν � 0.25, a/b � 0.5, c/b � -1,
d/b � -1.5)

Table 2 The change of the values of the k1
√−e/P and k2

√−e/P stress intensity factors for different P/Q ratios when the punch
positions and punch widths are the same (κ � 2, ν � 0.25, a/b � 0.5, c/b � −0.5, d/b � −1)

e/b P/Q � 0.50 P/Q � 1 P/Q � 2
k1

√−e
P

k2
√−e
P

k1
√−e
P

k2
√−e
P

k1
√−e
P

k2
√−e
P

0.1 0.0634 −0.0020 0.0423 0 0.0317 0.0010
0.2 0.2408 −0.0148 0.1606 0 0.1204 0.0074
0.3 0.5020 −0.0444 0.3347 0 0.2510 0.0222
0.4 0.8139 −0.0910 0.5426 0 0.4069 0.0455
0.5 1.1498 −0.1517 0.7666 0 0.5749 0.0758
0.6 1.4913 −0.2225 0.9942 0 0.7456 0.1113
0.7 1.8268 −0.3002 1.2178 0 0.9134 0.1501
0.8 2.1499 −0.3821 1.4332 0 1.0749 0.1910
0.9 2.4573 −0.4660 1.6382 0 1.2286 0.2330
1.0 2.7478 −0.5509 1.8319 0 1.3739 0.2754
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Fig. 8 The change of the values of the k1
√−e/P and k2

√−e/P stress intensity factors for different P/Q ratios when the punch
positions and punch widths are the same (κ � 2, ν � 0.25, a/b � 0.5, c/b � -0.5, d/b � -1)

Table 3 The variation of the stress intensity factors k1
√−e/P and k2

√−e/P obtained for various values of the width of the
punch on which the load P is applied (κ � 2, ν � 0.25, P/Q � 4, c/b � −1, d/b � −1.5)

(b-a)/b � 0.8333 (b-a)/b � 0.6667 (b-a)/b � 0.5

e/b k1
√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P

0.1 0.0030 −0.00004 0.1 0.0033 −0.00003 0.1 0.0036 −0.00002
0.2 0.0120 −0.0003 0.2 0.0132 −0.0003 0.2 0.0142 −0.0002
0.3 0.0267 −0.0011 0.3 0.0293 −0.0008 0.3 0.0315 −0.0005
0.4 0.0465 −0.0024 0.4 0.0510 −0.0018 0.4 0.0550 −0.0011
0.5 0.0709 −0.0043 0.5 0.0778 −0.0032 0.5 0.0838 −0.0018
0.6 0.0993 −0.0067 0.6 0.1090 −0.0047 0.6 0.1173 −0.0026
0.7 0.1311 −0.0095 0.7 0.1439 −0.0065 0.7 0.1547 −0.0032
0.8 0.1658 −0.0125 0.8 0.1819 −0.0082 0.8 0.1954 −0.0035
0.9 0.2028 −0.0155 0.9 0.2224 −0.0096 0.9 0.2386 −0.0033
1.0 0.2417 −0.0182 1.0 0.2650 −0.0105 1.0 0.2839 −0.0025

In Table 4 and Fig. 10, the effect of the variation of the width of the punch on which the Q load is applied
on the stress intensity factors obtained from the opening and shear modes is examined. As the width of this
punch increases, k1

√−e/P stress intensity factor decreases, k2
√−e/P stress intensity factor increases.

In Table 5 and Fig. 11, the effect of the distance from the crack on the stress intensity factors of the punch
to which the P load is applied is examined. As the punch moved away from the crack, the stress intensity factor
k1

√−e/P and k2
√−e/P decreases. For a/b � 0.89, k2

√−e/P stress intensity factor changes sign.
In Table 6 and Fig. 12, the effect of the change of the distance of the punch to which the Q load is applied to

the crack on the stress intensity factors is examined. As the distance between the punch and the crack increases,
k1

√−e/P stress intensity factor decreases and k2
√−e/P stress intensity factor increases.

8 Conclusion

There are three different modes for a crack in fracture mechanics. These are Mode I—opening mode (tensile
stress perpendicular to the crack plane), Mode II—sliding mode (shear stress acting parallel to the crack plane
and perpendicular to the crack front) and Mode III—tear mode (shear stress acting parallel to the crack plane
and parallel to the crack front). The most important of these 3 modes is Mode I. In this study, Mode I and
Mode II problems are valid for crack due to normal forces applied by the punch. As a result of the parametric
analysis obtained at the end of the study, the effects of parameters such as punch width and punch position on
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Fig. 9 The variation of the stress intensity factors k1
√−e/P and k2

√−e/P obtained for various values of the width of the punch
on which the load P is applied (κ � 2, ν � 0.25, a/b � 0.5, c/b � -0.5, d/b � -1)

Table 4 The variation of the stress intensity factors k1
√−e/P and k2

√−e/P obtained for various values of the width of the
punch on which the load Q is applied (κ � 2, ν � 0.25, P/Q � 0.25, a/b � 0.5, c/b � −1)

(d-c)/b � −1.5 (d-c)/b � −2 (d-c)/b � −2.5

e/b k1
√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P

0.1 0.0476 0.0011 0.1 0.0404 0.0014 0.1 0.0339 0.0015
0.2 0.1851 0.0083 0.2 0.1567 0.0104 0.2 0.1313 0.0112
0.3 0.3990 0.0239 0.3 0.3371 0.0308 0.3 0.2815 0.0336
0.4 0.6724 0.0471 0.4 0.5671 0.0626 0.4 0.4719 0.0691
0.5 0.9889 0.0742 0.5 0.8334 0.1031 0.5 0.6915 0.1150
0.6 1.3341 0.1013 0.6 1.1244 0.1482 0.6 0.9313 0.1681
0.7 1.6963 0.1247 0.7 1.4311 0.1948 0.7 1.1845 0.2249
0.8 2.0663 0.1419 0.8 1.7466 0.2398 0.8 1.4459 0.2826
0.9 2.4375 0.1510 0.9 2.0655 0.2810 0.9 1.7116 0.3391
1.0 2.8047 0.1511 1.0 2.3836 0.3170 1.0 1.9787 0.3926

Table 5 The change of the k1
√−e/P and k2

√−e/P stress intensity factors obtained for various values of the distance from the
crack of the punch on which the load P is applied (κ � 2, ν � 0.25, P/Q � 4)

a/b � 0.5 c/b � −1 d/b � −
1.5

a/b � 0.75 c/b � −0.5 d/b �
−0.75

a/b � 0.89 c/b � −0.4 d/b � −
0.6

e/b k1
√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P

0.1 0.0250 0.0018 0.1 0.0173 0.00004 0.1 0.0105 −0.00001
0.2 0.0954 0.0134 0.2 0.0666 0.0003 0.2 0.0411 −0.0001
0.3 0.2001 0.0401 0.3 0.1415 0.0011 0.3 0.0889 −0.0004
0.4 0.3267 0.0821 0.4 0.2347 0.0028 0.4 0.1509 −0.0009
0.5 0.4651 0.1367 0.5 0.3399 0.0054 0.5 0.2238 −0.0015
0.6 0.6082 0.2005 0.6 0.4521 0.0094 0.6 0.3046 −0.0020
0.7 0.7513 0.2701 0.7 0.5675 0.0149 0.7 0.3909 −0.0022
0.8 0.8914 0.3429 0.8 0.6835 0.0221 0.8 0.4804 −0.0027
0.9 1.0271 0.4170 0.9 0.7984 0.0309 0.9 0.5714 −0.0033
1.0 1.1574 0.4913 1.0 0.9108 0.0415 1.0 0.6627 −0.0039
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Fig. 10 The variation of the stress intensity factors k1
√−e/P and k2

√−e/P obtained for various values of the width of the
punch on which the load Q is applied (κ � 2, ν � 0.25, P/Q � 0.25, a/b � 0.5, c/b � -1)

Fig. 11 The change of the k1
√−e/P and k2

√−e/P stress intensity factors obtained for various values of the distance from the
crack of the punch on which the load P is applied (κ � 2, ν � 0.25, P/Q � 4)

the stress intensity multipliers obtained for these two modes, as well as their effects on the normal and shear
stress distributions on the crack, are investigated.

The fact that the stress intensity factor k1
√−e/P obtained from the opening mode (Mode I) is less than

zero is a situation that occurs due to the tensile forces acting on the system and in this case the crack is
closed. However, within the scope of this study, because of pressure forces acting on the system, k1

√−e/P
values were higher than zero in the results and the opening mode occurred. The fact that the stress intensity
factor k2

√−e/P obtained from the sliding mode (Mode II) is greater than zero or less indicates that there is
a difference between the vertical displacements in the slip plane in the crack.

Data availability The data used to support the findings of this study are included within the article.
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Table 6 The change of the k1
√−e/P and k2

√−e/P stress intensity factors obtained for various values of the distance from the
crack of the punch on which the load Q is applied (κ � 2, ν � 0.25, P/Q � 0.25, a/b � 0.5)

c/b � −1 d/b � −1.5 c/b � −1.5 d/b � −2 c/b � −2 d/b � −2.5

e/b k1
√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P e/b k1

√−e
P

k2
√−e
P

0.1 0.0476 0.0011 0.1 0.0404 0.0014 0.1 0.0339 0.0015
0.2 0.1851 0.0083 0.2 0.1567 0.0104 0.2 0.1313 0.0112
0.3 0.3990 0.0239 0.3 0.3371 0.0308 0.3 0.2815 0.0336
0.4 0.6724 0.0471 0.4 0.5671 0.0626 0.4 0.4719 0.0691
0.5 0.9889 0.0742 0.5 0.8334 0.1031 0.5 0.6915 0.1150
0.6 1.3341 0.1013 0.6 1.1244 0.1482 0.6 0.9313 0.1681
0.7 1.6963 0.1247 0.7 1.4311 0.1948 0.7 1.1845 0.2249
0.8 2.0663 0.1419 0.8 1.7466 0.2398 0.8 1.4459 0.2826
0.9 2.4375 0.1510 0.9 2.0655 0.2810 0.9 1.7116 0.3391
1.0 2.8047 0.1511 1.0 2.3836 0.3170 1.0 1.9787 0.3926

Fig. 12 The change of the k1
√−e/P and k2

√−e/P stress intensity factors obtained for various values of the distance from the
crack of the punch on which the load Q is applied (κ � 2, ν � 0.25, P/Q � 0.25, a/b � 0.5)

Declaration

Conflict of interest Declaration is a statement to certify that all authors have seen and approved the final version of themanuscript
being submitted. They warrant that the article is the authors’ original work, has not received prior publication and is not under
consideration for publication elsewhere.

Appendix

K11(t , y) � K22(t , y) � − 1

t + y
+

6y

t + y
− 4y2

(t + y)3
(34a)

K13(t , y) � K14(t , y) � − 2yt

(y + t)2
(34b)

K23(t , y) � K24(t , y) � − 2y2t

(y2 + t2)2
(34c)

K31(t , x) � K41(t , x) � − 4xt2

(x2 + t2)2
(34d)
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K32(t , x) � K42(t , x) � 4x3

(x2 + t2)2
(34e)

M11(r1, s1) � − 1

π

e

2
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(
− e

2
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e

2
, − e

2
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e

2

)
(35a)
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π

a − b

2
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2
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2
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π
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2
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π
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2
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30. Kaya, Y., Polat, A., Özşahin, T.Ş: Analytical and finite element solutions of continuous contact problem in functionally
graded layer. Eur. Phys. J. Plus 135, 89 (2020)

31. Ke, L.L., Wang, Y.S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations
of material properties. Int. J. Solids Struct. 43, 5779–5798 (2006)

32. Liu, T.J., Xing, Y.M., Wang, Y.S.: The axisymmetric contact problem of a coating/substrate system with a graded interfacial
layer under a rigid spherical punch. Math. Mech. Solids 21(3), 383–399 (2016)

33. Ma, L.F., Korsunsky, A.M.: Fundamental formulation for frictional contact Problems of coated systems. Int. J. Solids Struct.
41(11–12), 2837–2854 (2004)

34. Oner, E., Yaylaci, M., Birinci, A.: Analytical solution of a contact problem and comparison with the results from FEM.
Struct. Eng. Mech.: Int. J. 54(4), 607–622 (2015)

35. Öner, E.: Two-dimensional frictionless contact analysis of an orthotropic layer under gravity. J. Mech. Mater. Struct. 16(4),
573–594 (2021)

36. Öner, E.: Frictionless contact mechanics of an orthotropic coating/isotropic substrate system. Comput. Concr. 28(2), 209
(2021)
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