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Abstract In the present paper, we bring forth the study of the propagation of the Stoneley wave with modified
GN theory of type II thermoelasticity without energy dissipation, including memory-dependent derivative
(MDD) and two temperatures and with rotation. Secular equations of Stoneley waves at the interface of two
separate homogeneous transversely isotropic (HTI) thermoelastic mediums are determined in the form of
determinants after constructing the formal solution based on the necessary boundary conditions. The wave
characteristics have been obtained for different Kernel functions of theMDD from the secular equations and are
depicted graphically. The effect of Kernel functions and two temperature has been depicted on the displacement
component, Temperature distribution, stress component, phase velocity, and attenuation coefficient.

Keywords Transversely isotropic · Thermoelastic · Memory-dependent derivative · Stoneley wave
propagation · Kernel function

List of symbols

ei j Strain tensors−→u Displacement vector
K ∗
i j Materialistic constant

αi j Linear thermal expansion coefficient
δ(t) Dirac’s delta function
2� × u̇ Coriolis acceleration
τ0 Relaxation time
ti j Stress tensors
δi j Kronecker delta
ui Components of displacement
ai j Two temperature parameters
CE Specific heat
ξ Wavenumber
βi j Thermal elastic coupling tensor
ω Angular frequency
� Angular velocity of the solid and equal to �n, where n is a unit vector
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Ci jkl Elastic parameters
Fi Components of Lorentz force
ϕ Conductive temperature
ε0 Electric permeability
T0 Reference temperature
T Absolute temperature
C1 Longitudinal wave velocity
ρ Medium density

1 Introduction

A Stoneley wave is an interface wave that often moves along the boundary between two solids. Due to the
existence of homogeneities in the crust of the earth and the fact that the earth is made up of several layers,
the propagation of surface waves in a homogeneous elastic media is of significant importance in the fields of
earthquake engineering and seismology. Furthermore, this wave is called a Scholte wave if it originates at the
interface between such a liquid and a solid. The intensity of the Stoneley wave is maximum at the boundary
and exponentially diminishes away from it. One example of these waves is the wave produced by a sonic
tool in a bore well. The Stoneley wave study reveals details regarding the locations of fractures and formation
permeability. These waves assist appraise valuable resources beneath the surface of the earth and provide better
knowledge of the interior structure of the planet. In vertical seismic profiles, Stoneley waves are a prominent
source of background noise.

In 1924, it was Stoneley who developed the theory of surface waves. Stoneley [1] developed the Stoneley
wave’s dispersion equation after initially examining the occurrence of these waves propagating at the interface
of two solid, solid–liquid media. Scholte [2] investigated a wave similar to the Stoneley wave known as the
Scholte wave that originates at the fluid–solid interfaces. Stoneley waves were investigated by Tajuddin [3] at
the intersection of two micropolar elastic half-spaces. In the context of different theories of thermoelasticity,
Kumar et al. [4] examined the Stoneleywaves at the interface of isotropicmodified coupling stress thermoelastic
with mass diffusion media.

In the following years, several researchers have discussed problems regarding Stoneley waves propagating
along solid–solid and fluid–solid boundaries, such as Ting [5], Abo-Dahab [6, 7], Kumar et al. [8], Abd-Alla
et al. [9], Singh and Tochhawng [10], Kaur and Lata [11], Lata and Himanshi [12], Kaur et al. [13, 14], Kaur
and Singh [15] and Lata et al. [16].

In addition, A common derivative and kernel function is used to define the MDD in integral form. In
many models that explain physical terms with the memory effect, the kernels in physical laws are crucial. The
idea of an MDD was first presented by Wang and Li [17] in 2011. When calculating the heat flux rate in the
Lord–Shulman (LS) generalized thermoelasticity theory, Yu et al. [18] developed the MDD as an alternative to
fractional calculus to reflect memory dependence and be recognized as a memory-dependent LS model. The
following reasons suggest that this novel model may be advantageous to fractional models. First, the shape
of the new model is distinct from that of the fractional-order models, which have different modifications.
The substance of the MDD definition also makes the physical significance of the new model more obvious.
Third, the new model is more practical for numerical calculation than fractional models since it is represented
by differentials and integrals of integer order. As a result, the model is more adaptable in applications than
fractional models, in which the significant variable is the fractional-order parameter. The kernel function and
time delay of the MDD can also be changed arbitrarily. Ezzat et al. [19–22] discussed the MDD LS model of
generalized thermoelasticity was used to solve a few one-dimensional problems. Although this is true, different
researchers have developed varying theories of thermoelasticity, such as Kaur et al. [23–26], Marin [27], and
[28], Marin et al. [29, 30], Kaur et al. [31], Golewski [32, 33], Trivedi et al. [34], Zhang et al. [35], Sur and
Kanoria [36], Golewski [37, 38], Gupta et al. [39]. Chandrasekharaiah [40], and Green and Naghdi [41].

In this paper, Stoneley wave propagation with the memory-dependent derivative (MDD) has been studied.
Secular equations of Stoneley waves at the interface of two separate homogeneous transversely isotropic (HTI)
thermoelastic media are determined in the form of determinants after constructing the formal solution based on
the necessary boundary conditions. The wave characteristics have been obtained for different Kernel functions
of the MDD and are depicted graphically.
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2 Basic equations

The fundamental governing equations for homogeneous, anisotropic, generalized thermoelastic and without
body forces are.

• Equation of motion with rotation

Following Schoenberg and Censor [42] for rotating solids with a uniform angular velocity � we have,

ti j , j � ρ
{
üi + (� × (� × u))i + (2� × u̇)i

}
, (1)

The terms � × (� × u) represent the centripetal acceleration due to the time-varying motion.

• Constitutive equations

Following Youssef [43], the constitutive equations for anisotropic solids with two temperature theory are

ti j � Ci jklekl − βi j T , (2)

ei j � 1

2

(
ui , j + u j ,i

)
, i , j � 1, 2, 3, (3)

T � ϕ − ai jϕ,i j , (4)

βi j � Ci jklαkl , (5)

Here Ci jkl � Ckli j � C jikl � Ci jlk .

• Heat conduction equation

FollowingYoussef [43], Bachher [44] the heat conduction equationwithout energy dissipation, two temperature
theory and with memory-dependent derivatives is

K ∗
i jϕ,i j � (

1 + χDχ

)(
βi j T0ëi j + ρCE T̈

)
, (6)

Following Wang and Li [17], for a first-order MDD for a differentiable function f (t) with delay χ > 0 for a
fixed time t is:

Dχ f (t) � 1

χ

∫ t

t−χ

K (t − ξ) f ′(ξ) dξ , (7)

The choice of the kernel function, K (t − ξ ) and time delay parameter, χ are determined by the material
properties. Following Ezzat et al. [19–21] the kernel function K (t − ξ ) is taken here in the form

K (t − ξ) � 1 − 2β

χ
(t − ξ) +

α2

χ2 (t − ξ)2 �

⎧
⎪⎨

⎪⎩

1 α � 0,β � 0,
1 + (ξ − t)/χ α � 0,β � 1/2,
ξ − t + 1 α � 0,β � χ/2,
[1 + (ξ − t)/χ ]2 α � 1,β � 1.

(8)

where α and β are constants. Additionally, the comma indicates the derivative w.r.t. the space variable and the
dot superimposed on it signifies the time derivative.
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3 Formulation of the problem

We take into account two homogeneous, transversely isotropic thermoelastic rotating half-spacesM1 andM2,
both of which are perfectly conducting. These half-spaces are connected at the interface z � 0. The coordinate
system’s (x , y, z) origin is taken to be at (z � 0). Displacement vector −→u has the components u, v, w along
x, y, z-axis, respectively. We select the x-axis in the wave propagation direction such that all particles on a line
parallel to the y-axis are equally displaced, ensuring that v � 0andu, w, are independent of y. The regions
−∞ < x ≤ 0 and 0 ≤ x < ∞ are occupied by the media M1 and M2, respectively. The plane represents the
separation between the two mediums,M1 andM2. The quantities symbolized are without a bar for the media
M1 and with a bar for media M2. For the 2D problem in xz-plane, we consider (Fig. 1)

u � (u, 0,w). (9)

Following Slaughter [45], Eqs. (1) and (6) can now be transformed as follows:

C11
∂2u

∂x2
+ C13

∂2w

∂x∂z
+ C44

(
∂2u

∂z2
+

∂2w

∂x∂z

)
− β1

∂

∂x

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
� ρ

(
∂2u

∂t2
− �2u + 2�

∂w

∂t

)
,

(10)

(C13 + C44)
∂2u

∂x∂z
+ C44

∂2w

∂x2
+ C33

∂2w

∂z2
− β3

∂

∂z

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
� ρ

(
∂2w

∂t2
− �2w − 2�

∂u

∂t

)
,

(11)

K ∗
1
∂2ϕ

∂x2
+ K ∗

3
∂2ϕ

∂z2
� (

1 + χDχ

)[
ρCE

∂2

∂t2

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
+ T0

{
β1

∂ ü

∂x
+ β3

∂ẅ

∂z

}]
(12)

and

txx � C11exx + C13exz − β1

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
, (13)

tzz � C13exx + C33ezz − β3

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
, (14)

txz � 2C44exz , (15)

where

β1 � (C11 + C12)α1 + C13α3, (16)

β3 � 2C13α1 + C33α3, (17)

a1&a3 are two temperature parameters. In the above equations, we use the contracting subscript notations
(1→11, 2→22, 3→33, 5→23, 4→13, 6→12) to relate Ci jkl to Cmn .

Using dimensionless quantities:

(
x ′, z′

) � 1

L
(x , z, ),

(
u′,w′) � ρC2

1

Lβ1T0
(u,w), ρC2

1 � C11,
(
T ′,ϕ′) � 1

T0
(T ,ϕ), (18)

t ′ � C1

L
t ,

(
t ′xx , t ′zx t ′zz

) � 1

β1T0
(txx , tzx , tzz),

(
a′
1, a

′
3

) � 1

L2 (a1, a3), �′ � L

C1
�.

Suppressing the primes and utilizing (18) in Eqs. (10)–(12), we obtain

∂2u

∂x2
+ δ2

∂2w

∂x∂z
+ δ1

∂2u

∂z2
− ∂

∂x

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
�

(
∂2u

∂t2
− �2u + 2�

∂w

∂t

)
, (19)

δ2
∂2u

∂x∂z
+ δ1

∂2w

∂x2
+ δ3

∂2w

∂z2
− δ5

∂

∂z

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
�

(
∂2w

∂t2
− �2w − 2�

∂u

∂t

)
, (20)

(
∂2ϕ

∂x2
+ δ6

∂2ϕ

∂z2

)
� (

1 + χDχ

)[
δ8

∂2

∂t2

{
ϕ −

(
a1

∂2ϕ

∂x2
+ a3

∂2ϕ

∂z2

)}
+ δ7

{
∂u

∂x
+ δ5

∂w

∂z

}]
, (21)

where
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Fig. 1 Geometry of the problem

δ1 � c44
c11

, δ2 � c13 + c44
c11

, δ3 � c33
c11

, δ5 � β3

β1
, δ6 � K ∗

3

K ∗
1
, δ7 � T0β2

1

K ∗
1ρ

, δ8 � CEC11

K ∗
1

.

We consider the solution of the form

(u,w,ϕ) � (
u∗,w∗,ϕ∗)(z)eiξ(x−ct), (22)

where c � ω/ξ represents the dimensionless phase velocity.
After applying (22) in Eqs. (19)–(21) yields

u∗[l1 + δ2D
2] + w∗[l2 + l3D] + ϕ∗[l4 + l5D

2] � 0, (23)

u∗[−l2 + l3D] + w∗[l6 + δ3D
2] + ϕ∗[l7D + l8D

3] � 0, (24)

u∗[l9] + w∗[l10D] + ϕ∗[l11 + l12D
2] � 0, (25)

where

l1 � ξ2
(
c2 − 1

)
, l2 � 2iξc, l3 � δ2iξ , l4 � −iξ

(
1 + a1ξ

2), l5 � a3iξ ,

l6 � (
c2 − δ1

)
ξ2 + 1, l7 � −δ5

(
1 + a1ξ

2), l8 � δ5a3, l9 � (1 + G)δ7iξ
3c2, l10 � (1 + G)δ7δ5ξ

2c2,

l11 � δ8ξ
2c2

(
1 + a1ξ

2)−ξ2, l12 � −δ8ξ
2c2a3 + δ6.

G � 1

χ

[(
1 − eiξcχ

)(
1 +

2β

χ iξc
− 2α2

χ2ξ2c2

)
−

(
α2 − 2β − 2α2

χ iξc

)
eiξcχ

]

and characteristic equation in the form of a biquadratic equation represented in D2 given by

D6 +
B

A
D4 +

C

A
D2 +

E

A
� 0, (26)

where

A � δ2δ3l12 − l10δ2l8,

B � δ3δ2l11 + δ2l6l12 + l1δ3l12 − δ2l10l7 − l1l10l8

− l21l12 + l8l9l3 + l3l5l10 − l5δ3l9,

C � δ2l11l6 + l11δ3l1 + l1l6l12 − l1l10l7 + l21l11 + l22l12 − l23l11
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+ l3l9l7 + l3l4l10 − l5l9l6 − l4δ3l9,

E � l11l1l6 − l9l4l6.

For medium M1

(u,w,ϕ) �
3∑

j�1

A j
(
1, d j , k j

)
e−m j zeiξ(x−ct), (27)

Thus from Eqs. (22) and (27)

u∗ �
3∑

j�1

A je
−m j z ,

w∗ �
3∑

j�1

d j A j e
−m j z ,

ϕ∗ �
3∑

j�1

k j A j e
−m j z ,

where

d j � l1l11 − l9l4 + (l11δ2 + l1l12 − l9l5)m2
j + (δ2l12)m4

j

l6l11 + (l11δ3 + l6l12 − l10l7)m2
j + (δ3l12 − l10l8)m4

j

, (28)

k j � l1l6 + l22 +
(
l6δ2 + l1δ3 − l23

)
m2

j + (δ2δ3)m4
j

l6l11 + (l11δ3 + l6l12 − l10l7)m2
j + (δ3l12 − l10l8)m4

j

. (29)

For medium M2 (z >0) we will attach a bar

(u,w,ϕ) � (
1, d j , k j

)
em j z A j e

iξ(x−ct), (30)

where quantities u, w, ϕ,d j , k j ,A j ,m j are obtained by attaching bars in the above expressions.

4 Boundary conditions

We assume that there is perfect contact between the two half-spaces. As a result, the Stoneley wave character-
istics are stable at the interface.

Following are the boundary conditions at z � 0:

tzz � t zz , tzx � t zx ,ϕ � ϕ, u � u,w � w, K ∗
3
∂ϕ

∂z
� K ∗

3
∂ϕ

∂z
. (31)

5 Derivations of the secular equations

With the values of u, w, ϕ, u, w, ϕ in (31), it yields six linear equations:

3∑

j�1

Qpj A j +
3∑

j�1

Qp( j+3)A j � 0, p � 1, 2, 3, 4, 5, 6. (32)

where

Q1 j � iξ − δ9d jm j −
(
1 + a1ξ

2 − a3m
2
j

)
k j ,

Q1( j+3) � −iξ − δ9d jm j +
(
1 + a1ξ

2 − a3m2
j

)
k j ,
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Q2 j � −m j + d j iξ , Q2( j+3) � −m j − d j iξ ,

Q3 j � k j , Q3( j+3) � −k j ,

Q4 j � δ1m
2
j +

(
2iξc − δ2iξm j

)
d j +

(
−iξ

(
1 + a1ξ

2) + a3iξm
2
j

)
k j ,

Q4( j+3) � −δ1m2
j − (

2iξc − δ2iξm j
)
d j −

(
−iξ

(
1 + a1ξ

2) + a3iξm2
j

)
k j ,

Q5 j � −2δ4iξc − δ2iξm j + δ3m
2
j d j − δ5

(
−(

1 + a1ξ
2)m j + a3m

3
j

)
k j ,

Q5( j+3) � 2δ4iξc − δ2iξm j + δ3m2
j d j + δ5

(
−(

1 + a1ξ
2)m j + a3m3

j

)
k j ,

Q6 j � −K ∗
3 k jm j . (33)

The system of Eq. (33) has a non-trivial solution if the determinant of unknowns A j , A j , j � 1, 2, 3
vanishes, i.e.,

∣∣Qi j
∣∣
6×6 � 0. (34)

The attenuation coefficient, wavenumber, and phase velocity of Stoneley waves in the TIT medium are com-
pletely described by these secular Eq. (34).

6 Particular cases

If C11 � C33 � λ + 2μ, C12 � C13 � λ, C44 � μ, α1 � α3 � α′, β1 � β3 � β, K ∗
1 � K ∗

3 � K ∗ we get
Stoneley wave propagation equations for isotropic materials with MDD with two temperature and rotation.

7 Numerical results and discussion

This section presents numerical results that illustrate the theoretical results and the effects of MDD. Copper
material was chosen as medium 1 according to Kumar et al. [46].

Quantity Value Unit

c11 18.78 × 1010 Kgm−1s−2

c12 8.76 × 1010 Kgm−1s−2

c33 17.2 × 1010 Kgm−1s−2

c13 8.0 × 1010 Kgm−1s−2

c44 5.06 × 1010 Kgm−1s−2

β1 7.543 × 106 Nm−2deg−1

β3 9.208 × 106 Nm−2deg−1

ρ 8.954 × 103 Kgm−3

CE 4.27 × 102 jKg−1deg−1

K1
∗ 0.04 × 102 Ns−2deg−1

K3
∗ 0.02 × 102 Ns−2deg−1

T0 293 deg
α1 2.98 × 10−5 K−1

α3 2.4 × 10−5 K−1

Magnesium material [46], has been taken for medium 2, thermoelastic material as
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Quantity Value Unit

c11 5.974 × 1010 Kgm−1s−2

c12 2.624 × 1010 Kgm−1s−2

c33 6.17 × 1010 Kgm−1s−2

c13 2.17 × 1010 Kgm−1s−2

c44 3.278 × 1010 Kgm−1s−2

β1 2.68 × 106 Nm−2deg−1

β3 2.68 × 106 Nm−2deg−1

ρ 1.74 × 103 Kgm−3

CE 1.04 × 103 jKg−1deg−1

K 1
∗

0.02 × 102 Ns−2deg−1

K 3
∗

0.02 × 102 Ns−2deg−1

T 0 293 deg
α1 2.98 × 10−5 K−1

α3 2.4 × 10−5 K−1

The graphical representations of stress components, temperature change, wave velocity, and attenuation
coefficient have been explored with MDD and two temperature (2T) using the aforementioned data and are
illustrated graphically as:

7.1 Effect of MDD and 2T

1. The solid line corresponds to K (t − ξ) � 1 when α � 0, β � 0 and with 2T.
2. The dashed line corresponds to K (t − ξ) � 1 + (ξ−t)

χ
when α � 0, β � 1

2 and with 2T.

3. The dotted line corresponds to K (t − ξ) � ξ − t + 1 when α � 0, β � χ
2 and with 2T.

4. The dash-dotted line corresponds to K (t − ξ) �
[
1 + (ξ−t)

χ

]2
when α � 1, β � 1 and with 2T.

5. The red dash-dot-dot line corresponds to without MDD.
6. The purple dash-dot line corresponds to without 2T.

Figure 2 exhibits the displacement component w of the Stoneley wave w.r.t. ξ for various values of the
kernel function of MDD. The variation in the displacement component near the interface of the two mediums
changes with the change in the kernel function. The kernel function K (t − ξ) � 1 when α � 0, β � 0 shows
the higher variation near the interface and starts vanishing as moving away from the interface. However kernel

function K (t − ξ) �
[
1 + (ξ−t)

χ

]2
when α � 1, β � 1 reduces the variation in the displacement component.

So lower the value of the kernel function higher the variation in the displacement component at small values of
ξ , as the value of ξ increases, the displacement becomes zero. Moreover, the displacement component shows
the opposite behavior without MDD. In addition, as ξ increases, the effect of MDD also decreases.

Figure 3 illustrates the magnitude values of conductive temperature ϕ w.r.t. ξ for various values of the
kernel function of MDD. The variation in the ϕ near the interface of the two mediums changes with the change

of the kernel function. The kernel function K (t − ξ) �
[
1 + (ξ−t)

χ

]2
when α � 1, β � 1 shows a higher

variation near the interface and starts vanishing as moving away from the interface. So higher the value of
the kernel function higher the variation in the conductive temperature at small values of ξ , as the value of ξ
increases, the ϕ becomes zero. Moreover, the ϕ shows the opposite behavior without MDD. In addition, as
ξ increases, the effect of MDD also decreases. However, without two temperature, the ϕ shows the opposite
behavior and decreases sharply near the interface and then become zero. Figure 4 demonstrates the stress
component tzz w.r.t. ξ for various values of kernel function of MDD. The variation in the tzz near the interface
of the two mediums changes with the change of the kernel function. The kernel function K (t − ξ) � 1 when
α � 0, β � 0 shows the higher variation near the interface and starts vanishing as moving away from the

interface. However kernel function K (t − ξ) �
[
1 + (ξ−t)

χ

]2
when α � 1, β � 1 reduces the variation in the

tzz . Moreover, the tzz shows the same behavior with high magnitude without MDD. In addition, as ξ increases,
the effect of MDD also decreases. So lower the value of the kernel function higher the variation in the tzz at
small values of ξ , as the value of ξ increases, the tzz becomes zero.

Figure 5 illustrates the attenuation coefficient w.r.t. ξ for various values of the kernel function of MDD.
The variation in the attenuation coefficient near the interface of the two mediums changes with the change
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Fig. 2 Deviation of displacement component w of Stoneley waves with MDD

Fig. 3 Deviation of conductive temperature with MDD

Fig. 4 Deviation of stress component tzz with MDD
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Fig. 5 Deviation of attenuation coefficient of Stoneley waves with MDD

Fig. 6 Deviation of Stoneley waves phase velocity with MDD

in the kernel function. The kernel function K (t − ξ) �
[
1 + (ξ−t)

χ

]2
when α � 1, β � 1 shows a higher

variation near the interface and starts vanishing as moving away from the interface. So higher the value of
the kernel function higher the variation in the attenuation coefficient at small values of ξ , as the value of ξ
increases, the attenuation coefficient becomes zero. Moreover, the attenuation coefficient shows the opposite
behavior without MDD. In addition, as ξ increases, the effect of MDD also decreases. However, without two
temperature, the attenuation coefficient shows the opposite behavior and decreases sharply near the interface
and then become zero. Figure 6 illustrates the phase velocity w.r.t. ξ for various values of the kernel function
of MDD. The variation in the phase velocity sharply increases near the interface of the two mediums with the

change of the kernel function. The kernel function K (t − ξ) �
[
1 + (ξ−t)

χ

]2
when α � 1, β � 1 shows a

higher variation near the interface and approximately remains the same as moving away from the interface. So
higher the value of the kernel function higher the variation in the phase velocity. Moreover, the phase velocity
shows the opposite behavior without MDD. However, without two temperature, the phase velocity shows the
different behavior and increases sharply near the interface.
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8 Conclusion

We bring forth the study of the propagation of the Stoneley wave at the interface of two separate homogeneous
transversely isotropic (HTI) thermoelastic mediums with modified GN theory of type II thermoelasticity
without energy dissipation, including memory-dependent derivative (MDD) and two temperatures and with
rotation. The wave characteristics have been obtained for different Kernel functions of the MDD from the
secular equations and are depicted graphically.

Analyzing the graphs revealed the following findings:

• It is also noticed that all the component except the phase velocity of Stoneley waves vanishes away from the
interface of the two mediums. In different mediums and at different depths, the characteristics of waves also
differ dramatically.MDDand two temperature exhibits a significant influence on the Stoneleywave displace-
ment component, phase velocity, stress component, attenuation coefficient, and temperature distribution at
the interface of the two mediums as shown in the figures

• Based on the wave velocity equation, we notice that the change in the kernel function’s values causes the
dispersion of waves. The resulting Secular equation defines the dispersive property of the Stoneley waves.
The problem formulation and numerical results are also approved based on diverse special cases.

• Studying these waves can help us understand geophysics, seismology, ocean physics, SAW devices, and
the non-destructive evaluation of structures. Seismological profiles with vertical sections are frequently
disturbed by Stoneley waves.
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