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Abstract The conveyance of fluid through pipes is a common occurrence in practical applications, and the
dynamic stability of such systems has been a subject of interest for many decades. In this paper, we investigate
the dynamic stability of a cantilevered pipe conveying fluid, considering the lateral distributed load as a
critical factor. To achieve this, we employ the differential quadrature method to solve the eigenvalue equations
for various load patterns. Remarkably, we observe excellent agreement with exact solutions and the Argand
diagram. By analyzing the relationship between circular frequency and dimensionless velocity, we demonstrate
that the descending distributed load pattern exhibits the highest stability. For certain conditions, it is possible
to enhance stability. The results obtained in this study provide valuable insights for improving the stability of
cantilevered pipe conveying fluid through a different approach.

Keywords Pipe conveying fluid · Dynamical stability · Differential quadrature method · Critical velocity ·
Lateral distributed load

1 Introduction

Pipe conveying fluid (PCF) has become a subject of significant interest in both engineering and academic com-
munities due to its widespread applications in various fields such as nuclear engineering, marine engineering
and petroleum engineering [1, 2]. Researchers have focused on various aspects of PCF to address important
concerns in the industry. One major area of study involves enhancing the resistance to flow corrosion of PCF,
as highlighted in the work by Zeng et al. [3]. Additionally, researchers have analyzed failure mechanisms
in different industrial pipes, as investigated by Xia et al. [4] and Wang et al. [5]. Furthermore, the dynamic
response of PCF under special conditions has been a focus of research, as demonstrated in the work by Wang
et al. [6, 23]. Another crucial aspect that draws attention is the stability of PCF. The internal fluid flow in PCF
can induce self-excited/random vibrations or resonances, which can pose a threat to the structural integrity of
the system being considered [7]. As pointed out by Paidoussis and Li [8], PCF exhibits rich dynamic behaviors,
making it a new paradigm in dynamics. Therefore, understanding the underlying dynamic mechanisms of PCF
is essential for mitigating or preventing adverse vibration occurrences.

PCF can be classified based on different boundary conditions, such as cantilevered PCF [9, 24], both ends
supported PCF [10] and nonlinear supported PCF [11]. For a more in-depth understanding of the dynamics
of PCF with these different boundary conditions, Oyelade and Oyediran [12] have provided valuable insights.
Among the various types of PCF, cantilevered PCF is a notable non-conservative system, primarily due to the
work done by the fluid on the end of the pipe. Despite its seemingly simple construction, cantilevered PCF
exhibits extremely richmechanical behaviors and vibration characteristics. Someof the underlyingmechanisms
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discovered in the study of cantilevered PCF can be applied to more practical systems, including marine risers,
oil pipelines and pipe bundles in heat exchangers. For the purpose of this study, we focus solely on cantilevered
PCF. The excitation of internal fluid flow plays a significant role in the vibration of cantilevered PCF.When the
flow velocity exceeds a critical value, aptly termed the critical velocity, the amplitude of vibration magnifies
due to positive feedback in the system [13]. The study of structure stability has garnered increasing interest
due to its substantial impact on the performance and robustness of structures [14, 15]. A thorough analysis
of dynamical stability is essential for comprehensively understanding the mechanical characteristics of a
structure. The critical velocity, influenced by various factors, serves as an indicator of the degree of stability
of the structure, with higher critical velocities corresponding to stronger stability.

Over the years, a significant amount of research has been conducted to study the dynamical stability and
response of cantilevered PCF, leading to various notable contributions from different researchers. Yoon and
Son [16] conducted a detailed study on the influences of angular velocity, fluid velocity and tip mass on the
stability of rotating flexible cantilevered PCF, providing valuable insights into this specific scenario. In the
realm of nonlinear dynamics control, Zhou et al. [17] introduced a nonlinear energy sink (NES) to control the
nonlinear vibration of a cantilevered PCF. Their work demonstrated that increasing the mass and damping of
the NES leads to improved critical velocity, and the optimal position of the NES is closely related to the flutter
mode. Taking into consideration tip mass and an array of intermediate springs, Ghayesh et al. [18] delved into
the three-dimensional dynamics of a cantilevered PCF, using both theoretical and experimental methods. In
cases where clearance constraints are present in cantilevered PCF, Paidoussis et al. [19] utilized a cubic spring
model to approximate the impact force. However, they later developed a smoothed trilinear spring model [20]
to overcome issues of wrong impact force estimation when the vibration amplitude is lower than the gap size.
To better understand the effects of clearance constraints, Ni et al. [21] conducted a comparative study on the
vibration response of cantilevered PCF, using both the cubic spring model and the smoothed trilinear spring
model. Liu et al. [22, 35] focused on the theoretical study of the vortex-induced vibrations of a cantilevered PCF
with clearance constraints, employing the smoothed trilinear spring model to describe the system. Recently,
Wang et al. [6, 23] investigated the three-dimensional dynamics of a cantilevered PCF with pulsating fluid,
providing further insights into this specific dynamic behavior.

To further enhance the critical velocity of cantilevered PCF and improve its stability, researchers have
explored various approaches and configurations [9, 24]. Zhou et al. investigated the stability of composite
PCF, where they specifically examined the influence of elastic boundary conditions on the critical velocity.
Their study revealed that incorporating a rotation spring had a positive impact on the critical velocity, leading
to a more stable system. In the pursuit of better understanding the effects of different materials on stability,
Dai et al. [25] studied a cantilevered PCF composed of two different materials. They found that if the softer
segment was mounted at the clamped end, the PCF exhibited a lower critical velocity. In a related study by
Bahaadini et al. [26], they investigated a composite cantilevered PCF supported at the free end by springs.
Using the extended Galerkin technique, they determined that decreasing the value of the fiber orientation
angle could increase the critical velocity of the system. ElNajjar and Daneshmand [27] aimed to increase
the critical velocity of both horizontal and vertical cantilevered PCFs by introducing lumped masses and/or
springs at different locations. Their results indicated that the critical velocity could be significantly improved
by strategically placing a spring and a lumped mass at specific locations. In addition to these stability-oriented
studies, Jiang et al. [28] provided a detailed investigation into the dynamics of PCF subjected to external
axial flow. Meanwhile, Abdelbaki et al. [29] conducted a study on the dynamics of a vertical hanging pipe
subjected to both internal and external axial flows. Their proposed model allowed for obtaining quantitative
insights into the dynamical behavior beyond the onset of instability. These studies collectively contribute to a
comprehensive understanding of the behavior and stability of cantilevered PCF under different conditions and
boundary constraints. Such research plays a crucial role in enhancing the safety and performance of various
engineering systems involving cantilevered PCF.

From the extensive review of previous literature, it becomes evident that the dynamical stability of can-
tilevered PCF has been thoroughly investigated concerning various constraints, materials, external flow and
lumpedmasses. These studies have provided valuable guidelines to improve the stability of cantilevered PCF in
different scenarios. However, in real-world applications, cantilevered PCF often encounters lateral distributed
loads due to auxiliary facilities, such as insulation layers wrapped on transfer pipes in solar power applications
[30] or firefighting pipes in cold region highway tunnels [31]. The investigation of the effects of lateral dis-
tributed load on the dynamical stability of cantilevered PCF presents a worthwhile research topic that deserves
attention. Understanding the impact of lateral distributed load on the stability of the structure is crucial. The
exploration of different load patterns is particularly intriguing, as it has the potential to provide insights into
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Fig. 1 Four distributed loads

optimizing the load distribution to enhance the stability of cantilevered PCF. Moreover, considering the limita-
tions of composite PCF and ideal lumped masses or springs, studying the impact of lateral distributed load on
the stability of cantilevered PCF could offer an alternative method to improve the critical velocity and overall
performance of the structure. Therefore, investigating the dynamical stability of cantilevered PCF under lateral
distributed load is an essential step toward gaining a more comprehensive understanding of the mechanical
behavior of this type of structure.

Motivated by the aforementioned research gap, the primary objective of this study was to conduct a
comprehensive investigation into the dynamical stability of a cantileveredPCFunder different lateral distributed
loads. To achieve this, we employ the powerful differential quadrature method (DQM), a numerical technique
capable of solving partial differential equations (PDEs) by transforming them intomatrix equations.Concretely,
the influence of the load patterns on the critical velocity is probed. Moreover, enlightened by the regularities
obtained above, some suggestions prompting the dynamical stability of cantilevered PCF are provided.

2 Mathematical formulations

The problem under consideration involves a cantilevered PCF with various parameters, including pipe mass
per unit length mp, Young’s modulus E, moment of inertia of principal section I, fluid mass per unit length
mf and fluid flow velocity U. The governing equation of the system is derived using Newton’s second law, as
previously done in Paidoussis’s work [1], with the additional contribution of a lateral distributed load. In this
analysis, the fluid is assumed to be incompressible, and the flow is considered to be uniform and full developed
in both the longitudinal and transverse cross sections of the pipe. In the absence of pipe extensibility, gravity,
tension and structural damping, one obtains the governing equations for the lateral deflection of the cantilevered
PCF based on the Euler–Bernoulli beam concept, as follows:

EI
∂4w(x , t)

∂x4
+ mfU

2 ∂2w(x , t)

∂x2
+ 2mfU

∂2w(x , t)

∂x∂t
+

(
mp + mf

)∂2w(x , t)

∂t2
�p(x , t) (1)

where w(x , t) presents the lateral deflection relating to both longitudinal axis x and time t andp(x , t) denotes
the time-dependent lateral distributed load.

To investigate the influence of the lateral distributed load on the stability of the cantilevered PCF, we
consider the presence of an auxiliary facility with a total massM. To clarify the effects of the lateral distributed
load, four different lad patterns are considered, namely uniform, descending, ascending and parabolic, as
shown in Fig. 1a–d. These load patterns are defined as follows:

Uniform distributed:

p1(x) � −M

L

∂2w(x , t)

∂t2
(2)

Descending distributed:

p2(x) � −2M

L2 (L − x)
∂2w(x , t)

∂t2
(3)
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Ascending distributed:

p3(x) � −2M

L2 x
∂2w(x , t)

∂t2
(4)

Parabolic distributed:

p4(x) � −6M

L3 x(L − x)
∂2w(x , t)

∂t2
(5)

The following dimensionless quantities are introduced:

ξ � w

L
, η � x

L
, β � mf

�
, τ � t

L2

√
EI

mf + mp + M
L

,

u � UL

√
mf

EI
, σ �

M
L

�
, � � mf + mp +

M

L

(6)

As a result, the dimensionless formalizations of governing equations under four load patterns can be
obtained by substituting Eqs. (2)–(6) into Eq. (1), namely

∂4ξ

∂η4
+ u2

∂2ξ

∂η2
+ 2

√
βu

∂2ξ

∂η∂τ
+

∂2ξ

∂τ 2
� 0, 0 ≤ η ≤ 1 (7)

∂4ξ

∂η4
+ u2

∂2ξ

∂η2
+ 2

√
βu

∂2ξ

∂η∂τ
+ [1 + σ(1 − 2η)]

∂2ξ

∂τ 2
� 0, 0 ≤ η ≤ 1 (8)

∂4ξ

∂η4
+ u2

∂2ξ

∂η2
+ 2

√
βu

∂2ξ

∂η∂τ
+ [1 + σ(2η − 1)]

∂2ξ

∂τ 2
� 0, 0 ≤ η ≤ 1 (9)

∂4ξ

∂η4
+ u2

∂2ξ

∂η2
+ 2

√
βu

∂2ξ

∂η∂τ
+

[
1 + σ

(
6η − 6η2 − 1

)]∂2ξ

∂τ 2
� 0, 0 ≤ η ≤ 1 (10)

As evident, when no additional lateral distributed loads are present (i.e., σ � 0), all these dimensionless
equations reduce to the most conventional form describing the linear vibration behavior of PCF. Notably,
varying load patterns result in different fourth terms on the left-hand sides of these equations, potentially
leading to distinct stability characteristics of the cantilevered PCF.

The dimensionless boundary conditions of cantilevered PCF are expressed as:

ξ � ∂ξ

∂η
� 0, η � 0 (11)

∂2ξ

∂η2
� ∂3ξ

∂η3
� 0, η � 1 (12)

3 Application of differential quadrature method

3.1 Description of DQM

The DQM has proven to be a highly effective method for solving eigenvalue problems in vibration systems,
including beams and plates [32, 33]. By transforming the partial differential equation and the boundary condi-
tions into a discrete matrix equation, the DQM eliminates the need for complicated integration calculations and
the selection of trial functions typically required in weighted residual method, such as the Galerkin method.
In this study, the DQM is used to solve the governing equation of the cantilevered PCF subjected to lateral
distributed loads and to obtain the critical velocity. The lateral deflection of the cantilevered PCF is discretized
at N nodes, and the fourth-order differential equation is transformed into a matrix equation with N by N
dimensions. The eigenvalues of this matrix equation represent the squared natural frequencies of the system.
By varying the flow velocity, we can determine the critical velocity at which the system undergoes a loss of
stability.
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Supposing that function f (x) is analytic and differentiable in the domain 0≤x ≤1, we can divide this
domain into N points. Let xi represent the ith point, where 1≤ i ≤N. The rth-order derivative of function f (x)
with respect toxi can be expressed as:

dr f (x)

dxr

∣∣
∣∣
x�xi

�
N∑

j�1

A(r)
i j f

(
x j

)
, i � 1, 2, · · · , N (13)

where Aij is the weighted coefficients. Obviously, the essence of DQM is that the derivative of function f (x) is
approximated by a linear sum of the values at all discrete points.

If function f (x) is expressed by Lagrange polynomials, namely

f (x) �
N∑

j�1

L j (x) f
(
x j

) �
N∑

j�1

N∏

k�1
k �� j

x − xk
x j − xk

f
(
x j

)
(14)

Differentiating Eq. (14) with respect to x produces

f (1)(x) �
N∑

j�1

L(1)
j (x) f

(
x j

)
(15)

Comparing Eqs. (13) and (14), one obtains

A(1)
i j � L(1)

j (xi ) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∏

k�1
k ��i

(xi − xk)

/
(
xi − x j

) N∏

k�1
k �� j

(
x j − xk

)
, i �� j

−
N∑

k�1
k ��i

A(1)
ik , i � j

(16)

and the high-order derivatives are rendered by

A(r) � A(r−1)A(1) � A(1)A(r−1) (17)

where A is the assembled matrix of coefficients Aij.
To facilitate the treatment of boundary conditions, the ununiformed discrete points are defined in which

the internal points are given by

xi � 1

2

[
1 − cos

(
i − 2

N − 3

)
π

]
, i � 3, 4, · · · , N − 2 (18)

and the rests are determined by

x1 � 0, x2 � δ, xN−1 � 1 − δ, xN � 1 (19)

where δ is a small enough value (10−4 in this study).
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3.2 Formation of discrete matrix equation

Without loss of generality, application of DQM to Eq. (7) and the corresponding boundary conditions yields
[34]

ξ̈ j +
N∑

j�1

2
√

βuA(1)
i j ξ̇ j +

N∑

j�1

[
A(4)
i j + u2A(2)

i j

]
ξ j � 0, i � 3, 4, . . . , N − 2 (20)

ξ1 � 0,
N∑

j�1

A(1)
2 j ξ j � 0,

N∑

j�1

A(2)
N−1 jξ j � 0,

N∑

j�1

A(3)
N jξ j � 0 (21)

Combining these equations and rewriting in matrix form produce

Mξ̈ + Cξ̇ +Kξ � 0 (22)

in which M denotes the mass matrix, C the damping matrix, K the stiffness matrix and ξthe dimensionless
lateral deflection vector.

In order to seek the eigenvalues, Eq. (22) is reformulated as
⎡

⎣ 0 M

M C

⎤

⎦

⎡

⎣ ξ̈

ξ̇

⎤

⎦ +

⎡

⎣−M 0

0 K

⎤

⎦

⎡

⎣ ξ̇

ξ

⎤

⎦ �
⎡

⎣0

0

⎤

⎦ (23)

Therefore, it is converted to find the eigenvalues of the following matrix W [22, 35]

W �
[

0 I
−M−1K −M−1C

]
(24)

Such eigenvalue ω can be solved by QR decomposition, and it manifests the stability attributes of can-
tilevered PCF. Due to the presence of damping terms,ω denotes generally complex number in which the
imaginary part presents the vibration frequency and the real part refers to the trend of amplitude, and the
stability of vibration system can thus be identified by the real part of ω, that is,

⎧
⎨

⎩

Re(ω) > 0, unstable
Re(ω) < 0, stable
Re(ω) � 0, critical

(25)

In the critical case, the dynamical stability of the cantilevered PCF can manifest in two types of instability:
flutter and buckling. Flutter is a dynamic instability phenomenon characterized by two conjugate complex
eigenvalues with zero real parts. This leads to periodical and non-decreasing motion caused by negative
damping, resulting frompositive feedback between the structure andfluid forces.As the fluid velocity increases,
the motion magnifies due to this positive feedback, leading to flutter instability. This phenomenon is associated
with non-conservative systems, such as the cantilevered PCF, where the presence of work done by the fluid
on the end of the pipe enables flutter to occur once the fluid velocity reaches a critical value. On the other
hand, buckling is a static instability phenomenon associated with a zero eigenvalue. In this case, the structure
experiences a sudden collapse or deformation without any periodical vibration. Buckling generally occurs in
conservative systems, but for cantilevered PCF, which is non-conservative, and buckling instability is not a
concern.

4 Results and discussion

4.1 Convergence analysis

Prior to verifying the previously built model, a convergence analysis was carried out to determine the number
of series terms required for accurate results. A program was executed to calculate the values of ω for different
N. Figure 2 illustrates the first four imaginary parts of ω, representing the first four natural frequencies of
the cantilevered PCF under a uniform distributed load with β � 0.5 and u � 1.0, for varying values of N
ranging from 9 to 30. It can be clearly seen that the first four natural frequencies converge rapidly as N
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Fig. 2 Convergence analysis for uniform distributed load

Table 1 Natural frequencies when u � 0 and β � 0.5

First order Second order Third order Forth order

DQM 3.5167 22.0389 61.7096 120.9261
Exact solutions [36] 3.5160 22.0345 61.6972 120.9019
Relative error 0.02% 0.02% 0.02% 0.02%

reaches 15. To ensure accuracy, the present study set the relative error for convergence to be ε � 0.001, where
ε � ∣

∣Im
(
ω(N )

) − Im
(
ω(N−1)

)∣∣/
∣
∣Im

(
ω(N )

)∣∣ andω(N ) is the circular frequency corresponding toN. According
to this convergence examination, N � 15 is used for the uniform distributed load, as there are no further
improvements observed beyond N � 15.

Moreover, when u� 0, the cantilevered PCF essentially becomes a straight beam, and its natural frequencies
can be calculated analytically. To illustrate the convergence of DQM, the first four natural frequencies when
u � 0 and β � 0.5 are compared with exact solutions [36] in Table 1. The results show excellent agreement
between the natural frequencies obtained by the DQM and the exact solutions, with a maximum relative error
of only 0.02%.

It should be pointed out that for different load patterns the value of N required for a convergent solution
varies. Only the results are presented here: N � 16 for descending distributed load, N � 16 for ascending
distributed load and N � 17 for parabolic distributed load. All subsequent studies in this work are conducted
based on the convergent solutions.

4.2 Verification of model

In order to validate the proposed model for studying the stability of cantilevered PCF under different lateral
loads, a validation procedure was performed. To fulfill this goal, the work by Dai et al. [25] was selected
for comparison with our results, focusing on the scenario without lateral distributed load (σ � 0) and with
a dimensionless parameter β � 0.5. For comparison purpose, a plot of the Argand diagram illustrating the
relationship between ω and u is displayed in Fig. 3. It was found that when u reaches 9.33, our model predicts
that the real part of the third order mode becomes equal to zero. This result is remarkably close to the value
obtained by Dai et al. [25]. Furthermore, the tendencies of the curves in this figure also exhibit a strong
agreement with the findings reported by Dai et al. [25] in their corresponding figure (Fig. 3b). This close
alignment between our model and the previously validated work by Dai et al. [25] provides robust evidence
of the high reliability and accuracy of our model.
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Fig. 3 Relation between ω and u when β � 0.5. a Our study, b Dai et al. [25]

4.3 Comparisons with different load patterns

In order to investigate the dynamical stability of the targeted cantilevered PCF with different distributed load
patterns. Some physical and geometrical quantities are defined as shown in Table 2. In this context, the key
dimensionless parameters are calculated as:β � 0.1477and σ � 0.5804.

Figure 4 presents the relation between ω and u for different lateral load patterns. It can be seen that for
all load ways,Re(ω) of the second order is the first to become positive as u increases, which means that the
cantilevered PCF loses its stability firstly in the second order mode. In addition, as u continues to increase,
Re(ω) of the fourth order tends to be positive as well. Consequently, at sufficiently high flow velocities, the
vibration of the cantilevered PCF becomes divergent (flutter) due to the combined instabilities in the second-
and fourth-order modes. To quantitatively study the influences of load patterns on the dynamical stability of the
cantilevered PCF, the primary critical velocities are identified as illustrated in Fig. 5. An examination of Fig. 5
indicates that the critical velocities uc for various load patterns are 5.11, 6.23, 4.63 and 5.72, respectively.
Comparing these critical velocities with the lowest value, we observe relative improvements of 10.37%,
34.56% and 23.54% for the uniform, descending and parabolic distributed load patterns, respectively. The
results of this study suggest that the stability of the cantilevered PCF is strongly influenced by the type of
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Table 2 Physical and geometrical quantities of cantilevered PCF

Quantity Description Value

ρf Density of fluid, kg/m3 1000
ρp Density of pipe, kg/m3 7850
M Total mass of auxiliary facility, kg 50
L Length of PCF, m 2
E Young’s modulus, GPa 210
ro Outer radius of PCF, m 0.05
� Thickness of PCF, m 0.005

Fig. 4 Argand diagrams for a uniform distributed load, b descending distributed load, c ascending distributed load and d parabolic
distributed load

lateral distributed load applied to it. The descending distributed load leads to the most significant improvement
in dynamical stability, while the ascending distributed load results in the lowest critical velocity. The parabolic
distributed load pattern provides even greater stability than the uniform distributed load. This study highlights
the importance of considering different distributed load patterns in the design and optimization of cantilevered
PCF systems. Practical applications, such as nuclear island pipes, could benefit from placing insulation layers
or damping sandbags more at the restrained end of the pipe to achieve a higher critical velocity and enhance
the dynamical stability of the system.

In comparison with a study on the stability of a horizontal PCF with an additional lumped mass [27], our
results underscore the significance of understanding the stability characteristics of cantilevered PCF under
various distributed load patterns. By carefully considering and optimizing the load distribution, engineers can
achieve improved stability and performance for cantilevered PCF in real-world applications.
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Fig. 5 Critical velocity with different load patterns

4.4 Effect of lateral load on critical velocity

In the context above,we have established that the descending distributed load pattern exhibits the highest critical
velocity compared to other load patterns. In this part, the influence of mass of auxiliary facility affiliated with
the cantilevered PCF, represented by the parameterM/L, on the critical velocity uc within different load patterns
is discussed in detail. Understanding this relationship is crucial for determining the amount of facility to deploy.

Figure 6 shows the plot of the critical velocities uc for different values ofM/L where the scatters denote the
calculated critical velocities and the dotted lines are the fitted curves defined by the following formulations:

Uniform distributed:

uc � 11.245 + 1.471
(
M

/
L
)

1 + 0.338
(
M

/
L
) (26)

Descending distributed:

uc � 9.829 + 0.831
(
M

/
L
)

1 + 0.156
(
M

/
L
) (27)

Ascending distributed:

uc � 12.553 + 2.509
(
M

/
L
)

1 + 0.614
(
M

/
L
) (28)

Parabolic distributed:

uc � 9.595 + 1.289
(
M

/
L
)

1 + 0.253
(
M

/
L
) (29)

It should be pointed out that the predictions by the formulated critical velocity curves may not be reliable
in the vicinity ofM/L � 0. Therefore, caution should be exercised when interpreting the results in this range.
Analyzing Fig. 6, we observe that for all load patterns, the critical velocities initially drop rapidly and then
gradually decrease as M/L increases. Notably, when M/L <30, the critical velocities exhibit high sensitivity
to changes in M/L. However, as M/L continues to increase, the critical velocities tend to converge. Based on
the tendencies of the fitted curves and the analysis of Eqs. (26)–(29), the convergent critical velocities for
various load patterns are estimated to be approximately 4.37, 5.36, 4.10 and 5.11, respectively. In practical
engineering scenarios, if the dimensionless velocities are lower than these convergent values, the affiliated
facility can be deployed discretionarily as long as it does not result in any structural strength failure. However,
if the dimensionless velocities exceed these convergent critical velocities, careful consideration should be given
to the designation of the mass of the affiliated facility.
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Fig. 6 Critical velocity versus M/L for a uniform distributed load, b descending distributed load, c ascending distributed load
and d parabolic distributed load

4.5 Critical velocity and instability mode

Observation of the dimensionless governing equations of cantilevered PCF in different load patterns reveals
a strong relationship between the critical velocity and two key parameters:β and σ . The variations of these
parameters can lead to changes in the critical velocity and the corresponding instability mode. Therefore, it
is essential to carefully investigate how the critical velocity and instability mode are affected by changes in β

and σ . Notably, the sum of β and σ is constrained by β +σ � 1− mp
�

and the value of β is altered by changing
the value ofM/L. Figure 7 presents the values of β and σ for variousM/L. It should be noted that only β will
be emphasized here because σ changes with β. For uniform distributed load, only β occurs.

In Fig. 8a, the relationship between critical velocity uc and β is depicted for the uniform distributed
load pattern. It is observed that as the value of β increases, the critical velocity also rises. However, what is
particularly interesting is the presence of three distinct jumps in the critical velocity curve at β � 0.29, 0.69
and 0.90. These points indicate that the critical velocity is highly sensitive to the value of β. According to the
instability mode, the figure can be divided into three distinct regions based on the value of β. For the range
0.1<β <0.32 the instability arises from the flutter of the third mode. When 0.32<β <0.90, the instability
arises from the flutter of the third mode. When 0.9<β, the cantilevered PCF experiences flutter associated
with the fourth mode. The results in this figure indicate that for higher β, namely lower auxiliary facility mass
ratio, the stability of the cantilevered PCF could be enhanced and the instability modes are changeable as well.

Figure 8b presents the critical velocity uc for different β in descending distributed load pattern. A notable
positive correlation can be observed between β and the critical velocity uc. When β is less than approximately
0.195, the critical velocity increases almost linearly with β. According to the instability mode, the β − uc
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Fig. 7 Values of β and σ for differentM/L

Fig. 8 Critical velocity versus β for a uniform distributed load, b descending distributed load, c ascending distributed load and
d parabolic distributed load
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plane can be divided into two distinct regions: 0.01<β <0.0394 and 0.0394<β <0.34. In the range 0.01<β
<0.0394, the cantilevered PCF loses its stability owing to the flutter of the first mode. When 0.0394<β <0.34,
the instability is caused by the flutter of the second mode. Notably, there is a sensitive range of approximately
0.25<β <0.27, in which even a slight change of β results in significant alteration to the critical velocity. The
results in this figure also indicate that for higher β the stability of cantilevered PCF could be enhanced, and
the instability modes are also changeable.

Figure 8c presents the critical velocity uc for different β in ascending distributed load pattern. Similar to the
previous figures, the critical velocity increases in direct proportion to the value of β. What the difference from
the previous load patterns is that the cantilevered PCF loses its stability in the second mode for whole range of
β. The sensitive range in ascending distributed load pattern is nearly 0.32<β <0.33. This figure also indicates
that a higher β brings higher stability of cantilevered PCF but the instability modes are not changeable.

Figure 8d displays the critical velocity uc for different β in parabolic distributed load pattern. As can be
seen, the distribution of the scatters is analogical with that of ascending distributed load. In this case, the
cantilevered PCF switches to instability due to the second-mode flutter for the entire range of β. Similar
to the other load patterns, a higher value of β corresponds to higher stability of the cantilevered PCF, and
the instability modes are settled. In addition, the sensitive range in this parabolic distributed load pattern is
approximately 0.3<β <0.32.

5 Conclusions

This study focuses on investigating the dynamical stability of a cantilevered pipe conveying fluid (PCF) under
different distributed lateral inertial load patterns. To this end, the differential quadrature method (DQM) was
used to calculate the eigenvalues of the related problems. The reliability of the results was verified through
exact solutions and published data. Based on the results of the calculations, several conclusions can be drawn:

(1) The critical velocity and instability mode are significantly influenced by the parameter in the uniform
distributed load pattern. For higher values of β, the stability of the cantilevered PCF can be enhanced,
and the instability modes are changeable. Three distinct regions are identified based on the value of β,
each corresponding to different instability modes.

(2) For the ascending and parabolic distributed load pattern, the critical velocity increases as β rises. In this
case, the cantilevered PCF becomes unstable due to the second-mode flutter for the entire range of β.

(3) For the descending distributed load pattern, the critical velocity also increases with β, but the cantilevered
PCF loses stability primarily through the first mode and then by the second mode.

(4) The uniform load pattern is not a superior scheme for enhancing the stability. In order to improve the
dynamical stability of cantilevered PCF, more loads should be deployed at the constrained end (descend-
ing) or at the middle part (parabolic).
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