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Abstract Propagation of transient waves in the piezoelectric half-space under anti-plane dynamic force and
in-plane electrical displacement loading is studied theoretically when thermal effect considered. One-sided
and two-sided Laplace transforms are firstly employed in obtaining the solutions of mechanical displacement,
electrical potential, shear stress and electrical displacement in Laplace space. Cagniard-deHoopmethod is then
adopted for inverseLaplace transform indetermining the analytical transient solutions in timedomain.Transient
response of the mechanical displacement, shear stress, electric potential and displacement are finally evaluated
numerically, and the effect of thermal stress on the transient waves propagating in the piezoelectric half-space
is discussed in details. Furthermore, two different electro-mechanic boundary conditions are considered for
the propagation of transient waves in the piezoelectric half-space.

Keywords Transient waves · Cagniard-de Hoop method · Piezoelectric half-space · Laplace transform ·
Thermal effect

1 Introduction

Piezoelectric materials find a wide range of applications in many technological industries because of the
coupling characteristics between mechanical and electric fields. A number of devices, such as piezoelectric
sensors and transducers [1–5], acoustic amplification devices [6, 7] and semiconductor devices [8–10], involve
the use of piezoelectric materials. For these piezoelectric devices, the ability to manipulate the propagation of
elastic waves has a significant effect on the sensitivity of signal output and energy loss [11–15]. In recent years,
the propagation and regulation of steady waves in piezoelectric materials have been studied extensively when
differentmaterials properties and interface conditions are considered. For instance,Wang et al. [16] investigated
the shear surface waves propagating along the surface of a functionally graded piezoelectric semiconductor
half-space, and it was found that the piezoelectric gradient index could hinder the wave propagation in the
medium. Chaudhary et al. [17] investigated the SH wave developed in an irregular piezoelectric layer, and they
found that phase velocity of the SH wave increased with higher piezoelectric constant and dielectric constant.
Singh [18] studied the shear wave propagating in the piezoelectric solids when steel/PZT4 and PZT4/PZT-5H
interfaces were taken into consideration, and it showed that the piezoelectric field had a significant effect on
the ratio of amplitude and energy. Furthermore, Nirwal et al. [19] conducted the analysis of wave velocity
in a piezo-structure with flexoelectric effect under different boundary conditions, and the influences of layer
thickness, flexoelectric parameter and imperfect interface on the phase velocitywere presented in their research.
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Nie et al. [20] and Pang et al. [21] found that the thickness ratio of piezoelectric and piezomagnetic layer had an
important effect on the dispersion relation and wave velocity of SH waves and Lamb waves, and the imperfect
bonding of the interface generally reduced the wave velocity. Rakshit et al. [22, 23] extended the research
about the effect of interface imperfection on the propagation of SH wave in a porous piezoelectric composite
and love wave in a layered piezoelectric/elastic composite having interfacial imperfection.

However in practical applications, the time-dependent stimulus and response is more important than those
static ones in engineering. For example, structural health monitoring system under impact loading [24], forced
vibration response of smart composite structure [25] and spatiotemporal carrier dynamics induced by piezo-
electric surface acoustic wave [26]. Thus, investigation on the transient waves propagating in the piezoelectric
solids is very essential and significant. Ma et al. [27] analyzed the propagation of transient waves in the piezo-
electric materials subjected to anti-plane loading or electrical charge, and the result showed that existence of
the surface waves was limited when velocities of the shear waves in the bi-materials were very close. Lin
et al. [28] employed the Durbin method in studying the transient waves propagating in the functionally graded
piezoelectric slabs, and they found that the ground boundary could produce instantaneous shear waves at the
beginning under the action of electric displacement loading. As an extension, Ing et al. [29] conducted theo-
retical and numerical investigation on the transient response of a layered piezoelectric solids, and it showed
that the transient waves vibrated near the static value and then quickly approached the static solution. When
studying the electromagnetic waves in the piezoelectric solids, Li [30] considered the contribution from the
rotational part of the electrical field and derived the closed-form solution for the Bleustein-Gulyaev wave.
Different from the traditional quasi-static approximation, quasi-hyperbolic approximation was employed in
this research, where the hyperbolicity of piezoelectric governing equations can be preserved. This brings great
convenience in analyzing the transient response of the piezoelectric material [31].

It is found that the thermal effect has a significant influence on the propagating of elastic waves in the
solids. For example, Bajpai et al. [32] studied the effects of different thermal conductivity and diffusivity on
the infinite thermo-elastic diffusion circular plate using two-temperature generalized thermo-elastic diffusion
theory. Zhou and Shui [33] investigated the influence of thermal effect on transient waves propagating in the
multilayered composite structure, and the results showed that magnitude of the transient wave became smaller
when change of the environmental temperature is higher. Shariyat [34] also studied the thermo-elastic waves
propagating and reflecting in the functionally graded thick cylinder when under different thermo-mechanical
shock loadings, and influence from the thermal and elastic waveswas further investigated. Furthermore, Ashida
et al. [35] studied the dynamic response of the functionally graded medium when under thermal loading,
and the result revealed that oscillation of the thermal stress changed with different mechanical impedance,
which depends on the space variables. Recently, Wang et al. [36] proposed a theoretical analysis in exploring
the influence of thermo-mechanical interactions, which involves the micro-scale effect of the FGM hollow
cylindrical structures, on the propagating of thermal waves.

Considering the importance of understanding the transient waves in the piezoelectric material, and the fact
that the thermal effect is seldom concerned when analyzing transient response of the piezoelectric structure,
propagation of transient waves in the piezoelectric half-space under anti-plane dynamic force and in-plane
electrical loadingwill be studied theoreticallywith thermal effect considered in this study. Closed-form solution
in Laplace and time space will be obtained by employing Laplace transform and Cagniard-de Hoop method.
Transient response of the mechanical displacement, shear stress, electric potential and electrical displacement
is evaluated numerically, and effects of the temperature variation and boundary condition on the transient
waves are then discussed.

2 Theoretical model

When analyzing the dynamic response of a piezoelectric device, the wavelength of the transient wave prop-
agating in the elastic medium is generally small compared with the geometry dimension of the device. The
piezoelectric structure is thus modeled as a half-space. For a transversely isotropic piezoelectric half-space,
the constitutive equations for mechanical and electric fields are [37]:

σij � cijklSkl − ekijEk (1a)

Di � eiklSkl+ ∈ik Ek (1b)

where σij, Skl, Ek and Di are components of stress, strain, electrical field and displacement; cijkl, ekij and ∈ik
are elastic constants, piezoelectric and permittivity tensors of the solids.
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Fig. 1 Schematic diagram of the piezoelectric half-space

When the body force and free charge density are not considered, the equations of motion and electric
displacement for linear piezoelectric medium can be expressed as follows [37]:

σij,i � ρüi (2)

Di,i � 0 (3)

where ui and ρ are displacement and mass density. The strain tensor Skl and electric field Ei are defined as
[31]:

Skl � 1

2

(
ui,j + uj,i

)
(4)

Ei � −
(

φ,i +
1

cl

∂Ai

∂t

)
(5)

where φ and Ai are scalar potential and vector potential, and the constant cl � 1/
√

μ0 ∈11 is light speed of the
piezoelectric solids,μ0 is magnetic permeability constant in the vacuum. As shown in Fig. 1, when considering
the coupling between anti-plane wave field and in-plane electromagnetic field, we have:

ux � uy � 0, uz � w(x, y, t) (6a)

Ex � Ex(x, y, t), Ey � Ey(x, y, t), Ez � 0 (6b)

Therefore, the constitutive equations can be simplified as:

τyz � c44
∂w

∂y
− e15Ey (7)

τxz � c44
∂w

∂x
− e15Ex (8)

Dy � e15
∂w

∂y
+ ∈11 Ey (9)

Dx � e15
∂w

∂x
+ ∈11 Ex (10)

According to Lorentz gauge, the scalar and vector potentials of the electric field can be uniquely determined
by:

∇ · A +
1

cl

∂φ

∂t
� 0 (11)

Substituting Eqs. (5), (6) and (8)–(11) into Eqs. (3) and (4), the equations of motion can be obtained as
following forms:

c44∇2w − ρ
∂2w

∂t2
� −e15

(

∇2φ − 1

c2l

∂2φ

∂t2

)

(12)
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e15
∈11

∇2w � ∇2φ − 1

c2l

∂2φ

∂t2
(13)

where ∇2 � ∂2

∂x2
+ ∂2

∂y2
is the Laplace operator with respect to variables x and y. Introducing a function:

ψ ≡ φ − e15
∈11

Cfw (14)

and with following definitions:

c44 � c44 +
e215
∈11

(15)

cs �
√
c44
ρ

(16)

Cf � c2l
c2l − c2s

(17)

where cs is the speed of acoustic shear wave; Eqs. (13) and (14) can then be decoupled into two equations,
which are:

∇2w − 1

c2s

∂2w

∂t2
� 0 (18)

∇2ψ − 1

c2l

∂2ψ

∂t2
� 0 (19)

Letting c̃44 � c44 − (1 − Cf)e215/ ∈11, and substituting Eq. (6) into constitutive Eqs. (8)–(11), we have

τyz � c̃44
∂w

∂y
+ e15

∂ψ

∂y
+
e15
cl

∂Ay

∂t
(20)

τxz � c̃44
∂w

∂x
+ e15

∂ψ

∂x
+
e15
cl

∂Ax

∂t
(21)

Dy � e15(1 − Cf)
∂w

∂y
− ∈11

∂ψ

∂y
− ∈11

cl

∂Ay

∂t
(22)

Dx � e15(1 − Cf)
∂w

∂x
− ∈11

∂ψ

∂x
− ∈11

cl

∂Ax

∂t
(23)

Please note that Cf is quite close to 1 according to Eq. (17), because the speed of acoustic shear wave
is much smaller than that of light. However, to have a comprehensive understanding of the contributions of
acoustic shear wave, electroacoustic head wave and electric wave to the electrical displacementD analytically,
Cf is thus preserved in the subsequent process of theoretical derivation.

When there is a change of the environment temperature, additional stress will be produced due to thermal
deformation of the solids. Considering that the results are similar when analyzing the thermal stress in x- and
y- directions, the case only with thermal stress in y-direction will be studied and discussed. Thermal stress in
y-direction is expressed as:

σTy � − EβT

1 − 2ν
(24)

where E is the Yong’s modulus, β is the coefficient of thermal expansion in y-direction, T is the change of
temperature, ν is the Poisson ratio. Governing equations can then be expressed as [38]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2w

∂x2
+

(
1 +

σTy

c44

)
∂2w

∂y2
� 1

c2s

∂2w

∂t2

∇2ψ − 1

c2l

∂2ψ

∂t2
� 0

(25)
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Because intensity of the induced electric field generated in the piezoelectric material under magnetic field
is very small, rotational part of the electric field satisfies [31]:

∣∣∣
∣
1

cl

∂Ay

∂t

∣∣∣
∣ �

∣∣∣
∣
∂φ

∂y

∣∣∣
∣ (26)

∣∣
∣∣
1

cl

∂Ax

∂t

∣∣
∣∣ �

∣∣
∣∣
∂φ

∂x

∣∣
∣∣ (27)

With the aid of Eqs. (27)–(28), the constitutive equations are finally expressed as:

τyz�c̃44
∂w

∂y
+ e15

∂ψ

∂y
(28)

τxz�c̃44
∂w

∂x
+ e15

∂ψ

∂x
(29)

Dy�e15(1 − Cf)
∂w

∂y
− ∈11

∂ψ

∂y
(30)

Dx�e15(1 − Cf)
∂w

∂x
− ∈11

∂ψ

∂x
(31)

As shown in Fig. 1, an anti-plane force −τ0δ(x)H(t) is applied on the surface of the piezoelectric half-
space, where τ0 is magnitude of the dynamic force, δ(x) is the Dirac delta function, and H(t) is the Heaviside
function. Mechanical and short-circuit boundary conditions on the surface can be expressed as:

τyz(x, 0, t) � −τ0δ(x)H(t) (32)

φ(x, 0, t) � 0 (33)

3 Transient solution in Laplace space

The double Laplace transformation and corresponding inverse transformation of the function f (x, y, t) are
defined as:

f
∗
(ϑ, y, κ) �

∫ ∞

−∞

∫ ∞

0
f (x, y, t)e−κϑx−κt dtdx (34)

f (x, y, t)� − κ

4π2

∫ ϑ1 + i∞

ϑ1−i∞

∫ κ1 + i∞

κ1−i∞
f
∗
(ϑ, y, κ)eκt+κϑxdκdϑ (35)

Applying the double Laplace transformation on the boundary conditions, we have:

τ ∗
yz(ϑ, 0, κ) � −τ0

κ
(36)

φ
∗
(ϑ, 0, κ) � 0 (37)

The transformed expressions of stress and potential in Eqs. (29)–(32) are thus written as:

τ ∗
yz�c̃44

∂w∗

∂y
+ e15

∂ψ
∗

∂y
(38)

τ ∗
xz�κϑ c̃44w

∗ + κϑe15ψ
∗

(39)

D
∗
y�e15(1 − Cf)

∂w∗

∂y
− ∈11

∂ψ
∗

∂y
(40)

D
∗
x�κϑe15(1 − Cf)w

∗ − κϑ ∈11 ψ
∗

(41)

Letting

a(ϑ) � q
√
s2s − ϑ2 (42)
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q �
√

c44
c44 + σTy

(43)

e(ϑ) �
√
s2l − ϑ2 (44)

The governing equations can then be expressed as ordinary differential equations:

d2w∗(ϑ, y, κ)

dy2
− κ2a2(ϑ)w∗(ϑ, y, κ) � 0 (45)

d2ψ
∗
(ϑ, y, κ)

dy2
− κ2e2(ϑ)ψ

∗
(ϑ, y, κ) � 0 (46)

where ss and sl are slowness of acoustic shear wave and electromagnetic wave.
After solving transformed governing equations Eqs. (46) and (47), displacement and electrical potential

can then be written as:

w∗(ϑ, y, κ) � A(ϑ, κ) exp[−κa(ϑ)y] (47)

ψ
∗
(ϑ, y, κ) � B(ϑ, κ) exp[−κe(ϑ)y] (48)

Substituting Eqs. (48) and (49) into transformed boundary conditions in Eqs. (37) and (38), we have:

κ
[
c̃44a(ϑ)A(ϑ, κ) + e15e(ϑ)B(ϑ, κ)

] � τ0F
∗(κ) (49)

e15
∈11

C f A(ϑ, κ) + B(ϑ, κ) � 0 (50)

So, A(ϑ, κ) and B(ϑ, κ) can be obtained as follows:

A(ϑ, κ) � 1

κ2

τ0

c̃44
(
1 − k4e

)
a(ϑ) + k2e e(ϑ)

s2bge − ϑ2
(51)

B(ϑ, κ) � − e15
∈11

CfA(ϑ, κ) (52)

where sbge and cbge are wave slowness and speed of Bleustein-Gulyaev wave, with sbge �
√

s2s −k4e s
2
l

1−k4e
and

cbge � 1/sbge. And k2e � e215
c̃44∈11

Cf is the electro-mechanical coupling coefficient.
Substituting Eqs. (48) and (49) into equations Eqs. (39)–(42), and subsequently performing inverse Laplace

transform about variable x, we can get the expressions of mechanical displacement, electrical potential, shear
stress and electrical displacement in Laplace space as:

w∗(x, y, κ)� κ

2π i

∫ ϑa + i∞

ϑa−i∞
A(ϑ, κ) exp[−κ(a(ϑ)y − ϑx)]dϑ (53)

φ∗(x, y, κ) � κ

2π i

e15
∈11

C f

{∫ ϑa + i∞

ϑa−i∞
A(ϑ, κ) exp[−κ(a(ϑ)y − ϑx)]dϑ

−
∫ ϑe + i∞

ϑe−i∞
A(ϑ, κ) exp[−κ(e(ϑ)y − ϑx)]dϑ

} (54)

τ ∗
yz(x, y, κ)� − c̃44κ2

2π i

{∫ ϑa+i∞

ϑa−i∞
a(ϑ)A(ϑ, κ) exp[−κ(a(ϑ)y − ϑx)]dϑ

−k2e

∫ ϑe+i∞

ϑe−i∞
e(ϑ)A(ϑ, κ) exp[−κ(e(ϑ)y − ϑx)]dϑ

} (55)

τ ∗
xz(x, y, κ)� c̃44κ2

2π i

{∫ ϑa + i∞

ϑa−i∞
ϑ A(ϑ, κ) exp[−κ(a(ϑ)y − ϑx)]dϑ

−
∫ ϑe + i∞

ϑe−i∞
ϑk2e A(ϑ, κ) exp[−κ(e(ϑ)y − ϑx)]dϑ

} (56)
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D∗
y(x, y, κ)� − e15κ2

2π i

{
(1 − Cf)

∫ ϑa + i∞

ϑa−i∞
a(ϑ)A(ϑ, κ) exp[−κ(a(ϑ)y − ϑx)]dϑ

+C f

∫ ϑe + i∞

ϑe−i∞
e(ϑ)A(ϑ, κ) exp[−κ(e(ϑ)y − ϑx)]dϑ

} (57)

D∗
x(x, y, κ)�e15κ2

2π i

{
(1 − Cf)

∫ ϑ1 + i∞

ϑ1−i∞
ϑ A(ϑ, κ) exp[−κ(a(ϑ)y − ϑx)]dϑ

+Cf

∫ ϑ1 + i∞

ϑ1−i∞
ϑ A(ϑ, κ) exp[−κ(e(ϑ)y − ϑx)]dϑ

(58)

4 Analytical solution in time space

In theoretical analysis of transient waves in elastic media, integral transform is essential in solving the equation
of motion. Cagniard [39] introduced a clever transformation which can easily get the original function through
a process of contour integration based on Cauchy theorem. This method, which is then improved by De
Hoop [40], has been widely employed to get the exact analytical solution in time space for transient waves.
Using this method, Sánchez-Sesma et al. [41] conducted effective investigation on the exact solution for the
problem with line loading, Shan et al. [42] got the solutions for the transient waves in an elastic half-space
subjected to a buried cylindrical line source, and Dehestani et al. [43] studied the transient stresses in the
isotropic semi-infinite solids loaded by a force moving at subsonic speed. Furthermore, Lee [44] and Ma et al.
[45, 46] discussed the transient response of a layered composite structure subjected to anti-plane force using
Cagniard-de Hoop method.

When applying Cagniard-de Hoop method, the integral with respect to variable ϑ is converted to the
definition of an integral with respect to variable t. In the derivation, the integrating path and positions of the
singular points are changed in a suitable way. To do this, a new integration with respect to variable t is obtained
as:

L−1
{∫ ∞

t1
e−pt f (t)dt

}
� f (t)H (t − t1) (59)

Next, inverse transformation of Eqs. (54)–(59) will be conducted using Cagniard-de Hoop method. Taken
electrical potential in Eq. (54) as an example. The integral in Eq. (54) has two branch points ϑs � −ss and
ϑl � −sl , and a pole point ϑbge � −sbge. According to Cagniard-de Hoop method, an integral variable t is
introduced as:

t � a(ϑ)y − ϑx (60)

where t is positive and real. Equation (61) means a conformal transform from t-plane to ϑ-plane. ϑ is thus
expressed as:

ϑ (±)
a � − xt

x2 + q2y2
± i

qy
√
t2 − t2a

x2 + q2y2
, ta ≤ t < ∞ (61)

where ta is the arriving time of acoustic shear waves, and it can be expressed as:

ta � ss

√
x2 + q2y2 (62)

Equation (62) is a hyperbola inϑ-plane, as shown in Fig. 2. This integral path corresponds to the propagating
ray of the shear waves. When t � ta, the imaginary part of ϑ is zero. Because the branch points, pole and
saddle points satisfy the condition of ϑbge < ϑs < ϑsaddle < ϑl; the integral path is composed of two segments

and a circle, which is centered at ϑl with radius ε. The expressions of additional two segments ϑ
(±)
ae are:

ϑ (±)
ae � − xt

x2 + q2y2
+
qy

√
t2a − t2

x2 + q2y2
± iε, tae ≤ t < ta (63)



1654 F. Wu et al.

Im( )

Re( )

a
(-)

a
(+)

ae
(+)

ae
(-)

s
l

D

F
B

C

saddlebge

Fig. 2 The integration path of employing Cagniard-de Hoop method in the ϑ-plane for Eq. (54)

where tae is the arriving time of electroacoustic head wave, and it is:

tae �
√
s2s − s2l qy + slx, ε → 0 (64)

According to Cauchy’s theorem and Jordan’s lemma, Eq. (54) is then rewritten as:

w∗(x, y, κ) � 1

πκ

P

c̃44
(
1 − k4e

)

⎧
⎨

⎩

∫ ∞

ta
Re

[
a(ϑ) + k2e e(ϑ)

s2bge − ϑ2

a(ϑ)
√
t2 − t2a

]∣∣
∣∣∣
ϑ+
a

exp(−κt)dt

−
∫ ta

tae
Im

[
a(ϑ) + k2e e(ϑ)

s2bge − ϑ2

a(ϑ)
√
t2a − t2

]∣∣∣∣
∣
ϑ+
ae

exp(−κt)dt

⎫
⎬

⎭

(65)

With Eq. (60) and considering the convolution theorem:

L−1[F1(κ) · F2(κ)] � f1(t) ∗ f2(t) �
∫ t

0
f1(τ ) f2(t − τ)dτ (66)

where F1(κ) and F2(κ) are Laplace transforms of f1(t) and f2(t). We can obtain the inverse transform of the
displacement as:

w(x, y, t) �
∫ t

0
w′(x, y, τ )H (t − τ )dτ (67)

where

w′(x, y, t) � τ0

π c̃44
(
1 − k4e

) {Re(�a)H(t − ta) − Im(�ae)[H(t − tae) − H(t − ta)]} (68)

�a�a
(
ϑ+
a

)
+ k2e e

(
ϑ+
a

)

s2bge − ϑ+2
a

a
(
ϑ+
a

)

√
t2 − t2a

(69)

�ae � a
(
ϑ+
ae

)
+ k2e e

(
ϑ+
ae

)

s2bge − ϑ+2
ae

a
(
ϑ+
ae

)

√
t2a − t2

(70)

Subsequently, a similar procedure is employed in the same way to obtain φ(x, y, t). Letting

t � e(ϑ)y − ϑx (71)
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Fig. 3 The integration contour of employing Cagniard-de Hoop method in ϑ-plane for Eq. (55)

solution of Eq. (72) can thus be obtained as:

ϑ (±)
e � − xt

x2 + y2
± i

y
√
t2 − (

x2 + y2
)
s2l

x2 + y2
, te ≤ t < ∞ (72)

where te is the arriving time of electric waves, and it can be expressed as:

te � sl

√
x2 + y2 (73)

Shown in Fig. 3 is the integration contour of employing Cagniard-de Hoop method in ϑ-plane for φ∗

(x, y, κ), where the saddle point is ϑsaddle � −xsl
(
x2 + y2

)− 1
2 . The branch points, point pole and saddle point

satisfy the relationship ϑbge < ϑs < ϑl < ϑsaddle. For this case, the hyperbola does not intersect with the
branch cut.

With similar procedure of derivation, the transient solutions for electrical potential, shear stress and elec-
trical displacement can be expressed explicitly as follows:

φ(x, y, t) �
∫ t

0
φ′(x, y, τ )H (t − τ )dτ (74)

τyz(x, y, t) � τ0

π
(
1 − k4e

)
{
Re

[
a
(
ϑ+
a

)
�a

]
H(t − ta)

−Im
[
a
(
ϑ+
ae

)
�ae

]
[H(t − tae) − H(t − ta)] + k2eRe

[
e
(
ϑ+
e

)
�e

]
H(t − te)

} (75)

τxz(x, y, t)� − τ0

π
(
1 − k4e

)
{
Re
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Fig. 4 The integrand function of displacement on the surface without thermal effect

where

φ′(x, y, t) � τ0e15C f

π c̃44 ∈11
(
1 − k4e

) {Re(�a)H(t − ta)

−Im(�ae)[H(t − tae) − H(t − ta)] − Re(�e)H(t − te)}
(79)

�e � a
(
ϑ+
e

)
+ k2e e

(
ϑ+
e

)

s2bge − ϑ+2
e

e
(
ϑ+
e

)

√
t2 − t2e

(80)

Expressed in Eqs. (77) and (78) are electrical displacements in x- and y-direction. The first and second
terms on the right of the equations are contributions of acoustic shear wave and electroacoustic head wave to
the electrical displacement, and the third term is the contribution of electric wave to the electrical displacement.
Because Cf is very close to 1, the electrical displacement is obviously dominated by the electric wave.

5 Numerical calculation and discussion

5.1 Verification of the numerical calculation

Based on the analytical expression of the transient response for mechanical displacement, electrical potential,
shear stress and electric displacement in time domain, numerical examples will be presented and discussed in
this section. For convenience, dimensionless variables are introduced as:

x ′ � x

L
, y′ � y

L
, τ � t

ssL
, τl � sl

ss
, τbge � sbge

ss

τa � ta
ssL

, τae � tae
ssL

, τe � te
ssL

(81)

where L is the horizontal distance from the exciting point. Please refer to Appendix 1 for the expressions of
mechanical displacement, electrical potential, shear stress and electrical displacement when above dimension-
less variables are employed. Please note that the waves presented in Figs. 4–11 are composed of electric wave,
electroacoustic head wave and acoustic wave, which are denoted by subscript e, ae and a, respectively.

Before discussing the thermal effect on the transient response, the numerical result based on the solution
of this research is first validated. As shown in Fig. 4 are the curves of the integrand function π c̃44L

csτ0
w′(x, y, t)

of transient displacement for receiver at location (L, 0) when change of the temperature is not considered. Due
to the singularity of electroacoustic head wave and acoustic shear wave, we can see that integrand function
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Fig. 5 Transient displacements for receivers located vertically without thermal effect

of the displacement varies rapidly near the wave front. After the last acoustic shear wave passes the receiver,
the transient displacement integrand function finally comes to the static value in the end. With increasing
electro-mechanical coupling coefficient ke, it shows that the moment exhibiting singular behavior increases,
and magnitude of the static value increases correspondingly. To this point, the result consists well with that
given by Li [31], who studied the transient waves in a transversely isotropic piezoelectric half-space under the
action of a line loading when without temperature effect.

Considering that only the curves of the integrand function are presented in Ref. 31, transient displacement
is further provided in this research. As shown in Fig. 5 are transient displacements for receivers with different
depths. Dimensionless arriving time of the electric wave, electroacoustic head wave and acoustic shear wave
are τe � 0.001, τae � 1.007 and τa � 1.414 when y � L; τe � 0.0016, τae � 2.007 and τa � 2.236 when y
� 2L; τe � 0.0023, τae � 3.001 and τa � 3.162 when y � 3L, respectively. Although the first arrived wave
should be electric wave, it has no contribution to the transient displacement according to the derived expression
given by Eq. (68). The electroacoustic head wave is the second wave arriving at the receiver, as shown in the
small illustration window in Fig. 5, where the contribution is clearly observed from the electroacoustic head
waves. It is also found that magnitude of the displacement induced by electroacoustic head waves is bigger
when the receiver is further away in vertical direction. The last arrived wave is acoustic shear wave, and it can
be seen that the displacement is larger for the receiver closer to the source point. After the last shear acoustic
shear wave arrives at the receiver, the displacement grows steadily with increasing time.

The transient stress τxz of receivers located in different vertical points is shown in Fig. 6. Dimensionless
arrival time of the electric wave, electroacoustic head wave and acoustic shear wave are τe � 7.288 × 10−4,
τae � 7.288 × 10−4 and τa � 1 when y � 0; τe � 0.001, τae � 1.007 and τa � 1.414 when y � L;
τe � 0.0016, τae � 2.007 and τa � 2.236 when y � 2L, respectively. From Fig. 6, we can find that electric
wave has little contribution to the shear stress. For each stress wave, there are two opposite peaks because
of the electroacoustic head wave and acoustic shear wave. It also can be seen that magnitude of the transient
response contributed by electroacoustic head wave and acoustic shear wave is higher for receiver closer to
the surface. After the acoustic wave passes the receiver, the transient stress eventually approaches to the static
value.

5.2 Thermal effects on the transient waves

In engineering application of piezoelectric devices, it is of great importance to learn about the propagation of
waves in the solids. For example, influence of external mechanical dynamic loading and environmental tem-
perature on themechanical displacement, electric potential, arrival time of acoustic shear wave, electroacoustic
head wave and electric wave. This is helpful in manipulating the propagation of waves in such structures as
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Fig. 6 Transient shear stress τxz for receivers located vertically without thermal effect

Fig. 7 Transient responses of displacement with different temperature changes

acoustic amplification devices, piezoelectric sensors and transducers and semiconductor devices. Effects of the
thermal stress on the transient response of the piezoelectric half-space subjected to anti-plane dynamic loading
will be first discussed in this section. Presented in Fig. 7 is the displacement of receiver located at (x, y) � (L,
L) for different change of temperature. Corresponding dimensionless arriving time is τe � 0.001, τae � 1.001
and τa � 1.414 when q � 1; τe � 0.001, τae � 1.501 and τa � 1.803 when q � 1.5; τe � 0.001, τae � 2.001
and τa � 2.236 when q � 2, respectively. According to the definition in Eq. (43), q � 1 when the thermal
stress is zero, and q is greater for higher thermal stress. It is found that the arrival time of electroacoustic head
wave and acoustic wave increases when the environmental temperature increases. In addition, magnitude of
the transient displacement is greater with higher environmental temperature. Figure 8 presents the transient
responses of electrical potential φ under different variation of environmental temperature. Similarly, arriving
time of acoustic wave and magnitude of electrical potential increase with higher variation of the temperature.
Contribution of the electric wave to electrical potential is almost instantaneous, and then, the electrical potential
increases gradually.
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Fig. 8 Transient responses of electrical potential with different temperature changes

Fig. 9 Transient responses of transient shear stress τyz at (L, L) with different temperature changes

Presented in Fig. 9 are the transient dimensionless shearing stresses τxz at points (L, L) under different
temperature variations. The corresponding dimensionless arriving time are τe � 0.001, τae � 1.001 and
τa � 1.414 when q � 1; τe � 0.001, τae � 1.501 and τa � 1.803 when q � 1.5; τe � 0.001, τae � 2.001 and
τa � 2.236 when q � 2, respectively. It shows that there are more contributions from the electroacoustic head
wave and acoustic shear wave with increment of temperature variation, which results in higher magnitude of
the transient stress. Furthermore, the arriving time of the transient stress corresponding to electroacoustic head
wave and acoustic waves also increases with higher variation of environmental temperature, which implies that
change of the environment temperature has influence on the speed of electroacoustic head wave and acoustic
wave.

Figure 10 is the transient electrical displacement Dx at point (L, L) with different temperature changes.
The corresponding dimensionless arriving time is τe � 0.001, τae � 1.001 and τa � 1.414 when q � 1;
τe � 0.001, τae � 1.501 and τa � 1.803 when q � 1.5; and τe � 0.001, τae � 2.001 and τa � 2.236
when q � 2, respectively. From the small illustration window, it is found that the electric waves generate
excitation around the time t/ssL � τe � 0.001. Considering that speed of the electric wave is five orders of
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Fig. 10 Transient responses of electric displacements Dx at (L, L) with different temperature changes

Fig. 11 Transversely isotropic piezoelectric half-space subjected to anti-plane force and in-plane electrical loading

magnitude faster than that of acoustic shear wave in a typical medium, the parameter Cf is thus close to 1.
According to the expression given by Eq. (79), the electric wave contributes most to the response of electric
displacement, while the electroacoustic head wave and acoustic wave only have a little contribution to the
electric displacement. In addition, with the increment of thermal stress, magnitude of the electric displacement
increases correspondingly. When the last acoustic shear wave passes the receiver, the electric displacement
approaches to static value.

5.3 Transient response subjected to mechanical and electrical loading

Transient behavior of the piezoelectric half-space simultaneously subjected to anti-plane line force and
in-plane electrical line loading will be further investigated, as shown in Fig. 11. The boundary conditions are:

τyz(x, 0, t) � −τ0δ(x)H(t) ; t > 0 (82)

Ex(x, 0, t) � Ev
x (x, 0, t) (83)

Dy(x, 0, t) − Dv
y(x, 0, t) � −D0δ(x)H(t) ; t > 0 (84)

where the superscript “v” represents the corresponding physical quantity when in the vacuum. As presented
in Sect. 3, general solutions of the equations for the waves are:

w∗(ϑ, y, κ) � A(ϑ, κ) exp[−κa(ϑ)y] (85)
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ψ
∗
(ϑ, y, κ) � B(ϑ, κ) exp[−κe(ϑ)y] (86)

φ
v∗

(ϑ, y, κ) � C(ϑ, κ) exp[κg(ϑ)y] (87)

where g(ϑ) �
√
s20 − ϑ2, with s0 the slowness of electromagnetic wave in the vacuum. By using Cagniard-

de Hoop method for inverse transform, which is similar to the process of derivation in Sect. 5.1, analytical
expressions of the displacement, electric potential, shear stress and electric displacement in time domain are
given directly as:

w(x, y, t) �
∫ t

0
w′(x, y, τ )H (t − τ )dτ (88)

φ(x, y, t) �
∫ t

0
φ′(x, y, t)H (t − τ )dτ (89)
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where

tef �
√
s2l − s20 y + s0x (94)

τv � τ0 +
e15

∈11 + ∈0
D0 (95)

kv
e � ke

√
c̃44 ∈0

c44 ∈11 +c̃44 ∈0
(96)
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Fig. 12 Transient responses of electrical potential when Ecf � 0.5, 1, 2 and at (L, L)
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The following dimensionless variables are introduced as:

τbgv � sbgv
ss

, ∈� ∈11

∈0
, τe � te

ssL
(102)

To investigate the influence of the mechanical loading and electrical loading on the transient responses,
the electromechanical ratio factor is introduced as:

Ecf � e15D0

∈11 τ0
(103)

where τ0 and D0 aremagnitudes of the stress and electric loading. Please refer toAppendix for the dimensionless
expressions of response of the displacement, electric potential, shear stress and electric displacement (Fig. 11).

Thewaves shown in Figs. 12–14 are composed of purely electric headwaves, electricwaves, electroacoustic
head waves and acoustic shear waves, which are denoted by subscript ef, e, ae and a, respectively.

Figure 12 is the transient electrical potential for receiver at (L, L) when Ecf � 0.5, 1 and 2, respectively.
The corresponding dimensionless arriving time is τef � 7.48 × 10−4, τe � 0.001, τae � 0.99 and τa � 1.4.
We can see that the electrical potential gradually increases after purely electric head wave arrives. In addition,
it is found that the responses have a little change at the moment t/ssL � τa � 1.4. This can be attributed to
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Fig. 13 Transient responses of stress τxz when Ecf � 0.5, 1, 2 and at (L, L)

the coupling between mechanical and electric fields. As the shear wave arrives at the receiving point, electrical
wave will be generated at the same time, which will then have effect on the magnitude of electrical potential.
Moreover, it can be observed that magnitude of the electrical potential is higher as the electromechanical ratio
factor increases.

Presented in Fig. 13 is the transient shear stress for receiver at (L, L) when Ecf � 0.5, 1 and 2, respectively.
This response is the result of purely electric headwaves, electricwaves, electroacoustic headwaves and acoustic
shear waves, and the corresponding dimensionless arriving time is τef � 7.48× 10−4, τe � 0.001, τae � 0.99
and τa � 1.4. As illustrated in the small window, we can see that the influence of purely electric head wave
and electrical wave on the transient response of shear stress τxz is instantaneous, and the stress rapidly comes
to the static value after the acoustic shear wave passes the receiver. When subjected to anti-plane Heaviside
function H(t), the stress has a square root singularity at the arrival of the acoustic wave. In addition, it can
be observed that before arriving of acoustic waves at t/ssL � τa � 1.4, magnitude of the transient stress is
higher when the electromechanical ratio factor increases. However, it is exact opposite after propagation of
the acoustic wave. This is because of the interaction of the electric wave and acoustic wave.

Presented in Fig. 14 is the response of electrical displacement Dx for different electromechanical ratio
factor. The corresponding dimensionless arriving time is τef � 7.48 × 10−4, τe � 0.001, τae � 0.99 and
τa � 1.4, respectively. Similar to τxz in Fig. 13, the influence of both purely electric head wave and electrical
wave on the transient electrical displacement Dx is instantaneous. The electrical displacement response drops
to the static value rapidly after electrical wave passes the receiver, while the acoustic shear waves have no
contribution to the electric displacement. Magnitude of the transient electric displacement is higher when the
electromechanical ratio factor Ecf increases.

6 Conclusion

This study investigates the propagation of transient waves in the piezoelectric half-space under anti-plane
dynamic force and in-plane electrical displacement loading when thermal effect considered. It shows that
variation of environmental temperature and external loading has obvious influence on the propagation of
transient waves in the piezoelectric half-space. We can come to the following conclusions:

(1) The arrival time of electroacoustic head wave and acoustic wave becomes longer when the environmental
temperature increases, and magnitude of the transient displacement is greater with higher environmental
temperature. Arriving time of acoustic wave and magnitude of electrical potential increase with higher
variation of the temperature.

(2) For the shearing stresses, there are more contributions from the electroacoustic head wave and acoustic
shear wave with increment of temperature variation, which results in higher magnitude of the transient
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Fig. 14 Transient responses of electric displacements Dx when Ecf � 0.5, 1, 2 at (L, L)

stress. The arriving time of the transient stress corresponding to electroacoustic head wave and acoustic
waves also increases with higher variation of environmental temperature.

(3) With the increment of thermal stress, magnitude of the electric displacement increases correspondingly.
The electric wave contributes most to the response of electric displacement, while the electroacoustic
head wave and acoustic wave only have a little contribution to the electric displacement.

(4) When the piezoelectric half-space is simultaneously under the action of anti-plane line force and in-
plane electrical line loading, the transient response is influenced by the electromechanical ratio factor.
Magnitudes of the displacement, electrical potential, stress, and electric displacement increase with higher
electromechanical ratio factor. Acoustic shear wave has little contribution to electrical potential and
electrical displacement.
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Appendix 1

The transient response of the displacement field can be expressed as:

π c̃44L

cs P
w′(x, y, t) � 1

1 − k4e

{
Re

(
�′

a

)
H(τ − τa) − Im

(
�′

ae

)
[H(τ − τae) − H(τ − τa)]

}
(104)

The transient response of electrical potential, stress and electric displacement can be expressed as:
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Appendix 2

After dimensionless processing, each physical quantity can be expressed as:
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