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Abstract In this paper, free vibration of rotating functionally graded (FG)porous eccentric semi-annular (ESA)
and eccentric annular (EA) plates reinforced with graphene nanoplatelets (GPLs) in a thermal environment is
solved with the help of transformed differential quadrature method (TDQM). Symmetrical and asymmetrical
distributions are considered for both the porosity and the graphene nanoplatelets; the estimation of the Young’s
modulus is conducted by the model of Halpin–Tsai. A higher-order shear deformation theory is considered
as the basis for the employment of the Hamilton’s principle for the derivation of both the initial equations of
the plates-up to the dynamic equilibrium point and the oscillation phenomena afterward. The method of TDQ
utilizes a conformal mapping in order to obtain the DQ weighting coefficients and then discretizes the partial
differential equations of the motion, as well as the boundary conditions; this discretization takes place in the
physical domain directly. The results indicate that the employed numerical approach is advantageous in high
solution accuracy in addition to fast convergence rate. Furthermore, the variation of the natural frequencies
of the FG plates with different boundary conditions is investigated by taking into account the influences of
several parameters: the geometry, such as eccentricity, thickness ratio, radius ratio; the material, such as the
type of porosity and GPLs, the porosity parameter and the weight fraction of GPLs, and other parameters, such
as temperature difference and rotating speed.

Keywords Transformed differential quadrature · Eccentric annular (EA) plate · Free vibration · Thermal
environment · Porous nanocomposite

1 Introduction

During the past decades, carbon-based reinforcements, such as 1-dimensional nanotubes and 2-demensional
graphene, have been employed for enhancing the mechanical and electrical properties of composite materials.
According to the development of manufacturing methods in terms of reducing the cost of raw materials,
nanocomposites have been highly used in flexible batteries, manufacturing alternative bone structures in the
body, structural engineering (such as aerospace, automotive and civil engineering) and lightweight sensors.
Therefore, the importance of such potential and the vast application of these composite structures have raised the
attention of researchers toward them. Reports of experiments demonstrate a significant increase in mechanical,
thermal and physical properties of polymers, when additives such as carbon nanotubes are introduced into the
polymer matrix [1, 2]. Hence, industrial societies have taken great interest in carrying out studies on the
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mechanical behavior of porous graphene-reinforced nanocomposites. Studies showed a better performance of
graphene platelets in comparison with the carbon nanotube additives when it comes to mechanical properties
epoxy nanocomposites; part of the results indicated that the Young’s modulus of the graphene nanocomposite,
at a nanofiller weight fraction of 0.1±0.002%, increased by 31%, whereas a rise by 3% was recorded for
single-walled carbon nanotubes [2]. The stiffening effect of functionally graded graphene composite plates was
comparedwith those reinforcedwith carbon nanotubes [3]. The researchers took into account the agglomeration
effects aswell as restacking of graphene sheets and realized a better load bearing capacity of graphene nanotubes
(GNTs) compared to carbon nanotubes (CNTs).

Regarding the nonlinear behavior of composite structures, multiscale doubly curved nanocomposites
nanoshells made of CNT/GPL-fiber are studied in [4]. Also, nonlinear vibration and bending characteristic of
multilayered composite beams reinforced with uniform distribution and uniform dusting of graphene fibers
under Timoshenko’s theory were investigated by Feng et al. [5, 6]. Studying the buckling and free vibration
of the same structure, Kitipornchai et al. [7] discovered that more concentration of graphene toward the outer
surfaces of a composite beam rose its stiffness significantly, which led to the growth in natural frequency and
the buckling load. Further studies on functionally graded graphene platelets reinforced composite (FG-GRC)
structures with more complex geometries, such as toroidal panels [8] and conical shells [9], are carried out in
terms of oscillatory behavior and post-buckling analysis, respectively.

A new class of lightweight materials which have internal porosity are known as metal foams. The engineer-
ing applications of such materials are restricted due to their low strength. In order to surmount this obstacle,
however, carbon nanostructures are exploited which have the ability to forge a bond with the matrix, in contrast
to carbon nanotubes. Consequently, the load is uniformly transferred and an increase in strength is obtained
[10–13]. Materials such as these are not only able to keep the properties of porous structures [14–17] (light
weight, low density and high energy absorption) but also able to gain nanocomposite characteristics (high
elastic modulus, high fracture strength and high thermal conductivity). A reinforced porous nanocomposite
beam constructedwith functionally graded graphenewas studied in terms of free vibration, nonlinear vibration,
elastic buckling and post-buckling [7, 18]. The imperfection geometry was taken into account when analyzing
the post-buckling of a porous beam with GPLs reinforcements mounted on a nonlinear elastic foundation [19].
The study found that the post-buckling load reached its peak when a symmetrical dispersion was considered
for the porosity and the GPLs, while the minimum load was recorded for the structure with uniform porosity. In
addition, better mechanical performance was obtained when the GPLs were distributed uniformly, rather than
symmetrically. Similarly, investigating the impact of using GPLs on the buckling pressure of a functionally
graded porous cylinder [20] showed that a non-uniform but symmetrical distribution for GPLs and porosity
led to the highest pressure capacity.

For the past few years, scientists—in the fields of aeronautic, automotive industries or many others—have
becomemore attracted to study the characteristics of the structures with round shapes [21]. Żur [22] studied the
free vibration of axisymmetric and non-axisymmetric oscillation of an elastically supported FG annular plate
with variety of inner boundary conditions, whereas Allahkarami [23] surveyed the impact of a periodic radial
compressive load on the dynamic stability of the same structure—but reinforced with GPLs. Many articles
considered the variable thickness of annular plates not only as a highly influential factor to attain economical
usage of material but also as a practical mean to stiffen the structure having less weight; the thickness can
change either abruptly [24] or gradually [25], along the radial direction.

One type of geometry imperfection is when the structure, especially a plate, contains one [26] or multiple
[27] perforations with diverse shapes and sizes. Having these internal cutouts relocated to a further distance
from the center of symmetry, one encounters even more complex mathematical formulations [28]. These
eccentric cutouts can have significant effect on the vibrating behavior of EA plates [29–31]. Askari et al. [32]
dealt with the partial differential equation of free and coupled-fluid vibration of these EA plates based on the
separation of variables [33]. On the other hand, a systematic approach for solving FG-GRC-EA plates with
integrated piezo layers is presented in [34].

Thermal environment, similar to the eccentricity, can make a noticeable difference when involved in the
overall assumptions of a mechanical problem. This can be exemplified by undesired buckling or dynamic
responses [35]. Since these environments with high temperatures are inevitable in many industrial procedures,
structures with FG properties have become introduced by many scientists [36, 37]. Malekzadeh et al. [38]
believed that the FGMs outperform those traditional composite laminates by reducing thermal stresses or
stress concentrations. Recently, Lal and Saini [39] investigated the effects of thermal environments on an
annular plate; in their work, in contrast to [38], the thickness of the plate is considered to be variable.
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Rotating machineries are widely employed throughout industrial processes. The rotating system models
can be introduced as a shaft, a shell [40] and a disk or a blade attached to the axis of rotation; in [41], the
Rayleigh beam theory and Euler-Bernoulli beam theory are used to present the free vibration of a pre-twisted
blade-shaft assembly; in the similar work, done by Zhao et al. [42], the natural frequencies of a disk-shaft
rotor system are computed analytically and the model is built based on Kirchhoff plate theory and Timoshenko
beam theory; in another model, a setting angle is considered for a pre-twisted blade, which is mounted on a
rotating disk with a centric hole [43]. In another contribution [44], a plate is attached to a rotating hub modeled
as an elastic cylindrical shell. For investigation of the free vibration, the dynamical model is constructed based
on the Donnell shell theory and the Kirchhoff plate theory and the coupled vibration.

Another type of rotating systems is circular plate without a centric hole [45], which is among the criti-
cal components of industry, whose vibration and stability should be studied carefully [46–48]. Bagheri and
Jahangiri [49] investigated the free vibration of rotating disks with FG properties. Yang and Kang [50], as well
as Younesian et al. [51], published papers regarding the analysis of annular plates subjected to compressive
centrifugal body force and peripheral transverse loads, respectively. The assumptions for the circular plates
with off-center hole in thermal environment, in company with the rotating phenomenon, will result in enor-
mous equations of motion. So, Transformed Differential Quadrature method (TDQM) is a powerful numerical
tool for solving difficult equations of motion (especially those structures with complex shape). In this method,
the discretization of the governing equations is directly conducted in the physical domain for determining the
weighting coefficients [52–54].

The presented article exploits the TDQM in investigating the free vibration of a rotating FG-GRC porous
semi-annular plates with an off-centered semicircle cut-out in thermal environment. To the best of the authors’
knowledge acquired from the latest contributions, the TDQM has not been utilized as a numerical tool for
tackling the eigenvalue problem of such ESA plates (with the proposed characteristics) yet. Two different
types of porosity are considered in the analysis: the symmetrical and the asymmetrical distributions. Also,
the dispersion of graphene platelets is categorized into three types: symmetrical (non-uniform), asymmetrical
(non-uniform) and uniform. The Halpin–Tsai micromechanics model is proposed in order to determine the
elastic modulus of graphene nanoplatelets; other mechanical properties, such as the density, Poisson’s ratio
and thermal expansion coefficients, are obtained using the rule of mixture.

Once the mechanical properties of the structure are defined completely, two consecutive phases are intro-
duced, based on which the governing equations of motion are presented: the first stage—which involves
in-plane deformations due to the rotation and a steady change in temperature—lasts until the dynamic equilib-
rium is reached; the second stage, however, is the out-of-plane oscillation phenomenon, which is then handled
using a higher-order shear theory (with 7 degrees of freedom). By applying the TDQM, the obtained equa-
tions from the first and second phases are discretized directly in the physical domain using an appropriate
conformal mapping. Finally, the first four natural frequencies are numerically illustrated and how variations
in different parameters, such as geometry, material, boundary conditions, rotational speed and temperature
would manipulate these results, are meticulously investigated for both the annular and semi-annular FG-GRC
plates. Using the TDQM for tackling the governing equations of an eccentric semi-annular vibrating plate can
be considered as the starting point for putting a systematic solution forward to the analysis of sector-plates
with more complex structures; this, consequently, inclines the authors to put forth the presented technique for
handling eccentric sector-plates in future studies.

The following section describes the geometry of the proposed structure and its mechanical properties.
Then, the governing equations and the use of discretization technique in TDQM are presented. Section 3 is
dedicated to the numerical results and the comprehensive parameter study. In the end, Sect. 4 summarizes the
overall methodology and discusses the conclusions thoroughly.

2 Mathematical model

2.1 The geometry of the FG-GRC plates

Two eccentric plates are proposed as the mechanical structures, each of which is provided with the cylindrical
coordinate system (r, θ, z) labeling the points of the structure when no deformation is occurred. These two
models are defined as eccentric annular (EA) plate (θ � 2π) and eccentric semi-annular (ESA) plate (θ � π),
having circular and semi-circular cutouts (Fig. 1), respectively. The eccentricity is denoted by e. The thickness
of the plates, the inner radius and the outer radius are h, b and a, respectively. Functionally graded distribution
for porosity and graphene platelets includes diverse models along the thickness of the plates. In Fig. 2, it can
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Fig. 1 The geometry of the FG-GRC-ESA plate

Fig. 2 Various dispersion patterns considered for the porosity and the graphene platelets

be seen that the GPLs are distributed based on three different patterns: Type-A, non-uniform and symmetrical;
Type-B, non-uniform and asymmetrical; Type-C, uniform. Moreover, the pattern of porosity is categorized
into two types: Type-I, symmetrical; Type-II, asymmetrical.

2.2 Material properties

The mechanical properties of the FG-GRC model with porosity, such as Young’s modulus E , shear modulus
G, density ρ and thermal expansion coefficient α, are defined as functions of z [55]. We have:

E(z) � E∗(1 − e0λ(z))

G(z) � G∗(1 − e0λ(z))

ρ(z) � ρ∗(1 − emλ(z))

α(z) � α∗(1 − emλ(z))

(1)

λ(z) �
{

cos
(
π z
/
h
)
Type - I

cos
(
π z
/
2h + π

/
4
)
Type - II

(2)

In Eq. 1, E∗, G∗, ρ∗ and α∗ are the corresponding mechanical properties of the nonporous FG-GRC.
λ(z) demonstrates two types of porosity distribution in the z direction, given in Eq. 2. Accordingly, Type-I is
related to the symmetrical distribution, where the maximum and minimum values of porosity are at z � 0 and
z � ±h

/
2, respectively. In Type-II, porosity is asymmetrically distributed—the maximum/minimum value
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are located at the bottom/top surface, respectively. The following relation expresses the connection between
parameter em (mass density coefficient) and e0 (porosity coefficient).

em � 1 − √
1 − e0λ(z)

λ(z)
(3)

In order to obtain themodulus of elasticity for the nonporous graphene-reinforced composites, Halpin–Tsai
micro mechanical model [56] is employed, and hence we have:

E∗ � 3

8

(
1 + ξ L

GPLηL
GPLVGPL

1 − ηL
GPLVGPL

)
Em +

5

8

(
1 + ξWGPLηW

GPLVGPL

1 − ηW
GPLVGPL

)
Em (4)

where

ξ L
GPL � 2lGPL

hGPL
, ξWGPL � 2wGPL

hGPL

ηL
GPL � EGPL − Em

EGPL + ξ L
GPL Em

, ηW
GPL � EGPL − Em

EGPL + ξWGPL Em
(5)

In Eq. 4, the polymer matrix contains Em as the Young’s modulus. Other dimensionless parameters labeled
with GPL are the properties of GPLs introduced in Eq. 5. The volume fraction in the direction of z is named
VGPL . In Eq. 5,EGPL , lGPL , wGPL , and hGPL are the elastic modulus, length, width, and thickness of GPLs,
respectively.

Following the rule of mixture [57], one is able to express density ρ∗, Poisson’s ratio ν∗ and the thermal
expansion coefficient α∗ of the GPLs reinforced nanocomposite without porosity, with the formulations below:

ρ∗ � ρGPLVGPL + ρmVm
ν∗ � νGPLVGPL + νmVm
α∗ � αGPLVGPL + αmVm

(6)

where ρGPL , νGPL and αGPL are density, Poisson’s ratio and the thermal expansion coefficients of GPLs,
and their isotropic matrix counterparts are ρm, νm and αm . Vm indicates the volume fraction of the matrix. The
relationship of shear modulus and the elasticity modulus for the nonporous GPLs reinforced nanocomposite
is obtained as follow:

G∗ � E∗

2(1 + ν∗)
(7)

Regarding the volume fraction, three different patterns (in the direction of z) are investigated [20]. Although
Type-A and Type-B illustrate the symmetrical and asymmetrical distribution of graphene, they are both con-
sidered non-uniform. In the third pattern, on the other hand, the volume fraction is assumed to be uniform.

VGPL(z) �
⎧⎨
⎩

s1
(
1 − cos

(
π z
/
h
))

Type - A
s2
(
1 − cos

(
π z
/
2h + π

/
4
))

Type - B
s3 Type - C

(8)

In order to obtain the constant parameters si for i � 1, 2, 3, each pattern in Eq. 8 needs to be substituted
into the following relation [58]:

∫ h
2

− h
2

VGPL

V 0
GPL

(1 − emλ(z))dz −
∫ h

2

− h
2

(1 − emλ(z))dz � 0 (9)

where

V 0
GPL � 
GPLρm


GPLρm + ρGPL (1 − 
GPL )
(10)

In Eq. 10, 
GPL is the weight fraction of GPLs.
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2.3 Dynamic Equations and boundary conditions

When the free vibration of a rotating model in a thermal environment is under investigation, one is able to
express the initial displacements (ur0, uθ0, uz0) as follows:

ur0 � u(r, θ),

uθ0 � v(r, θ),

uz0 � 0.
(11)

where the displacement components (u, v) originate from both a steady change in the model’s temperature (no
thermal gradient is taken into account) and a dynamical rotation. These thermal and rotating characteristics
only affect the in-plane displacements along the radial (r ) and azimuth (θ ) coordinates. Therefore, in-plane
strain–displacement relations are formulated as follows [59]:

εrr0 � ∂u

∂r
,

εθθ0 � u

r
+
1

r

∂v

∂θ
,

εrθ0 � 1

r

∂u

∂θ
− v

r
+

∂v

∂r
. (12)

The Hamilton’s principle, for the time interval t1 to t2 [60], suggests that:

t2∫
t1

(δT0 − δU0)dt � 0 (13)

in which the kinetic energy T0 and the potential U0 (in their initial states) are introduced. Parameter t is
time. The variations of the aforementioned energies are expressed as follows [45]:

δT0 �
∫



ρ �2[(r + u)δu − vδv] d
 (14)

δU0 �
∫



(σrr0 − σTr0)δεrr0 + (σθθ0 − σT θ0)δεθθ0 + (σrθ0)δεrθ0 d
 (15)

In Eq. 14, ρ and 
 are known as the mass density and the volume of the circular plate, respectively.
Additionally, the plate rotates at the speed �. In Eq. 15, the corresponding stresses are obtained on the basis of
the former in-plane strains and Qi j introduced as the elements of the reduced stiffness matrix (see Appendix
A). We have:

σrr0 � Q11εrr0 + Q12εθθ0, σθθ0 � Q12εrr0 + Q22εθθ0, σrθ0 � Q66εrθ0 (16)

On the other side, the initial thermal stresses along the radial direction and the circumferential direction
are also expressed as follows:

σTr0 � (Q11 + Q12)α(z)�T, σT θ0 � (Q12 + Q22)α(z)�T (17)

in which �T shows the temperature difference between two time-intervals. It should be mentioned that
the temperature is uniformly distributed throughout the whole plate in each time-interval.

By using Eqs. 14, 15, 16 and 17, as well as 12, the governing equations can be extracted from Eq. 13 as
follows:

(18)

H11
∂2u

∂r2
+
H66

r2
∂2u

∂θ2
+
H11

r

∂u

∂r
− H22u

r2
−
(
H22

r2
+
H66

r2

)
∂v

∂θ
+

(
H12

r
+
H66

r

)
∂2v

∂r ∂θ
+
NT θ0

r
− NTr0

r

� −m1�
2 (r + u)

(
H22

r2
+
H66

r2

)
∂u

∂θ
+

(
H12

r
+
H66

r

)
∂2u

∂r ∂θ
+ H66

∂2v

∂r2
+
H66

r

∂v

∂r
+
H22

r2
∂2v

∂θ2
− H66v

r2
� −m1�

2v (19)
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Fig. 3 The geometry of transformation for an ESA plate, a the physical domain, b computational domain

in which Hχκ
i j and mχκ are obtained using the following relations:

Hχκ
i j �

∫ h
2

− h
2

Qi jχ (z)κ(z)dz

for
(
χ, κ � {}, f, g, f ′, g′) and (i, j � 1, 2, 4, 5, 6) (20)

mχκ �
∫ h

2

− h
2

ρχ (z)κ(z)dz

for (χ � 1, f, g), (κ � {}, f, g) (21)

Also, for NTr0 and NT θ0, we have: [
NTr0
NT θ0

]
�
∫ h

2

− h
2

{
σTr0
σT θ0

}
dz (22)

Other notations of χ and κ (rather than 1) will be used in handling the free vibration of the model; also,
χ, κ � {} means that there is no notation and the parameter is left blank.

The essential and natural boundary conditions are applied on the proposed structure (see Fig. 3). We have:

Either nru + nθ v � 0 or n2r Nrr0 + 2nrnθ Nrθ0 + n2θ Nθθ0 � 0 (23)

Either − nθu + nrv � 0 or nrnθ (Nθθ0 − Nrr0) + (n2r − n2θ )Nrθ0 � 0 (24)

where (nr , nθ ) are the radial and circumferential components of the unit normal to the boundaries of the
EA/ESA plate, respectively. Also, Nrr0, Nθθ0 and Nrθ0 are defined as⎡

⎣ Nrr0
Nθθ0
Nrθ0

⎤
⎦ �

∫ h
2

− h
2

⎧⎨
⎩

σrr0 + σTr0
σθθ0 + σT θ0

σrθ0

⎫⎬
⎭dz (25)

When the free vibration of the structure (with initial displacements) is to be investigated, the following
formulations for the displacement field are suggested.

ur � u(r, θ) + û(r, θ, z, t),

uθ � v(r, θ) + v̂(r, θ, z, t),

uz � ŵ(r, θ, t). (26)

in which (u, v) are already defined from Eqs. 18 and 19. However, according to the higher-order shear
theory, (û, v̂, ŵ) can be expressed such that [61]:

û � u(r, θ, t) + f (z)ϕr (r, θ, t) + g(z)ψr (r, θ, t),

v̂ � v(r, θ, t) + f (z)ϕθ (r, θ, t) + g(z)ψθ (r, θ, t),

ŵ � w(r, θ, t). (27)

In Eq. 27, (u, v, w) are the displacement components in the direction of (r, θ ) for the material point on
the mid-surface of the EA/ESA plate where z � 0. (ϕr , ϕθ ) are the rotations of transverse normal around
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the (θ, r ). Considering the warping of the plate, two other degrees of freedom are introduced as (ψr , ψθ ).
Functions ( f, g) are formulated based on the third-order shear deformation theory given as follows:

f (z) � z − 4z3

3h2
, g(z) � − 4z3

3h2
(28)

According to the cylindrical coordinate system, the strain–displacement elements (upon which the out-of-
plane oscillation phenomenon is to be investigated) with nonzero values can be expressed as [59]:

εrr � ∂ û

∂r
, εrrn � 1

2

(
∂ŵ

∂r

)2

, εθθ � û

r
+
1

r

∂v̂

∂θ
, εθθn � 1

2r2

(
∂ŵ

∂θ

)2

,

γrθ � 1

r

∂ û

∂θ
− v̂

r
+

∂v̂

∂r
, γrθn � 1

r

∂ŵ

∂r

∂ŵ

∂θ
, γr z � ∂ û

∂z
+

∂ŵ

∂r
, γθ z � ∂v̂

∂z
+
1

r

∂ŵ

∂θ
. (29)

Notations without subscript n are connected to the linear strain components, whereas the other notations
with n are the nonlinear ones.

Once again, the Hamilton’s principle is applied so that:

t2∫
t1

(δT − δU )dt � 0 (30)

In Eq. 30, δT and δU are, respectively, the variations of kinetic and potential energy [45], written as:

δT �
∫



ρ

{(
∂ur
∂t

− �uθ

)(
∂δû

∂t
− �δv̂

)
+

[
�(r + ur ) +

∂uθ

∂t

](
�δûr +

∂δv̂

∂t

)
+

∂ŵ

∂t

∂δŵ

∂t

}
d
 (31)

And

δU �
∫



(σrrδεrr + σrr0δεrrn + σθθ δεθθ + σθθ0δεθθn + σrθ δγrθ + σrθ0δγrθn + σr zδγr z + σθ zδγθ z)d
 (32)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σrr
σθθ

σrθ
σr z
σθ z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εrr
εθθ

γrθ
γr z
γθ z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(33)

Introducing (31, 32 and 33) and (29) in (30), along with the integration by parts, results in the following
equations for the translational, rotational and warping degrees of freedom.

δu :

Nrr

r
+

∂Nrr

∂r
− Nθθ

r
+
1

r

∂Nrθ

∂θ
+ m1�

2u + m f �
2ϕr + mg�

2ψr � m1
∂2u

∂t2
− 2m1�

∂v

∂t
− 2m f �

∂ϕθ

∂t

−2mg�
∂ψθ

∂t
+ m f

∂2ϕr

∂t2
+ mg

∂2ψr

∂t2

(34)

δv :

2Nrθ

r
+

∂Nrθ

∂r
+
1

r

∂Nθθ

∂θ
+ m1�

2v + m f �
2ϕθ + mg�

2ψθ � m1
∂2v

∂t2
+ 2m1�

∂u

∂t
− 2m f �

∂ϕr

∂t

−2mg�
∂ψr

∂t
+ m f

∂2ϕθ

∂t2
+ mg

∂2ψθ

∂t2

(35)

δw :

Nrr0
∂2w

∂r2
+

(
Nrr0

r
+

∂Nrr0

∂r
+
1

r

∂Nrθ0

∂θ

)
∂w

∂r
+
Nθθ0

r2
∂2w

∂θ2
+

(
1

r

∂Nrθ0

∂r
+

1

r2
∂Nθθ0

∂θ

)
∂w

∂θ



Vibration of rotating porous nanocomposite eccentric semi-annular and annular plates… 1587

+
2Nrθ0

r

∂2w

∂r ∂θ
+

∂Qrz

∂r
+
1

r

∂Qθ z

∂θ
+
Qrz

r
� m1

∂2w

∂t2
(36)

δϕr :

∂Mrr

∂r
+
Mrr

r
+
1

r

∂Mrθ

∂θ
− Mθθ

r
− Rrz + m f �

2u + m f f �
2ϕr + m fg�

2ψr � m f
∂2u

∂t2
+ m f f

∂2ϕr

∂t2
+ m fg

∂2ψr

∂t2

− 2m f �
∂v

∂t
− 2m f f �

∂ϕθ

∂t
− 2m fg�

∂ψθ

∂t
(37)

δψr :

∂Prr
∂r

+
Prr
r

+
1

r

∂Prθ
∂θ

− Pθθ

r
− Trz + mg�

2u + m fg�
2ϕr + mgg�

2ψr � mg
∂2u

∂t2
+ m fg

∂2ϕr

∂t2
+ mgg

∂2ψr

∂t2

− 2mg�
∂v

∂t
− 2m fg�

∂ϕθ

∂t
− 2mgg�

∂ψθ

∂t
(38)

δϕθ :

∂Mrθ

∂r
+
2Mrθ

r
+
1

r

∂Mθθ

∂θ
− Rθ z + m f �

2v + m f f �
2ϕθ + m fg�

2ψθ � m f
∂2v

∂t2
+ m f f

∂2ϕθ

∂t2
+ m fg

∂2ψθ

∂t2

+ 2m f �
∂u

∂t
+ 2m f f �

∂ϕr

∂t
+ 2m fg�

∂ψr

∂t
(39)

δψθ :

∂Prθ
∂r

+
2Prθ
r

+
1

r

∂Pθθ

∂θ
− Tθ z + mg�

2v + m fg�
2ϕθ + mgg�

2ψθ � mg
∂2v

∂t2
+ m fg

∂2ϕθ

∂t2
+ mgg

∂2ψθ

∂t2

+ 2mg�
∂u

∂t
+ 2m fg�

∂ϕr

∂t
+ 2mgg�

∂ψr

∂t
(40)

Corresponding natural and essential boundary conditions for the obtained equations of motion are:

Either un � nru + nθ v � 0 or Nnn � n2r Nrr + 2nrnθ Nrθ + n2θ Nθθ � 0

Either us � −nθu + nrv � 0 or Nns � (n2r − n2θ )Nrθ + nrnθ (Nrr − Nθθ ) � 0

Either w � 0 or Qnz � nr Qrz + nθ Qθ z � 0

Either ϕn � nrϕ
r + nθϕ

θ � 0 or Mnn � n2r Mrr + 2nrnθ Mrθ + n2θ Mθθ � 0

Either ϕs � −nθϕ
r + nrϕ

θ � 0 or Mns � (n2r − n2θ )Mrθ + nrnθ (Mrr − Mθθ ) � 0

Either ψn � nrψ
r + nθψ

θ � 0 or Pnn � n2r Prr + 2nrnθ Prθ + n2θ Pθθ � 0

Either ψs � −nθψ
r + nrψ

θ � 0 or Pns � (n2r − n2θ )Prθ + nrnθ (Prr − Pθθ ) � 0 (41)

where ⎡
⎣ Nrr Mrr Prr
Nθθ Mθθ Pθθ

Nrθ Mrθ Prθ

⎤
⎦ �

∫ h
2

− h
2

⎧⎨
⎩

σrr
σθθ

σrθ

⎫⎬
⎭
[
1 f g

]
dz (42)

[
Qrz Rrz Trz
Qθ z Rθ z Tθ z

]
�
∫ h

2

− h
2

{
σr z
σθ z

}[
1 f g

]
dz (43)

The compatibility conditions for the annular plate whose coupling sector exists at θ � (0, 2π) can be
defined such that:

μ(r, 0, t) � μ(r, 2π, t) for μ � (
u, v, w, ϕr , ϕθ , ψr , ψθ

)
Qnz(r, 0, t) � Qnz(r, 2π, t),

μnn(r, 0, t) � μnn(r, 2π, t), μns(r, 0, t) � μns(r, 2π, t) for μ � (N , M, P) (44)

Also, for the boundary conditions we have:
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Clamped,

un � 0, us � 0, w � 0, ϕn � 0, ϕs � 0, ψn � 0, ψs � 0 (45)

Simple supported,

un � 0, us � 0, w � 0, Mnn � 0, ϕs � 0, Pnn � 0, ψs � 0 (46)

and free,

Nnn � 0, Nns � 0, Qnz � 0, Mnn � 0, Mns � 0, Pnn � 0, Pns � 0. (47)

2.4 The TDQ algorithm for discretization

Recently, variety of numerical techniques are employed for mechanical structures with complex motion for-
mulations. These methods, which can be used for solving differential equations, are available mostly by
the name of generalized differential quadrature [62], harmonic differential quadrature [63], or mixed finite
element-differential quadrature method. Thus, Differential Quadrature (DQ) is a numerical tool which is
highly applicable in discretizing linear governing equations or nonlinear ones, accompanied by the corre-
sponding boundary conditions. However, the need for a more systematic procedure in solving equations for
structures—with variety of shapes, led to an extended version of DQ method called TDQM, which is capable
of determining DQ weighting coefficients in such way that the discretization of both the governing equations
and the corresponding boundary conditions happens in the physical domain directly.

In order to achieve this, a suitable conformal mapping is employed as follows, which is capable of analyti-
cally transforming the proposed plates (both annular and semi-annular) with eccentricity into the new geometry
without eccentricity. This transformation is geometrically depicted in Fig. 3.

L � Ẑ

c Ẑ + 1
+ d (48)

in which L � r + jθ (where j � √−1) is the complex variable of the physical domain and Ẑ � ξ + jη
is taken as the complex variable of the computational domain in which the weighting coefficients are to be
obtained. In Eq. 48:

c � e√
e4 − 2e2

(
a2 + b2

)
+
(
b2 − a2

)2 , d � cb̂2

1 −
(
cb̂
)2 (49)

The transferred domain has the inner and outer radius b̂ and â, respectively; these two notations are
dependent on the in-plane geometrical characteristics of the main annular model.

â �
√
4c2b2 + 1 − 1

2c2b
, b̂ �

√
4c2a2 + 1 − 1

2c2a
(50)

By inserting L � r + jθ and Ẑ � ξ + jη in Eq. 48, the real and imaginary parts can be separated as follows:

r �
√[

cξ2(cd + 1) + ξ (2cd + 1) cos η + d
]2 + ξ2 sin2 η

c2ξ2 + 2cξ cos η + 1
(51)

θ � tan−1
[

ξ sin η

cξ2(cd + 1) + ξ (2cd + 1) cos η + d

]
(52)

The chain rule of derivative gives the following relations of transformation, which relate physical coordi-
nates (r, θ ) to the computational coordinates (ξ, η).{

∂μ
∂r
∂μ
∂θ

}
�
[
T11 T12
T21 T22

]{ ∂μ
∂ξ
∂μ
∂η

}
(53)
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in which μ is an arbitrary function; Tij (for i,j � 1, 2) are obtained as follows:

[
T11 T12
T21 T22

]
�
[

∂r
∂ξ

∂θ
∂ξ

∂r
∂η

∂θ
∂η

]−1

(54)

Regarding the DQM, the number of radial and circumferential grid points (in the computational domain)
are taken as Nξ and Nη, respectively. The grids are generated based on the Gauss Lobatto Chebyshev; thus we
have:

ξi � b̂ +
(â − b̂)

2

{
1 − cos

[
(i − 1)π

Nξ − 1

]}
, η j � π

k

{
1 − cos

[
( j − 1)π

Nη − 1

]}
for k �

{
1 EA
2 ESA ,

i � 1, 2, ..., Nξ , j � 1, 2, ..., Nη.

(55)

The first-order derivatives of μ � (u, v, w, φr , φθ , ψr , ψθ ) at the point (ri , θ j ) are derived based on DQM
in the physical domain. So, we have:

(
∂μ

∂r

)
i j

�
Nr�Nξ∑
p�1

Nθ�Nη∑
q�1

Ãr
i j pqμpq ,

(
∂μ

∂θ

)
i j

�
Nr�Nξ∑
p�1

Nθ�Nη∑
q�1

Ãθ
i j pqμpq (56)

in which

Ãr
ipjq � (T11)i j A

ξ
i pδ jq + (T12)i jδi p A

η
jq ,

Ãθ
i pjq � (T21)i j A

ξ
i pδ jq + (T22)i jδi p A

η
jq

(57)

In Eq. 57, the transformed weighting coefficients Ãr
ipjq and Ãθ

i pjq are introduced, in which Aγ

i j (γ � ξ, η)
illustrate the first-order weighting coefficients along the direction of γ � (ξ, η); also, δi j is Kronecker delta.

The discretization of the second-order derivatives (in the physical domain at the point (ri , θ j )) is formulated
using the similar procedure, as follows:

(
∂2μ

∂r2

)
i j

�
Nr�Nξ∑
p�1

Nθ�Nη∑
q�1

B̃r
i j pqμpq ,

(
∂2μ

∂θ2

)
i j

�
Nr�Nξ∑
p�1

Nθ�Nη∑
q�1

B̃θ
i j pqμpq ,

(
∂2μ

∂r∂θ

)
i j

�
Nr�Nξ∑
p�1

Nθ�Nη∑
q�1

B̃rθ
i j pqμpq (58)

Including the coefficients from Eq. 57, the transformed coefficients related to the second-order derivatives
are expressed such that:

B̃r
ipjq �

Nr∑
k�1

Nθ∑
l�1

Ãr
ik jl Ã

r
kplq , B̃rθ

i pjq �
Nr∑
k�1

Nθ∑
l�1

Ãr
ik jl Ã

θ
kplq ,

B̃θ
i pjq �

Nr∑
k�1

Nθ∑
l�1

Ãθ
ik jl Ã

θ
kplq (59)

Now, the initial displacements (u, v) can be discretized based on the mentioned rules of TDQM. So, we
have:

δu :
Nr∑
p�1

Nθ∑
q�1

{(
H11 Ã

ri j
i pjq

ri j
+
H66 B̃θ

i pjq

r2i j
+ H11 B̃

ri j
i pjq − H22δ̃i pjq

r2i j

)
u pq

+

[
−
(
H22

r2i j
+
H66

r2i j

)
Ãθ
i pjq +

H12 B̃rθ
i pjq

ri j
+
H66 B̃rθ

i pjq

ri j

]
v pq

}
�
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− NT θ0

ri j
+
NTr0

ri j
− m1�

2(ri j + ui j ) (60)

δv :
Nr∑
p�1

Nθ∑
q�1

{[(
H22

r2i j
+
H66

r2i j

)
Ãθ
i pjq +

H12 B̃rθ
i pjq

ri j
+
H66 B̃rθ

i pjq

ri j

]
u pq

+

(
H66 Ã

ri j
i pjq

ri j
+
H22 B̃θ

i pjq

r2i j
+ H66 B̃

ri j
i pjq − H66δ̃i pjq

r2i j

)
v pq

}
� −m1�

2vi j (61)

in which ri j �
√[

cξ2i (cd + 1) + ξi (2cd + 1) cos η j + d
]2

+ ξ2i sin
2 η j

/
(c2ξ2i + 2cξi cos η j + 1). With the

similar manner, the discretized form for Eqs. 34, 35, 36, 37, 38, 39 and 40 is presented as follows:

δu :

Nr∑
p�1

Nθ∑
q�1

{(
H66 B̃θ

i pjq

r2i j
+ H11 B̃

ri j
i pjq +

H11 Ã
ri j
i pjq

ri j
+ m1�

2δ̃i pjq − H22δ̃i pjq

r2i j

)
u pq

+

(
H12 B̃rθ

i pjq

ri j
+

H66 B̃rθ
i pjq

ri j
− H22 Ãθ

i pjq

r2i j
− H66 Ãθ

i pjq

r2i j

)
vpq

+

⎛
⎝ H f

11 Ã
ri j
i pjq

ri j
+ H f

11 B̃
ri j
i pjq +

H f
66 B̃

θ
i pjq

r2i j
+ m f �

2δ̃i pjq − H f
22δ̃i pjq

r2i j

⎞
⎠ϕr

pq+

(
Hg
11 Ã

ri j
i pjq

ri j
+ Hg

11 B̃
ri j
i pjq +

Hg
66 B̃

θ
i pjq

r2i j
+ mg�

2δ̃i pjq − Hg
22δ̃i pjq

r2i j

)
ψr

pq+

⎛
⎝ H f

12 B̃
rθ
i pjq

ri j
+

H f
66 B̃

rθ
i pjq

ri j
− H f

22 Ã
θ
i pjq

r2i j
− H f

66 Ã
θ
i pjq

r2i j

⎞
⎠ϕθ

pq +

(
Hg
12 B̃

rθ
i pjq

ri j
+

Hg
66 B̃

rθ
i pjq

ri j
− Hg

22 Ã
θ
i pjq

r2i j
− Hg

66 Ã
θ
i pjq

r2i j

)
ψθ

pq

}

� m1

(
∂2u

∂t2

)
i j

− 2m1�

(
∂v

∂t

)
i j

− 2m f �

(
∂ϕθ

∂t

)
i j

− 2mg�

(
∂ψθ

∂t

)
i j
+ m f

(
∂2ϕr

∂t2

)
i j
+ mg

(
∂2ψr

∂t2

)
i j

(62)

Note that only δu is shown above; the rest of the discretized equations can be pursued in Appendix B.
One is able to compress the motion equations and the boundary conditions into a matrix. Hence, for the

initial displacements Eq. 60 and 61, we have:[
Kuu Kuv

Kvu Kvv

]{
u
v

}
�
{
Fu
Fv

}
(63)

where (Kuu, Kuv, Kvu, Kvv) are the initial stiffness elements and (Fu, Fv) are the body forces. In addition,
the equations of motion in Eqs. 62, 68, 69, 70, 71, 72 and 73 are presented as follows:

[
Kdb

]{Ub} +
[
Kdd

]{Ud} + [M]

{
d2Ud

dt2

}
� 0 (64)

where {Ui } �
[
{ui }T {vi }T {wi }T

{
ϕr
i

}T {
ϕθ
i

}T {
ψr
i

}T {
ψθ
i

}T ] T with i � b and d. Also,
[
Ki j

]
and [M]

with (i, j � b, d) are the stiffness and mass matrices, respectively. Above, the subscripts b and d are short
forms for the boundary and the domain, respectively. Also, for the boundary conditions we have:

[Kbb]{Ub} + [Kbd ]{Ud} � 0 (65)

By replacing Eq. 65 into 64, it is possible to omit Ub, so that the following algebraic eigenvalue problem
emerges from which the natural frequencies of the FG-GRC eccentric annular or semi-annular plate, as well
as its mode shapes, can be obtained.(

[K ] − ω2
i [M]

){
Ûd

}
� 0, for i � 1, 2, 3, ... (66)

In Eq. 66, [K ] � [
Kdd

]−[Kdb][Kbb]−1[Kbd ]. Additionally, it is important tomention that Eq. 66 is derived
based on the harmonic essence of the motion and as a result, ωi for i � 1,2,3, … is the ith natural frequency

of the plate and
{
Ûd

}
are the corresponding mode shape of the proposed oscillating model, respectively.
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Table 1 Comparing the convergence rate of a C–C–F–F nonrotating and nonporous FG-GRC-ESA platewith uniform distribution
of graphene platelets at various temperature difference; (a � 1 m, h

/
a � 0.01, b

/
a � 0.3,
GPL � 0.01). The frequencies ωi

for i � 1,2,3 and 4 are in Hz, and the temperature difference �T is in Celsius

Nr �
Nθ

e
/
a � 0 e

/
a � 0.2e

/
a � 0.2

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

11 �T � 0 108.031 110.431 119.033 136.860 65.2650 89.3510 124.987 172.766
13 108.068 110.414 119.149 136.926 72.1222 103.952 137.629 167.075
17 108.120 110.380 119.299 136.909 70.3181 100.857 136.300 172.633
21 108.147 110.364 119.377 136.911 69.9903 100.144 136.065 172.428
23 108.155 110.359 119.400 136.910 70.2780 100.190 136.115 172.562
25 108.162 110.353 119.418 136.909 70.4151 100.234 136.165 172.677
27 108.166 110.348 119.431 136.906 70.4262 100.234 136.179 172.735
ABAQUS 108.591 110.434 119.840 137.362 69.9174 110.173 136.280 172.982
11 �T � 15 84.3396 87.9572 94.6199 110.479 49.2370 63.7475 95.2978 143.063
13 84.3614 87.9758 94.8247 110.873 51.4311 81.0877 116.248 140.787
17 84.3788 87.985 95.0144 110.847 50.0796 76.3176 108.887 143.936
21 84.3836 87.9752 95.0846 110.835 49.5281 75.2894 108.831 144.498
23 84.3813 87.9651 95.1031 110.834 49.8280 75.2875 108.826 144.551
25 84.3811 87.9547 95.1028 110.804 49.9812 75.3227 108.878 144.663
27 84.3727 87.9547 95.1158 110.801 49.9948 75.3101 108.888 144.698
ABAQUS 83.9612 87.5201 94.8281 110.702 49.6940 75.7541 145.793 168.894
11 �T � 30 42.2231 49.5534 60.3905 74.8027 40.5229 40.5229 103.966 138.285
13 42.3110 49.0925 60.5680 77.1551 38.4899 86.1322 113.064 133.848
17 42.2824 49.1711 60.6786 76.7369 34.7174 70.1274 106.137 141.852
21 42.2779 49.1687 60.6969 76.6833 30.9097 69.6030 108.012 140.598
23 42.2699 49.1494 60.6842 76.6701 30.8895 69.5521 107.954 139.401
25 42.2912 49.1471 60.6802 76.6124 30.9144 69.6137 108.088 138.996
27 42.2177 49.1147 60.6875 76.5820 30.8562 69.6088 108.084 138.738
ABAQUS 42.5480 49.3912 60.9391 77.0460 32.3231 71.0642 109.830 141.402

Table 2 Comparing the convergence rate of a C-F nonporous FG-GRC annular plate with uniform distribution of graphene
platelets at various rotating speed � (rad/s); (a � 1 m, h

/
a � 0.01, b

/
a � 0.3, �T � 0, 
GPL � 0.01). The frequencies ωi

for i � 1,2,3 and 4 are in Hz, and the temperature difference �T is in Celsius

Nr � Nθ � � 0 � � 100

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

11 15.9047 15.9048 16.1195 19.2282 23.9871 25.2618 25.2619 30.9973
13 15.8485 15.8486 16.1046 19.0365 23.9605 25.2052 25.2052 30.8656
17 15.8317 15.8317 16.1060 18.9609 23.9616 25.1942 25.1942 30.8162
21 15.8272 15.8272 16.1073 18.9343 23.9634 25.1929 25.1929 30.8011
23 15.8251 15.8251 16.1070 18.9256 23.9629 25.1915 25.1915 30.7959
25 15.8226 15.8226 16.1061 18.9180 23.9615 25.1894 25.1894 30.7911
27 15.8196 15.8196 16.1046 18.9109 23.9593 25.1866 25.1866 30.7861
ABAQUS 15.8791 15.8790 16.3122 18.6823 23.9950 23.1352 25.1361 30.5834
Nr � Nθ � � 150 � � 200

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

11 31.0032 33.3734 33.3735 41.2065 38.6240 42.1074 42.1075 52.2296
13 30.9571 33.3020 33.3020 41.0906 38.5431 42.0059 42.0059 52.1122
17 30.9563 33.2913 33.2913 41.0491 38.5376 41.9919 41.9919 52.0722
21 30.9585 33.2914 33.2914 41.0387 38.5402 41.9929 41.9929 52.0647
23 30.9579 33.2903 33.2903 41.0349 38.5393 41.9919 41.9919 52.0617
25 30.9560 33.2882 33.2882 41.0310 38.5370 41.9896 41.9896 52.0583
27 30.9532 33.2851 33.2851 41.0267 38.5335 41.9862 41.9862 52.0543
ABAQUS 29.3210 32.9321 32.9335 40.9371 38.3570 41.7962 41.7961 51.8294
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Table 3 Comparison study of the fundamental dimensionless frequency ω � 4
√

ω2 12m1a4(1−υ2)
Eh3

[4]ω2 12m1a4(1−υ2)
Eh3

for the EA

plates in terms of various boundary conditions and eccentricity parameter; (b
/
a � 0.3, h

/
a � 0.01, 
GPL � 0, e0� 0,υ �

0.3�T � 0, � � 0)

Method C–C C-F

e
/
a � 0 e

/
a � 0.1 e

/
a � 0.2 e

/
a � 0 e

/
a � 0.1 e

/
a � 0.2

Present 6.7287 6.0884 5.5317 2.5618 2.2939 2.0635
FSDT [26] 6.7285 6.0884 5.5098 2.5590 2.2986 2.0660
CPT [65] 6.730 6.092 5.514 2.515 2.299 2.068
ABAQUS 6.7421 6.0949 5.5136 2.5601 2.2985 2.0659

(4564)* (4484) (4446) (4564) (4484) (4446)

*Total number of (S4R) elements

Table 4 Fundamental frequency (Hz) of an FG-GRC-ESA plate;(a � 1 m, h
/
a � 0.01, b

/
a � 0.3, � � 100 rad

/
s,
GPL �

0.01)

C–C–C–C C–C–F–F

e
/
a � 0 e

/
a � 0.1 e

/
a � 0.2 e

/
a � 0 e

/
a � 0.1 e

/
a � 0.2

e0 � 0
Type-A 125.043 115.923 105.257 119.265 95.5723 77.1887
Type-B 110.836 102.760 93.3004 105.570 84.4663 67.6660
Type-C 113.020 104.766 95.1104 107.685 86.1751 69.1288
Type - I, e0 � 0.5
Type-A 123.070 114.114 103.616 117.311 93.8425 75.9727
Type-B 109.928 101.942 92.5743 104.673 83.6951 67.4008
Type-C 112.852 104.616 94.9800 107.523 85.9882 69.3668
Type - II, e0 � 0.5
Type-A 112.702 104.534 94.9483 107.380 85.9651 69.2851
Type-B 99.8229 92.5876 84.0934 94.9793 75.9651 60.7334
Type-C 102.571 95.1019 86.3551 97.6584 78.0945 62.5603

Table 5 Fundamental frequency (Hz) of an FG-GRC-EA plate (Type-A) with the porosity being symmetrically distributed at
various rotating speed � (rad/s); (a � 1 m, h

/
a � 0.01, b

/
a � 0.3, e

/
a � 0.2, e0 � 0.5). The temperature difference �T is

in Celsius

�T B.Cs. 
GPL � 0.015 
GPL � 0.02

� � 50 � � 100 � � 200 � � 50 � � 100 � � 200

5° C - C 214.593 214.344 213.345 233.990 233.760 232.835
C - S 161.391 160.549 157.135 175.996 175.222 172.087
C - F 43.1334 46.7066 58.6353 46.7706 50.0914 61.4184

10° C - C 210.719 210.465 209.447 230.147 229.913 228.972
C - S 156.615 155.747 152.223 171.261 170.464 167.238
C - F 43.4245 46.9739 58.8432 47.0872 50.3855 61.6531

3 Numerical results

In this section, the information regarding the free vibration of the FG-GRC plate, along with a complete
parameter study, is provided in diverse ways. To apply the numerical approach, the following values are
assumed for both the geometric parameters and material properties of the graphene platelets (according to Yas
and Rahimi [64]).

GPLs

{
lGPL � 2.5μm, wGPL � 1.5μm, tGPL � 1.5 nm,

ρGPL � 1062.5 Kgm−3, EGPL � 1.01TPa, νGPL � 0.186, αGPL � −3.75 × 10−6K−1

In addition, the polymer matrix is made of copper with the following material properties in the room
temperature [64].

Matrix
{
ρm � 8960 Kg m−3, Em � 130 GPa, νm � 0.34, αm � 17 × 10−6K−1
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Table 6 Fundamental frequency (Hz) of a rotating FG-GRC-EA plate (Type-A) with the porosity being asymmetrically dis-
tributed; (a � 1 m, � � 100 rad

/
s, �T � 10◦, e0 � 0.5)


GPL h
/
a e

/
b � 0.2 e

/
b � 0.4

b
/
a � 0.1 b

/
a � 0.2 b

/
a � 0.4 b

/
a � 0.1 b

/
a � 0.2 b

/
a � 0.4

0.5% 0.01 8.40770 19.2577 50.2112 8.08750 14.1304 36.0849
0.05 174.533 215.445 337.339 170.391 201.065 278.594
0.1 333.460 409.410 625.208 326.092 383.817 523.672

1% 0.01 15.4421 28.5898 61.5411 13.3555 23.9805 45.9820
0.05 200.418 247.278 386.678 195.680 230.833 319.551
0.1 380.570 467.168 712.125 372.247 438.133 597.152

2% 0.01 28.3517 41.6923 79.6884 26.5737 36.7627 61.390
0.05 243.424 300.183 468.724 237.699 280.304 387.641
0.1 458.795 563.125 856.758 448.886 528.352 719.320

Fig. 4 Mode shapes of aC - Cporous FG-GRC-EAplate,with symmetrical dispersion of graphene platelets (Type-A) and porosity
(Type-I);(a � 1 m, h

/
a � 0.01, b

/
a � 0.3, e

/
a � 0.2, � � 0, �T � 0, e0 � 0.5, 
GPL � 0.01, Nr � Nθ � 43); a first

mode, b second mode, c third mode and d forth mode

In the presented study, a complete eccentric annular and half-circle eccentric sector plate (semi-annular)
are discussed. The boundary condition of the annular plate is identified using the two initials of the inner and
outer boundary (arc) conditions; for example, the boundary condition for an EA plate with clamped inner arc
and free outer arc is noted as C - F. The first two letter of the boundary condition for the ESA plate can also
be noted with the similar manner; in addition, the notation is followed by the initials related to the conditions
at θ � 0 and θ � π , respectively. Only then the ESA plate’s boundary condition is fully identified. By means
of example, for an ESA plate with clamped inner semicircle, free outer semicircle, simple boundary at θ � 0
and free boundary at θ � π , the boundary condition is noted as C-F-S-F.
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Fig. 5 Mode shapes of aC - F porous FG-GRC-EAplate, with symmetrical dispersion of graphene platelets (Type-A) and porosity
(Type-I); (a � 1 m, h

/
a � 0.01, b

/
a � 0.3, e

/
a � 0.2, � � 0, �T � 0, e0 � 0.5, 
GPL � 0.01, Nr � Nθ � 43); a first

mode, b second mode, c third mode and d forth mode

Fig. 6 Mode shapes of a C - C - C - C porous FG-GRC-ESA plate, with symmetrical dispersion of graphene platelets (Type-A)
and porosity (Type-I); (a � 1 m, h

/
a � 0.01, b

/
a � 0.3, e

/
a � 0.2, � � 0, �T � 0, e0 � 0.5, 
GPL � 0.01, Nr �

Nθ � 43); a first mode, b second mode, c third mode and d forth mode
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Fig. 7 Mode shapes of a C - F - C - C porous FG-GRC-ESA plate, with symmetrical dispersion of graphene platelets (Type-A)
and porosity (Type-I); (a � 1 m, h

/
a � 0.01, b

/
a � 0.3, e

/
a � 0.2, � � 0, �T � 0, e0 � 0.5, 
GPL � 0.01, Nr �

Nθ � 43); a first mode, b second mode, c third mode and d forth mode

In Table 1, the convergence of the natural frequencies (Hz) of an ESA plate is investigated. The authenticity
of the results is established using the numerical software suite called ABAQUS, whose computational analysis
is performed based on finite element methods. The convergent simulation’s results are conducted using 1564
elements whose type is chosen to be ‘S4RT’. The simulation has been carried out to verify the accuracy
of the problem in a limited case (uniform distribution of GPLs) with the presence of thermal environment.
Only the temperature difference is considered, and the rotating is assumed to be zero. For this purpose, the
solver “coupled temp-displacement (steady-state)” is used. After applying each of this effect, a frequency
analysis is performed on the ESA plate to calculate the frequencies of the system under the applied conditions.
The model is considered neither porous nor revolving. However, the graphene is distributed uniformly based
on Type-C (Eq. 8) and the boundary condition is introduced as C-C-F-F. Table 1 contains the data for the
first four natural frequencies, which are in good agreement with those obtained from ABAQUS—either with
(e/a � 0.2) or without (e/a � 0) eccentricity; this is also applied to those results when �T varies from 0
to 15, and then 30 degrees. The rate of convergence is considered to be good—based on the given number of
node—although for higher frequencies the rate of convergence seems to decrease slightly when the eccentricity
appears (e/a � 0.2). Overall, the natural frequencies, especially the fundamental frequencies, decline when
the eccentricity or the temperature difference increases.

Table 2 shows the convergence of the natural frequencies (Hz) of an annular plate with rising rotating
speed when the temperature difference �T , and the eccentricity e, are assumed zero. This rise in rotating
speed causes the natural frequencies to increase. What is more, the given results are in good agreement with
those obtained from ABAQUS—using the element type ‘S4R’; nonetheless, the total number of elements for
the annular plate to have yielded convergent results is 4564. Another simulation has been conducted to verify
the accuracy of the problem in which the rotating speed is taken into account, while the temperature difference
is zero. In the loading part of the software, a distributed uniform centrifugal force is defined as rotational body
force to evaluate the rotating effect on the annular plate. Next, a further frequency analysis is simulated on the
annular plate.

Regarding the validation of the proposedmethod, the results of the non-dimensional fundamental frequency
are compared with two sets of data from the literature [34, 65], and those obtained from simulation using
ABAQUS (with the prescribed number and type of elements), are presented in Table 3. The comparison
is performed for two different boundary conditions, along with various values for eccentricity parameter.
Eventually, it is obviously confirmed that results of the current study are in close agreement with the other
approaches.
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(a) (b)

(c)

Fig. 8 The influence of temperature difference and eccentricity on the fundamental natural frequency of a rotating FG-GRC-
EA plate with symmetrical porosity (Type-I) and C–C boundary conditions; the temperature difference �T is in Celsius.(a �
1 m, h

/
a � 0.01, b

/
a � 0.3, � � 100 rad/s, e0 � 0.5, 
GPL � 0.01); a Type-A, b Type-B and c Type-C

In Table 4, the fundamental frequency (Hz) of a rotating ESA plate in variety of circumstances under
two different boundary conditions is investigated. It is deduced from Table 4 that for both of the presented
boundary conditions, the increase in the eccentricity parameter e has led to the drop in frequency regardless
of the graphene distribution. This is also true when the porosity is included in the investigations. Additionally,
significant reduction in the fundamental frequency is observed when the distribution of the porosity varies
from the symmetrical pattern (Type-I) to the asymmetrical one (Type-II). The role of graphene distribution
is also crucial when identifying the natural frequencies. It can be seen that the lowest value and the highest
in each set of data belong to the Type-B (whose pattern is considered non-uniform and asymmetrical) and
Type-A (with non-uniform, yet symmetrical distribution), respectively.

In Table 5, the fundamental frequency (Hz) of the EA plate with porosity Type-I and graphene Type-A
is presented. It is inferred from Table 5 that by increasing the volume fraction 
GPL , the frequency for the
corresponding rotating speed adds up. On the other side, the rise in�T mostly affects the boundary conditions
C-C and C-S, whereas its influence on C-F is subtle. In contrast, the rise in � appears to have the major effect
on the boundary condition C-F, rather than the other two. In Table 6, changes in fundamental frequency (Hz) of
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(a) (b)

(c) (d)

Fig. 9 The influence of rotating speed (rad/s) on the first four natural frequencies of an FG-GRC-EA plate with C-F boundary
condition and symmetrical dispersion of porosity (Type-I) and graphene platelets (Type-A); (a � 1 m, h

/
a � 0.01, b

/
a �

0.3, �T � 0, e0 � 0.2, 
GPL � 0.01); a e
/
a � 0, b e

/
a � 0.05, c e

/
a � 0.15 and d e

/
a � 0.2

a clamped-simple rotating EA plate in terms of the various geometrical parameters are presented. The porosity
and the graphene dispersion are considered asymmetrical and symmetrical, respectively. Accordingly, it is clear
that the growth in plate’s thickness h causes the natural frequency to rise; similarly, the same phenomenon
happens when the volume fraction 
GPL changes from 0.5 to 2 percent. On the other hand, Table 6 displays
a vivid decline of the natural frequency when either the inner radius shrinks, or the outer radius enlarges.
Moreover, when the off-center hole is relocated to a farther distance from the center, the frequency drops.

The first four mode shapes of a porous FG-GRC-EA plate are displayed in Figs. 4 and 5. The model in
Figs. 4 and 5 has symmetrical dispersion of graphene and porosity. The boundary conditions vary from Fig. 4
(C–C) to Fig. 5 (C–F). Similar assumptions are made in order to, graphically, express the first four mode shapes
of a porous FG-GRC-ESA plate (Figs. 6 and 7). The applied boundary conditions are C-C-C-C for Fig. 6 and
C-F-C-C for Fig. 7. In Fig. 8, the variation of the fundamental natural frequency (Hz) versus temperature
difference �T is presented for a rotating FG-GRC-EA plate, which has C–C boundary condition and Type-I
porosity. As we can see in Fig. 8, the growth in temperature difference causes the fundamental frequency to
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(a) (b)

Fig. 10 The influenceof the geometry on the fundamental natural frequencyof a nonrotatingFG-GRC-ESAplatewith symmetrical
dispersion of porosity (Type-I) and graphene platelets (Type-A); the temperature difference �T is in Celsius.(a � 1 m, h

/
a �

0.01, �T � 0, � � 0, e0 � 0.5, 
GPL � 0.01); a C–C–F–F and b C–F–F–F

drop, regardless of the change in the distribution of graphene platelets. Furthermore, increasing the eccentricity
reduces the fundamental frequency.When it comes to the influence of graphene platelets, one is able to see that
distribution Type-A marks higher range of fundamental frequencies in comparison with Type-B and Type-C.

In Fig. 9, the effect of the rotating speed on the first four natural frequencies of an FG-GRC-EA plate
is investigated. For the given C-F boundary condition, the rise in rotating speed � (rad/s) appears to have
increased all the four natural frequencies. Another major point is that the third and fourth natural frequencies
experience a significant drop when the eccentric parameter varies from zero to a small amount (e

/
a � 0.05);

however, once the eccentricity continues to grow, the third and fourth natural frequencies tend to increase.
Nevertheless, this is not the case for the first and second frequencies since gradual decrease is recorded for
both when the eccentricity increases.

Figure 10 illustrates the variation of the fundamental natural frequency for a nonrotating ESA plate versus
the radius ratio (b

/
a)—which is ratio of the inner radius to the outer radius—for two different boundary

conditions. The fundamental natural frequency rises as the consequence of increasing the size of the clamped
inner semicircle. In addition, steady rise in eccentricity results in the decline of fundamental frequency. This
decline is shown to be more noticeable for bigger radius ratios.

In Fig. 11, the four natural frequencies for a nonrotating FG-GRC-ESA plate are presented. These fre-
quencies vary due to the change in thickness ratio (h

/
a), as well as the temperature difference �T . Although

increasing the temperature was known to decrease the natural frequencies, this effect is reduced at larger thick-
ness ratios; that is, the effect of temperature on the natural frequencies is more substantial when the thickness
ratio is small, especially for the first mode. However, as the modes get higher, the impact of temperature
diminishes even for small thickness ratios.

4 Conclusion

The current paper analyzed the free oscillation of rotating FG annular and semi-annular plates with off-centered
circular cut-outs and various boundary conditions in a thermal environment. Porosity is included in the model
with symmetrical and asymmetrical dispersions along the thickness of the plate; the structure is reinforced
withGPLs based on three different types, including non-uniform (symmetrical and asymmetrical) and uniform.
These assumptions lead to complex equations derived using Hamilton’s principles, and then tackled utilizing
the systematic and efficient transformed differential quadrature method (TDQM). Diverse numerical results
certified that the developed method has fast convergence rate and is highly accuracy.
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(a) (b)

(c) (d)

Fig. 11 The first four natural frequencies versus the thickness ratio (h
/
a) for a nonrotating FG-GRC-ESA plate with boundary

conditions C–C–C–C, porosity Type-I and graphene platelets Type-A;(a � 1 m, b
/
a � 0.3, � � 0, e0 � 0.5, 
GPL � 0.01);

a 1st, b 2nd, c 3rd and d 4th natural frequency

Many parameters have shown to have impact on the final results. In the realmof geometry, as the eccentricity
shifts further from the center of the plate, the fundamental frequency tends to decrease.Moreover, the oscillating
plate with bigger inner radius is stiffer, and thus its natural frequencies rise. In the realm of material properties,
the results recorded the highest natural frequencies for graphene distribution Type-A and the lowest ones
for Type-B. The rotational speed and temperature exert arguable influences on the natural frequencies. As
an example, the rotational speed has significant impact on those FG-GRC plates whose boundary conditions
include a free one. Accordingly, by increasing the rotational speed the natural frequencies tend to grow. On
the other hand, the rise in temperature reduces the natural frequencies; however, for a structure with free
boundaries (except the inner one), the effect of temperature seems to somewhat diminish for higher modes
or greater thickness ratios. The presented technique is anticipated to be recognized as a highly applicable
approach for solving oscillatory phenomenon of the eccentric sector-plates in the future.
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Appendix A

The elements of the reduced stiffness matrix are as follows:

Q11 � Q22 � E(z)

1 − υ(z)2
, Q12 � υ(z)E(z)

1 − υ(z)2
, Q44 � Q55 � Q66 � E(z)

2(1 + υ(z))
(67)

Appendix B
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Ã
ri j
i pjq

+
∂Nrθ0

∂θ

Ã
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ri j
i pjq +

H f ′
55 δ̃i pjq

ri j

)
ϕr
pq +

(
Hg′
55 Ã
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ri j
i pjq

ri j
+ H f

66 B̃
ri j
i pjq + m f �

2δ̃i pjq − H f
66δ̃i pjq

r2i j

⎞
⎠vpq

− H f ′
44 Ã
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