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Abstract We study the motion of infinitesimal mass in the vicinity of the dominant primaries under the
Newtonian law of gravitation in the restricted eight-body problem. The proposed problem is a particular case
of n + 1-body problem studied by Kalvouridis (Astrophys. Space Sci 260: 309 325, 1999). We consider six
peripheral primaries P1, P2, …, P6, each of mass m, revolve in a circular orbit of radius a with an angular
velocity ω about their common center of mass. The primaries Pi (i � 1, 2, …, 6) are revolve in a way such
that P1, P3, P5 and P2, P4, P6 always form equilateral triangles of side l and have a common circumcenter
where the seventh more massive primary P0 of mass m0 rests. The primaries form a symmetric configuration
with respect to the origin at any instant of time. This is observed that there exist 18 equilibrium points out of
which four equilibrium points are on x-axis, two on y-axis and rest are in orbital plane of the primaries. All
the equilibrium points lie on the concentric circles C1, C2 andC3 centered at origin and there exists exactly six
equilibrium points on each circle. The equilibrium points on circleC2 are stable for the critical mass parameter
β0 while the equilibrium points on circles C1 and C3 are unstable for all values of mass parameter β. The
regions of motion for infinitesimal mass are also analyzed in this paper.

Keywords Restricted n-body problem · Equilibrium points · Linear stability · Regions of motion

1 Introduction

In the last decades many authors have put their efforts in solving the restricted problem of more than three-
bodies in different aspects. Their work is appreciable and encouraged us to develop a configuration in restricted
problem of eight bodies’ to describe the motion of spacecraft in the vicinity of the dominant primaries.

The restricted three-body problem plays an important role to understand the behavior of satellite in the
vicinity of two dominant primaries. This model is suitable to understand the dynamics of satellite in Earth-
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Moon and Sun-Earth planet system. A lot of research papers have been written in last five decades to show the
significance of the equilibrium points obtained in these systems by including many parameters as oblateness
of the primaries, radiation pressure, PR-drag effect, albedo effect etc. The stability of the triangular points in
the elliptic restricted problem of three bodies is studied by Danby [12]. A concise solution to the restricted
three-body problem in the circular as well as in the elliptical case has been found by Szebehely [41]. The
restricted three-body problem under the consideration of radiation pressure has been studied by Chernikov [8].
The equilibrium points in the generalized elliptic restricted three-body problem are investigated by Choudhary
[9]. Bhatnagar and Hallan [4] have studied the effect of perturbed potentials on the stability of equilibrium
points in the restricted problem of three bodies. Asymptotic solutions to the restricted problem near equilateral
equilibrium points have been investigated by Cid et al. [10]. Markellos et al. [31] have discussed the nonlinear
stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness.
Roberts [37] has examined the linear stability of the triangular equilibrium points in the elliptic restricted three-
body problem. Douskos [14] has analyzed the collinear equilibrium points of Hill’s problem with radiation
and oblateness and their fractal basins of attraction. Idrisi and Taqvi [18, 19] have solved the circular restricted
three-body problem in terms of elliptic integrals. The restricted three-body problem under the consideration of
albedo effects in circular and elliptic cases is studied by Idrisi [20], Idrisi and Ullah [21–23, 25, 43]. Ershkov
and Leshchenko [15] have presented an approach for solving the Euler-Poisson equations of momentum near
the liberation points for planets in our Solar System whose orbital plane is inclined relative to Earth’s orbit.
In a recent study conducted by Ershkov et al. [16], a semi-analytical approach was employed to analyze the
bi-elliptic problem of four bodies and explore possible stable positioning for elements of a Dyson sphere.

The following researchers have extended the restricted three-body problem to 4-body, 5-body, 6-body
and in general n-body problem: Michalodimitrakis [32] has investigated the equilibrium points, zero velocity
curves and periodic orbits around the equilibrium points in the restricted four-body problem. Pacella [33]
has used the equivariant Morse theory in three-dimensional n-body problem to estimate the minimal number
of central configurations. In this study it is shown that the non-planar central configurations exist for n ≥4.
Casasayas et al. [5] have considered a restricted charged four-body problem and proved the existence of infinite
symmetric periodic orbits with arbitrarily large extremal period. The global solution of the n-body problem
using a new ‘blowing up’ transformation is given by Qiu-Dong [36]. Roy et al. [38] have investigated some
special cases of restricted four-body problems. Kalvouridis [27] has studied n + 1-body problem by arranging
the peripheral primaries in equal arcs on an ideal ring with a central body of different mass is considered at
the center of mass of the system. Bang et al. [3] have proved results on the existence and on linear stability
of equilibrium points in the restricted N + 1 body problem. Celli [6] has studied the central configurations
of four masses in detail. Baltagiannis et al. [2] have studied the existence of equilibrium points and their
linear stability in the equilateral configuration of restricted four-body problem. A study of finding central
configurations of the four-body problem with a dominant mass was carried out by Corbera et al. [11]. Kumari
et al. [28] have plotted the equilibrium points and zero velocity surfaces in the restricted four-body problem
with solar wind drag. Papadouris et al. [34] have examined the existence of equilibrium points and their
linear stability in the equilateral configuration of restricted four-body problem with radiation pressure. A new
perturbative method for solving the gravitational n-body problem in the general theory of relativity is given
by Turyshev and Toth [42]. Marchesin [30] has considered a rhomboidal configuration of restricted five-body
problem and discussed the stability of rhomboidal equilibria. Gao et al. [17] have analyzed the equilibrium
points and zero velocity surfaces in the axisymmetric central configuration of restricted five-body problem.
A special case of the restricted four-body problem has been investigated by Ansari [1] by treating the three
primaries as a triaxial rigid body and the infinitesimal body as variable mass. An inverse problem of central
configurations in the collinear five-body problem has been investigated by Davis et al. [13]. Ullah et al. [43]
have studied the elliptic Sitnikov five-body problem under the consideration of radiation pressure. Idrisi and
Ullah [23] have studied the existence and stability of equilibrium points in restricted six-body problem under a
square configuration model. Chen and Yang [7] have examined the central configurations of five-body problem
with four infinitesimal particles out of which two particles have unequal mass. Pappalarado et al. [35] have
used an analytical approach based on the direct linearization of the index-three form to analyze the stability
of multibody mechanical systems in the framework of Lagrangian mechanics. Ullah et al. [44] have probed
the Sitnikov five-body problem with combined effects of radiation pressure and oblateness. Idrisi et al. [24]
have shown the effect of perturbations in Coriolis and centrifugal forces on equilibrium points in the restricted
six-body problem. The stability analysis of rhomboidal restricted six-body problem is studied by Siddique
et al. [39]. The motion of infinitesimal mass around out-of-plane equilibrium points in the frame of restricted
six-body problem under radiation pressure is examined by Idrisi and Ullah [26]. Siddique and Kashif [40] have
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Fig. 1 Configuration of restricted eight-body problem

explored the stable equilibrium points in the rhomboidal restricted six-body problem. The periodic solutions
of circular Sitnikov restricted four-body problem using multiple scales method are analyzed by Kumari et al.
[29].

In this paper, we have considered a symmetric configuration of restricted eight-body problem in which the
dominant primary is located at the center of mass of the system. The paper is organized as follows: In Sect. 1,
some notable researches related to the theme of the research are given. The mathematical model of the system
and equations of motion of infinitesimal mass are obtained in Sect. 2. The graphical and numerical solution to
equilibrium points are given in Sect. 3. In Sect. 4, the stability of equilibrium points is discussed. The regions
of motion or zero velocity regions are discussed in brief in Sect. 5. In the last section, conclusions are drawn.

2 Mathematical model and equations of motion

Let six peripheral primaries P1, P2, …, P6, each of mass m, revolve in a circular orbit of radius a with an
angular velocity ω about their common center of mass O. The primaries Pi (i � 1, 2, …, 6) are revolve in
a way such that P1, P3, P5 and P2, P4, P6 always form equilateral triangles of side l and have a common
circumcenter where the seventh more massive primary P0 of mass m0 rests (Fig. 1). It is also assumed that
the mass of central primary is greater than the sum of all masses of peripheral primaries, i.e., m0 >�mi,
i � 1, 2, …, 6. The orbit lies in the Oxy plane of the inertial frame of reference, and has its center at the
origin. According to Newton’s law of gravitation, primaries attract each other and at any instant of time form
a symmetric configuration with respect to the origin. Suppose that a test particle P with infinitesimal mass
m′ < <1 moves under the gravitational field of Pi (i � 0, 1,…, 6) in the same plane. The distances of P from O
and Pi (i � 1, 2, …, 6) are r0 and ri (i � 1, 2, …, 6), respectively. From Fig. 1, it can be seen that the proposed
configuration is possible if l � √

3a where l and a are the dimensionless lengths of side of equilateral triangles
and radius of circular orbit, respectively.

In order to maintain the configuration of the primaries, the sum of the gravitational forces applied byP0,
P2, P3, P4, P5 andP6 on P1 must be equal to the centrifugal force, i.e.,

m1
⇀

OP1 ω2 � Gm0m1
⇀

OP1
|OP1|3 +

6∑

j�2

Gm jm1
⇀

Pj P1
|Pj P1|3 ,

which gives
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Fig. 2 a with respect to β

ω2 � Gm0

a3

(
1 + κ

m

m0

)
, κ � 1.82735.

Now, we choose the units of distance, mass and time in such a way thatG� 1,m0 � 1 and ω � 1, therefore
we have a � (1 + k β)1/3, β � m/m0 is the mass parameter having the range 0<β <1/6. Obviously, a is an
increasing function in terms of β and thus as mass parameter β increases the radius of the orbit of primaries
also increases (Fig. 2).

2.1 Equations of motion

The equations of motion of the particle P(x, y, z) in the synodic coordinate system and dimensionless variables
are given by

ẍ − 2 ẏ � ∂U

∂x
, ÿ + 2ẋ � ∂U

∂y
and z̈ � ∂U

∂z
(1)

where the effective potential U may be written as

U � 1

2
(x2 + y2) +

1

r0
+

6∑

υ�1

β

rυ
,

r20 � x2 + y2 + z2,

r2υ � (x − xυ )
2 + (y − yυ )

2 + z2,

xυ � a cos
[
(υ − 1)

π

3

]
, yυ � a sin

[
(υ − 1)

π

3

]
, υ � 1, 2, ..., 6.

The integral analogous to Jacobi integral is

v2 � 2U − c, (2)

where v is the velocity of the particle P having infinitesimal mass m′ and c is Jacobian constant.
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Fig. 3 Equilibrium Points Ei (i � 1, 2, …, 18) in orbital plane for β � 0.1

3 Equilibrium points in orbital plane

The equilibrium points in orbital plane are the solution of the Eqns. Ux � 0,Uy � 0 and z � 0, i.e.,

Ux �
(
1 − 1

r30

)
x − β

6∑

υ�1

(x − xυ )

r3υ
� 0,

Uy �
(
1 − 1

r30

)
y − β

6∑

υ�1

(y − yυ )

r3υ
� 0.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3)

3.1 Graphical solution to equilibrium points

Clearly, the equilibrium points are the intersection of the curves Ux(x, y) and Uy(x, y). On plotting the cor-
responding curves it turns out that there are 18 equilibrium points, four of which are collinear and fourteen
are non-collinear (Fig. 3). All points of equilibrium lie on the concentric circles C1, C2 andC3 centered at the
origin. The equilibrium points Ei (i � 1, 2, …, 6) lie on circle C1, Ej (j � 7, 8, …, 12) on C2 and Ek (k �
13, 14, …, 18) on C3. Further, it is observed that the six equilibrium points are on the axes and twelve are in
orbital plane of the primaries, i.e., E1, E4, E13 and E16 are on x-axis, E8 and E11 on y-axis and rest are in the
orbital plane.

3.2 Numerical solution

In this section, we locate the equilibrium points numerically on the circlesC1,C2 andC3 using Newton–Raph-
son iteration method. Instead of finding all the equilibrium points, we focus on just one equilibrium point on
each circle C1, C2 and C3, i.e., E1, E8 and E13 and the locations of other equilibrium points can be found
by symmetricity. Let us assume that the coordinates of E1, E8 and E13 be (a + ρ, 0), (0, a + λ) and (a–δ, 0),
respectively (Fig. 4), where ρ, λ, δ ∈R+.
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Fig. 4 Locations of E1, E8 and E13

3.2.1 Equilibrium points on C1

First we find the location of equilibrium point E1 and then by symmetricity we can locate other equilibrium
points on C1. Let the coordinates of E1 be (a + ρ, 0). Thus, on substituting x � a + ρ and y � 0 in Eq. (3), we
have f (ρ) � 0, where

f (ρ) � f1(ρ) − β f2(ρ) � 0,

f1(ρ) � (a + ρ)

(
1 − 1

(a + ρ)3

)
,

f2(ρ) � 1

ρ2 +
1

(2a + ρ)2
+

a + 2ρ

(a2 + aρ + ρ2)3/2
+

3a + 2ρ

(3a2 + 3aρ + ρ2)3/2
. (4)

The solution of Eq. (4) provides the location of E1. Since the general solution of Eq. (4) is not possible
therefore we apply Newton–Raphson iteration method to solve it. On solving Eq. (4) for various values of mass
parameter β, we have only one positive real root as shown in Fig. 5. It is observed that as the mass parameter
β increases, ρ increases and the equilibrium point E1 moves away from the primary P1 along x-axis. The
numerical positions of E1 and other equilibrium points on C1 for various values of mass parameter β are given
in Table 1. The coordinates of the equilibrium points Ei(xi, yi) lying on C1 are given by:

xi � � cos
(
(i − 1)

π

3

)
, yi � � sin

(
(i − 1)

π

3

)
, i � 1, 2, ..., 6

where � � a + ρ is the radius of circle C1.

3.2.2 Equilibrium points on C2

Let the coordinates of E8 be (0, a + λ). Thus on substituting x � 0 and y � a + λ in Eq. (3), we have g(λ) �
0, where

g(λ) � g1(λ) − βg2(λ) � 0, (5)

g1(λ) � (a + λ)

(
1 − 1

(a + λ)3

)
,
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Fig. 5 Zeroes of f (ρ) for different values of mass parameter β

Table 1 Equilibrium points on C1

β a ρ � E1,4 E2,6 E3,5

0.01 1.006054 0.156886 1.162940 (±1.162940, 0) (0.581470,±1.007136) (− 0.581470,±1.007136)
0.02 1.012037 0.200297 1.212334 (±1.212334, 0) (0.606167,±1.049912) (− 0.606167,±1.049912)
0.04 1.023794 0.256691 1.280485 (±1.280485, 0) (0.640243,±1.108933) (− 0.640243,±1.108933)
0.06 1.035287 0.297393 1.332680 (±1.332680, 0) (0.666340,±1.154135) (− 0.666340,±1.154135)
0.08 1.046531 0.330452 1.376982 (±1.376982, 0) (0.688491,±1.192502) (− 0.688491,±1.192502)
0.10 1.057538 0.358799 1.416337 (±1.416337, 0) (0.708168,±1.226583) (− 0.708168,±1.226583)
0.12 1.068320 0.383881 1.452201 (±1.452201, 0) (0.726101,±1.257643) (− 0.726101,±1.257643)
0.14 1.078889 0.406532 1.485421 (±1.485421, 0) (0.742711,±1.286412) (− 0.742711,±1.286412)
0.16 1.089255 0.427284 1.516539 (±1.516539, 0) (0.758270,±1.313361) (− 0.758270,±1.313361)

g2(λ) � 2(a + λ)

(2a2 + 2aλ + λ2)3/2
+

(2 − √
3)a + 2λ

((2 − √
3)a2 + (2 − √

3)aλ + λ2)3/2

+
(2 +

√
3)a + 2λ

((2 +
√
3)a2 + (2 +

√
3)aλ + λ2)3/2

.

On solving Eq. (5) for different values of mass parameter β by Newton–Raphson iteration method, we
have location of E8. Eq. (5) possesses only one real root for 0<β <1/6 as shown in Fig. 6. It is found that λ
increases as the mass parameter β increases and the equilibrium point E8 moves in upward direction along
y-axis. The numerical positions of E8 and other equilibrium points on C2 for various values of mass parameter
β are given in Table 2. The coordinates of the equilibrium points Ej(xj, yj) lying on C2 are given by:

x j � τ cos
(
(2 j − 13)

π

6

)
, y j � τ sin

(
(2 j − 13)

π

6

)
, j � 7, 8, ..., 12

where τ � a + λ is the radius of circle C2.

3.2.3 Equilibrium points on C3

Let the coordinates of E13 be (a − δ, 0). Thus on substituting x � a − δ and y � 0 in Eq. (3), we have h(δ) �
0, where

h(δ) � h1(δ) − β h2(δ) � 0, (6)

h1(δ) � (a − δ)

(
1 − 1

(a − δ)3

)
,

h2(δ) � 1

δ2
+

1

(2a − δ)2
+

a − 2δ

(a2 − aδ + δ2)3/2
+

3a − 2δ

(3a2 − 3aδ + δ2)3/2
.
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Fig. 6 Zeroes of g(λ) for different values of mass parameter β

Table 2 Equilibrium points on C2

B a Λ τ E7,12 E8,11 E9,10

0.01 1.006054 0.004612 1.010666 (0.875263,±0.505333) (0,±1.010666) (− 0.875263,±0.505333)
0.02 1.012037 0.009607 1.021644 (0.884770,±0.510822) (0,±1.021644) (− 0.884770,±0.510822)
0.04 1.023794 0.020851 1.044645 (0.904689,±0.522323) (0,±1.044645) (− 0.904689,±0.522323)
0.06 1.035287 0.033932 1.069219 (0.925971,±0.534611) (0,±1.069219) (− 0.925971,±0.534611)
0.08 1.046531 0.048981 1.095512 (0.948741,±0.547756) (0,±1.095512) (− 0.948741,±0.547756)
0.10 1.057538 0.065993 1.123531 (0.973006,±0.561765) (0,±1.123531) (− 0.973006,±0.561765)
0.12 1.068320 0.084764 1.153084 (0.998600,±0.576542) (0,±1.153084) (− 0.998600,±0.576542)
0.14 1.078889 0.104884 1.183773 (1.025178,±0.591887) (0,±1.183773) (− 1.025178,±0.591887)
0.16 1.089255 0.125815 1.215070 (1.052282,±0.607535) (0,±1.215070) (− 1.052282,±0.607535)

Fig. 7 Zeroes of h(δ) for different values of mass parameter β

On solving Eq. (6) for various values of mass parameter β by Newton–Raphson iteration method, we have
location of E13. Eq. (6) possesses only one real root for 0<β <1/6 as shown in Fig. 7. It is observed that
as the mass parameter β increases, δ decreases and the equilibrium point E13 moves toward the primary P1
along x-axis. The numerical positions of E13 and other equilibrium points on C3 for various values of mass
parameter β are given in Table 3. The coordinates of the equilibrium points Ek(xk , yk) on C3 are given by:

xk � ε cos
(
(k − 13)

π

3

)
, yk � ε sin

(
(k − 13)

π

3

)
, k � 13, 14, ..., 18

where ε � a − δ is the radius of circle C3.
Finally, it is concluded that there exist 18 equilibrium points (E1, E2, …, E18) in total and in particular 6

equilibrium points on each circle C1, C2 and C3, respectively. The equilibrium points E1, E2, …, E6 are lying
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Table 3 Equilibrium points on C3

B a δ E E13,16 E14,18 E15,17

0.01 1.006054 0.142242 0.863812 (±0.863812, 0) (0.431906,±0.748083) (− 0.431906,±0.748083)
0.02 1.012037 0.177374 0.834663 (±0.834663, 0) (0.417331,±0.722839) (− 0.417331,±0.722839)
0.04 1.023794 0.221256 0.802538 (±0.802538, 0) (0.401269,±0.695018) (− 0.401269,±0.695018)
0.06 1.035287 0.25212 0.783167 (±0.783167, 0) (0.391584,±0.678243) (− 0.391584,±0.678243)
0.08 1.046531 0.276931 0.769599 (±0.769599, 0) (0.384801,±0.666493) (− 0.384801,±0.666493)
0.10 1.057538 0.298146 0.759392 (±0.759392, 0) (0.379697,±0.657652) (− 0.379697,±0.657652)
0.12 1.068320 0.316948 0.751372 (±0.751372, 0) (0.375686,±0.650707) (− 0.375686,±0.650707)
0.14 1.078889 0.334004 0.744885 (±0.744885, 0) (0.372443,±0.645089) (− 0.372443,±0.645089)
0.16 1.089255 0.349728 0.739527 (±0.739527, 0) (0.369764,±0.640449) (− 0.369764,±0.640449)

Fig. 8 Radius of C1, C2, C and C3 with respect to β

on circle C1; E7, E8, …, E12 on circle C2 and E13, E14, …, E18 on circle C3. The numerical locations of all
equilibrium points on circles C1, C2 and C3 for various values of mass parameter β are given in Tables 1, 2
and 3, respectively. This is also observed that as the mass parameter β increases, the radius of circle C1 and
C2 increases while the radius of circle C3 decreases. Hence the equilibrium points on C1 and C2 move away
from the peripheral primaries and the equilibrium points on C3 come closer to central primary (Fig. 8).

4 Stability of equilibrium points in orbital plane

In this section, we study the possible motion of infinitesimal mass around all the equilibrium points E1, E2, …,
E18. Instead of discussing the stability of all equilibrium points we focus only on one equilibrium point on each
circle C1, C2 and C3, respectively. The stability of one equilibrium point on any circle C1, C2 and C3 implies
the stability of other equilibrium points on the same circle. Therefore, let us assume that the coordinates of
these equilibrium points are (x0, y0). On giving small displacement (ζ , η) to (x0, y0) and considering only
linear terms in ζ and η, the variation ζ and η can be written as: ζ � x–x0 and η � y–y0 and the equation of the
motion (1) become

ζ̈ − 2 η̇ � Ux (x0 + ζ, y0 + η) � ζ
o

Uxx + η
o

Uxy,

η̈ + 2 ζ̇ � Uy(x0 + ζ, y0 + η) � ζ
o

Uyx + η
o

Uyy .

⎫
⎬

⎭ (7)

The characteristic equation of Eq. (7) is given by

�4 + (4 − o
U
xx

− o
U
yy
)�2 +

o
U
xx

o
U
yy

− o
(U
xy
)2 � 0 (8)

is a fourth degree equation in �, where

o
U
xx

� ∂2U

∂x2

∣∣∣∣
(x0,y0)

� 1 − 1

r300

(
1 − 3x2o

r200

)
− β

6∑

υ�1

1

r30υ

(
1 − 3(x0 − xυ)2

r20υ

)
,
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Fig. 9 D with respect to β for E1

o
U
xy

� ∂

∂x

(
∂U

∂y

)∣∣∣∣
(x0,y0)

� ∂

∂y

(
∂U

∂x

)∣∣∣∣
(x0,y0)

� o
U
yx

� 3xoyo
r500

+ 3β
6∑

υ�1

(xo − xv)(yo − yυ )

r50υ
,

o
U
yy

� ∂2U

∂y2

∣∣∣∣
(x0,y0)

� 1 − 1

r300

(
1 − 3y2o

r200

)
− β

6∑

υ�1

1

r30υ

(
1 − 3(y0 − yυ)2

r20υ

)
,

r200 � x2o + y2o , r
2
0υ � (xo − xυ )

2 + (yo − yυ )
2, υ � 1, 2, ..., 6.

Let �2 � χ , therefore the characteristic Eq. (8) becomes

χ2 + (4 − o
U
xx

− o
U
yy
)χ +

o
U
xx

o
U
yy

− o
(U
xy
)2 � 0 (9)

which is a quadratic equation in χ . If χ1 and χ2 are the roots of Eq. (9) then

χ1,2 � 1

2

(
−p ± √

D
)
, (10)

where D is the discriminant of Eq. (9) and defined as D � p2 – 4q, p � 4 − o
U
xx

− o
U
yy

, q � o
U
xx

o
U
yy

− o
(U
xy
)2.

Therefore, the roots corresponding to characteristic Eq. (8) are given by

� 1,2 � ±√
χ1 and � 3,4 � ±√

χ2. (11)

The equilibrium point (x0, y0) is said to be stable if χ1,2 <0.

4.1 Stability of equilibrium points on C1

For E1: The discriminant of Eq. (9) is positive, i.e., D >0 for all values of mass parameter β (Fig. 9) and thus
the roots of Eq. (9) are real and unequal. The roots of Eq. (9), i.e., χ1,2 for different values of mass parameter
μ are plotted in Fig. 10 and it is observed that χ1 >0 and χ2 <0 and hence the roots of characteristic Eq. (8)
are of the form �1,2 � ±u and �3,4 � ± iv, u, v ε R which leads to instability of equilibrium point E1 (Table
4). Hence the other equilibrium points on C1 are also unstable for all values of mass parameter μ.
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Fig. 10 χ1,2 with respect to β for E1

Table 4 Stability of E1

B χ1 χ2 �1,2 �3,4 Stability

0.01 4.73307 − 3.48829 ±2.17556 ±1.86771i Unstable
0.02 4.38325 − 3.29769 ±2.09362 ±1.81596i Unstable
0.04 3.97134 − 3.06726 ±1.99282 ±1.75136i Unstable
0.06 3.70371 − 2.91425 ±1.92450 ±1.70712i Unstable
0.08 3.50452 − 2.79885 ±1.87204 ±1.67298i Unstable
0.10 3.34651 − 2.70646 ±1.82935 ±1.64513i Unstable
0.12 3.21629 − 2.62981 ±1.79340 ±1.62167i Unstable
0.14 3.10620 − 2.56467 ±1.76244 ±1.60146i Unstable
0.16 3.01137 − 2.50833 ±1.73533 ±1.58377i Unstable

Fig. 11 D with respect to β for E8

4.2 Stability of equilibrium points on C2

For E8: D ≥0 if and only if 0<β ≤0.0027284 (Fig. 11) and thus Eq. (9) possesses real roots in the interval
0<β ≤0.0027284. The roots of Eq. (9), i.e., χ1,2 for 0<β ≤0.0027284 are plotted in Fig. 12 and it is observed
that χ1 <0 and χ2 <0 and hence the roots of characteristic Eq. (8) are of the form �1,2 � ± iu1 and �3,4 �
± iv1, u1, v1 ε R which leads to stability of equilibrium point E8 (Table 5). Hence the other equilibrium points
on C2 are also stable for the critical mass parameter 0<β ≤β0, β0 � 0.0027284.
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Fig. 12 χ1,2 with respect to β for E8

Table 5 Stability of E8

B χ1 χ2 �1,2 �3,4 Stability

0.0001 − 0.00885 − 0.98992 ±0.09408i ±0.99495i Stable
0.0010 − 0.09767 − 0.89012 ±0.31252i ±0.94346i Stable
0.0020 − 0.23173 − 0.74392 ±0.48138i ±0.86251i Stable
0.0025 − 0.34171 − 0.62789 ±0.58456i ±0.79239i Stable
0.0026 − 0.37696 − 0.59144 ±0.61397i ±0.77691i Stable
0.00269 − 0.42503 − 0.54228 ±0.65194i ±0.73639i Stable
0.00270 − 0.43318 − 0.53401 ±0.65817i ±0.73076i Stable
0.00272 − 0.45606 − 0.51089 ±0.67532i ±0.71477i Stable
0.002725 − 0.46599 − 0.50089 ±0.68264i ±0.70774i Stable
0.002728 − 0.47743 − 0.48943 ±0.69096i ±0.69959i Stable
0.0027282 − 0.47917 − 0.48769 ±0.69222i ±0.69834i Stable
0.0027284 − 0.48293 − 0.48392 ±0.69493i ±0.69564i Stable
0.0027285 − 0.48343 + 0.00295i − 0.48343 − 0.00295i ±0.00212 + 0.69529i ±0.00212 − 0.69529i Unstable
0.003 − 0.48179 + 0.15569i − 0.48179 − 0.15569i ±0.11075 + 0.70289i ±0.11075 − 0.70289i Unstable
0.005 − 0.46983 + 0.44635i − 0.46983 − 0.44635i ±0.29851 + 0.74762i ±0.29851 − 0.74762i Unstable
0.01 − 0.44055 + 0.78123i − 0.44055 − 0.78123i ±0.47767 + 0.81775i ±0.47767 − 0.81775i Unstable
0.05 − 0.23813 + 1.66769i − 0.23813 − 1.66769i ±0.85043 + 0.98046i ±0.85043 − 0.98046i unstable
0.10 − 0.06409 + 1.93181i − 0.06409 − 1.93181i ±0.96664 + 0.99924i ±0.96664 − 0.99924i unstable
0.12 − 0.01816 + 1.96534i − 0.01816 − 1.96534i ±0.98672 + 0.99588i ±0.98672 − 0.99588i unstable
0.14 0.015809 + 1.98567i 0.015809 − 1.98567i ±1.00039 + 0.99245i ±1.00039 − 0.99245i unstable
0.16 0.039618 + 2.00089i 0.039618 − 2.00089i ±1.01017 + 0.99037i ±1.01017 − 0.99037i unstable

4.3 Stability of equilibrium points on C3

For E13: D >0 for all values of mass parameter β (Fig. 13) and thus the roots of Eq. (9) are real and unequal.
The roots of Eq. (9), i.e., χ1,2 for different values of mass parameter β are plotted in Fig. 14 and it is observed
that χ1 >0 and χ2 <0 and hence the roots of characteristic Eq. (8) are of the form �1,2 � ±u2 and �3,4 �
± iv2, u2, v2 ε R which leads to instability of equilibrium point E13 (Table 6). Hence the other equilibrium
points on C2 are also unstable for all values of mass parameter β.

5 Regions of motion

In this section, the regions of motion for a fixed value of mass parameter β and different values of Jacobi
constant c have been plotted. The values of Jacobi constant c are computed numerically at all the equilibrium
points (E1, E2, …, E18) using Eq. 2U–c � 0 in Table 7. Figure 15a, the zero velocity regions have been plotted
for c � 3.5 and a circular white region around the central primary has been observed. The white and shaded
regions correspond to permitted and restricted regions of motion, respectively for the motion of infinitesimal
mass. For c � 3.25, some small white regions appear around the primaries P1, P2, P3, P5 and P6 which allow
to move infinitesimal mass in the vicinity of P1, P2, P3, P5 and P6 only (Fig. 15b). For c � c3, a transition
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Fig. 13 D with respect to β for E13

Fig. 14 χ1,2 with respect to β for E13

Table 6 Stability of E13

B χ1 χ2 �1,2 �3,4 Stability

0.01 8.34174 − 5.28553 ±2.88882 ±2.29903i Unstable
0.02 8.88364 − 5.51826 ±2.98054 ±2.34910i Unstable
0.04 9.49928 − 5.74653 ±3.08209 ±2.39719i Unstable
0.06 9.86006 − 5.84715 ±3.14007 ±2.41809i Unstable
0.08 10.0935 − 5.88563 ±3.17702 ±2.42603i Unstable
0.10 10.2489 − 5.88740 ±3.20139 ±2.42641i Unstable
0.12 10.3517 − 5.86546 ±3.21741 ±2.42187i Unstable
0.14 10.4170 − 5.82747 ±3.22754 ±2.41402i Unstable
0.16 10.4547 − 5.77835 ±3.23337 ±2.40382i Unstable

exists at the equilibrium points E13, E14, E15, E16, E17 and E18 which allow the infinitesimal mass to move
from central primary to other peripheral primaries but it cannot move to the outer region, Fig. 15c. For c � c1,
again some transitions exist at the equilibrium points E1, E2, E3 E4, E5 and E6 which allow the infinitesimal
mass to move from E13, E14, E15, E16, E17 and E18 to outer region and the forbidden region constitutes six
branches containing equilibrium points E7, E8, E9, E10, E11and E12, respectively, Fig. 15d. For c � 3.015,
the forbidden region get reduced and the infinitesimal mass is allowed to move in the entire xy-plane except
the forbidden region containing equilibrium points E7, E8, E9, E10, E11 and E12, Fig. 15e. For c � c2, all the
forbidden regions has been disappeared and the infinitesimal mass can move in the entire xy-plane, Fig. 15f.
Thus, it is observed that the forbidden region decreases as the value of Jacobi constant c decreases.
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Fig. 15 Regions of motion for β � 0.01 and different values of Jacobi constant c; a: c � 3.5; b: c � 3.4; c: c � 3.28; d: c �
3.265; e: c � c1; f : c � c2
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Table 7 Jacobi constant c at Ei (i � 1, 2, …, 18) for β � 0.01

Equilibrium points x0 y0 Jacobi constant c

E1 1.162940 0 c1 � 3.1636
E2 0.581470 1.007136
E3 − 0.581470 1.007136
E4 − 1.162940 0
E5 − 0.581470 − 1.007136
E6 0.581470 − 1.007136
E7 0.875263 0.505333 c2 � 3.00682
E8 0 1.010666
E9 − 0.875263 0.505333
E10 − 0.875263 − 0.505333
E11 0 − 1.010666
E12 0.875263 − 0.505333
E13 0.863812 0 c3 � 3.14097
E14 0.431906 0.748083
E15 − 0.431906 0.748083
E16 − 0.863812 0
E17 − 0.431906 − 0.748083
E18 0.431906 − 0.748083

6 Conclusion

We have studied the dynamics of infinitesimal mass around the equilibrium points in the restricted eight-body
problem. This problem is a particular case of n + 1-body problem studied by Kalvouridis [27]. In this paper,
we considered six peripheral primaries P1, P2, …, P6, each of mass m, revolve in a circular orbit of radius a
with an angular velocity ω about their common center of massO. The primaries Pi (i � 1, 2, …, 6) are revolve
in a way such that P1, P3, P5 and P2, P4, P6 always form equilateral triangles of side l and have a common
circumcenter where the seventh more massive primary P0 of mass m0 rests. The equations of motion for the
infinitesimal mass in synodic coordinate system and dimensionless variables are given by Eq. (1). On solving
the Eqns.Ux(x, y)� 0,Uy(x, y)� 0 and z � 0 we found 18 equilibrium points such that four equilibrium points
are on x-axis, two on y-axis and rest are in orbital plane of the primaries. All the equilibrium points lie on
the concentric circles C1, C2 andC3 centered at origin. It is observed that as the mass parameter β increases,
the radius of circles C1 and C2 also increases and the equilibrium points on C1 and C2 move away from the
peripheral primaries. On the other hand, the radius of circle C3 decreases as β increases and the equilibrium
points on C3 come closer to the central primary. The stability of equilibrium points depends upon the nature
of roots of characteristic Eq. (8). On solving the characteristic Eq. (8) for various values of mass parameter
β in the interval 0<β <1/6 we found that the equilibrium points on circle C2 are stable for the critical mass
parameter β0 while the equilibrium points on circles C1 and C3 are unstable for all values of mass parameter
β. In the last section of this paper, the regions of motion for infinitesimal mass are investigated and it is found
that the forbidden region decreases as the value of Jacobi constant c decreases.
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