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Abstract To investigate the dynamic response of circular and ellipse sandwich plates, a higher-order model
with five displacement parameters has been proposed, which can fulfill compatible conditions of transverse
shear stresses at the interfaces. Based on the proposedmodel, the finite element formulation has been developed,
where the refined-element method is utilized to solve the compatible relation of first derivatives of transverse
displacement on the common edges of adjacent elements. By analyzing free vibration of sandwich plates
made up of aluminum/composite face sheets and polymethacrylimide core, the performance of the proposed
model has been verified. In addition, influence of material properties and geometric parameters on natural
frequencies has been also investigated. Results show that displacement modes in the ellipse plate differ from
those of the circular plate attributing to different stiffness along x and y directions. Moreover, the ratios of
major axis to minor axis have a severe impact on natural frequencies of ellipse sandwich plates. Stiffness of
sandwich plates can be explicitly improved by applying the composite face sheets. Furthermore, the relative
stiffness of sandwich circular plate can be further improved by changing the lamination configuration, which
can demonstrate good designability of sandwich plates with composite face sheets.

Keywords Five unknown model · Circular and ellipse plate · Natural frequency

1 Introduction

BY assembling the stiff face sheets and the low-density core layer, a light-weight sandwich structure can be
designed for the weight-sensitive engineering field, such as aerospace, ships and civil engineering. Structural
weight can be reduced efficiently by selecting the well-matched face sheets and the core layer. Nevertheless,
analysis of mechanical behaviors in such structures will confront a rigorous challenge, as the large transverse
shear deformations have to be deliberated attributing to the sudden change of transverse shear modulus at the
interlayer between the face sheet and the core layer. As a result, the classical plate theory (CPT) [1] discarding
transverse shear deformation is no longer adaptable to analysis of the mechanical behaviors of sandwich
structures. Therefore, numerous investigators have paid more attention to the models deliberating transverse
shear deformation.
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In the early stage of exploration on the shear deformation theory, Reissner [2] attempted to research the
impact of transverse shear deformation on static response of plates. Mindlin [3] assumed transverse shear
deformation to be linear distribution along the thickness of plate, so that the first-order shear deformation
theory (FSDT) can be established by utilizing such assumption. The FSDT has been utilized to deliberate
mechanical behaviors of isotropic, functionally graded material (FGM) and orthotropic plates attributing to
its flexibility and efficiency. For the sandwich plates with low-density core, transverse shear deformation will
suddenly change at the adjacent laminates attributing to large diversion of transverse shear moduli between
the face sheets and the core. Evidently, the FSDT is not adaptable to simulation of such large transverse shear
deformation, so that the correction factor has to be selected to elevate prediction of transverse shear deformation.
Nonetheless, reasonable selection of the correction factors severely depends on material characteristics. For
the sake of conquering limitation of the FSDT, the inspiration deriving from three-dimensional (3D) elasticity
theory [4, 5] inspired investigators to establish the higher-order shear deformation theory (HSDT).

Whitney and Sun [6] attempted to establish a HSDT for analysis of layered plates. Reddy [7] developed a
delicate higher-order theory with five independent unknowns, which can simulate the parabolic distributions
of transverse shear deformation across thickness of plate. Furthermore, the free condition of transverse shear
stresses on surfaces can be met in advance. Reddy’s model can yield the more precise results contracted to
those acquired from the FSDT. Advantages of HSDT contrasting to FSDT motivate researchers to construct
various HSDTs [8, 9]. Meiche et al. [10] established a hyperbolic-type HSDT with four unknowns to calculate
natural frequencies and buckling loads of FGM sandwich plates subjected to four simply-supported edges.
Matsunaga [11–13] established a series of HSDTs to explore an impact of higher-order shear deformation on
dynamic and buckling behaviors of layered and sandwich plates. In the light of Reddy’s HSDT [7], Nayak
et al. [14] constructed a plate element to produce natural frequencies of layered and sandwich plates. Taking
advantage of Reddy’s HSDT, Jin et al. [15] deliberated influence of boundary conditions on dynamic response
of sandwich structures.What’s more, Tomar and Talha [16]made use of Reddy’s HSDT to research the bending
and vibration problems of the FGM sandwich plates by deliberating the influence of material uncertainties.
Bennoun et al. [17] established a five-unknown theory to deal with free vibration problems of FGM sandwich
plates. However, the existing investigations [18, 19] indicated that the HSDTs neglecting continuity conditions
of transverse shear stresses at the interfaces will encounter difficulty to produce accurately natural frequencies
of the sandwich plate made up of soft core.

What’s more, layerwise theories in conjunction with finite element method have been established to yield
accurate results [20]. Even so, the displacement variables in layerwise model augment with increase of layer
number, so that tedious and complex calculation is to be needed. According to three-dimensional elasticity
[4], in-plane displacements are required to be the zig-zag distribution through the thickness direction. By
drawing a linear zig-zag function in the in-plane displacement of FSDT, Murakami [21] established a zig-
zag model to describe the zig-zag distribution of in-plane displacements. However, such zig-zag model [21]
will meet trouble to produce precisely transverse shear stresses directly from constitutive relation. Accurate
transverse shear stresses impact largely prediction of natural frequencies of sandwich plates [22]. Based
on Kirchhoff–Love plate theory, Orakdögen et al. [23] constructed two quadrilateral elements to study the
coupling effect of extension and bending for the functionally graded plates. Making use of the first-order
shell theory and Donnell kinematics assumption, Sofiyev and Osmancelebioglu [24] investigated carefully
influence of functionally graded coatings on dynamic behaviors of sandwich-truncated conical shells, and some
valuable conclusions have been drawn. Subsequently, buckling behaviors of sandwich-truncated conical shells
composed of functionally gradedmaterials have been investigated in detail by Sofiyev [25] via utilizing the first-
order theory. Haciyev et al. [26] researched the vibration behaviors of functionally graded (FG) rectangular
plates resting on elastic foundations, where effects of material parameters including material gradient and
orthotropy on dynamic response have been analyzed in detail. In order to propose the methodological solutions
of the pure FG structures and the FG sandwich constructions, Sofiyev [27] presented an exhaustive review on
the published theories and models for the FG conical shells, FG-layered conical shells and the FG sandwich
conical shells, which can provide a valuable reference for other investigators. Recently, based on the shear
deformation theory, Sofiyev and Fantuzzi [28] proposed a novel approach to investigate vibration and stability
behaviors of clamped sandwich cylindrical shells with the FG coatings.

By means of the hyperbolic shear deformation model, Avcar et al. [29] analyzed dynamic response of
sigmoid FG sandwich beams, and influence of layup schemes of the FG sandwich beams on natural frequencies
has been explored in detail. Hadji and Avcar [30] further utilized the hyperbolic shear displacement theory to
study influence of boundary conditions, porosity volume fraction and layup scheme on free vibration of the FG
sandwich plates. Based on the layerwise model, Belarbi et al. [31] constructed a new element to analyze free
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vibration of multilayered sandwich plates, and the good performance of the proposed model has been verified
by several examples. On the basis of the third-order model, Hadji et al. [32] investigated dynamic behaviors
of the imperfect FG sandwich plates resting on elastic foundation, and the instructive conclusions have been
presented. In addition, Hirane et al. [33] proposed a novel higher-order finite element model to investigate
static and dynamic behaviors of FG sandwich plates. Based on the higher-order zig-zag model, Garg et al. [34]
constructed a finite element formulation to study vibration and buckling response of the FG sandwich plates.
In terms of a new hyperbolic theory, Vinh and Huy [35] proposed a four-node quadrilateral element to research
the bending, buckling and dynamic behaviors of the FG plates. Moreover, impact of porosity distribution on
mechanical response of FG sandwich plates has been evaluated carefully. Making use of the improved first-
order theory and the mixed finite element formulation, Vinh et al. [36] developed a four-node plate element to
study the buckling and the bending behaviors of bi-directional FG plates, and some remarkable conclusions
have been presented. In addition, the advancement of theory, new design and application trend for sandwich
structures are summarized by Birman and Kardomateas [37].

As it is clear, most researches by means of the different models have been limited to rectangular plates. In
fact, the mechanical characteristics of circular and elliptic plates utilized in repairment are extremely important
aswell. Ebrahimi andRastgo [38] explored the free vibration behaviors of FGMpiezoelectric sandwich circular
plate by utilizing analytical method relying on the CPT. In the light of the FSDT, a mathematical derivation of
free flexural vibration for the three-layer piezoelectric circular plate was made by Liu et al. [39]. Qiu et al. [40]
established an analyticalmodel to research dynamic behaviors of circular sandwich plates under shocking loads.
Du andMa [41] attempted to study impact of diverse loads on the nonlinear vibration characteristics of sandwich
circular plates. In the light of the Reddy’s HSDT [7], Hashemi et al. [42] explored the dynamic behaviors of
the piezoelectric FGM annular plates with diverse thickness-radius ratios and boundary conditions. What’s
more, Sharma and Parashar [43] and Jandaghian et al. [44] also made an exhausive analysis on the dynamic
behaviors of FGM piezoelectric circular plates. Furthermore, vibration regulation of circular piezolaminated
and sandwich plateswas investigated relying on the nonfragile control strategy [45]. For the vibration of annular
sandwich plates, other researchers have also carried out a series of studies which can be seen in literature [46,
47]. Recently, Shishehsaz et al. [48] predicted stress distribution in the circular plate by means of layerwise
theory and the hyperbolic HSDT. Shahrokhi et al. [49] attempted to investigate effect of length scale and
electric field on the vibrational behaviors of circular sandwich micro-plates.

Survey of literature shows that numerous theories and the finite element methods have been established
for the analysis of rectangular sandwich plates and shells. However, investigations on dynamic characteristic
of the circular and ellipse sandwich structures made up of aluminum/composite face sheets and PMI core are
less reported. In order to accurately predict dynamic response of the circular and ellipse sandwich structures,
a higher-order model with five independent unknowns will be established. The proposed model can fulfill in
advance continuity conditions of transverse shear stresses at the interfaces between adjacent layers, which can
improve accuracy in predicting natural frequencies. For the free vibration of sandwich circular and ellipse
plates with clamped boundaries, it is hard to present an analytical solution. In the light of the present model,
a three-node triangular element in conjunction with the refined-element method [50] is to be developed for
dynamic analysis of sandwich circular and ellipse plates. For the sake of appraising capability of the five-
unknown higher-order models for free vibration of circular and ellipse sandwich plates, the present work
tries to implement three types of five-unknown higher-order models proposed by Shi et al. [51], Kumar
et al. [52] and Shukla et al. [53] by utilizing the same finite element method. In addition, results acquired
from the three-dimensional finite element method (3D-FEM) are also selected as the reference solutions to
appraise the present model as well as other models. This work establishes an alternative method to elevate the
capability yielding accurately natural frequencies of sandwich circular and ellipse plates without augment of
any additional displacement variables.

2 A novel finite element formulation (RFEF)

2.1 A higher-order model with five independent variables

It is well known that Reddy’s model [7] has been widely utilized for mechanical analysis of composite and
sandwich plates attributing to its efficiency and accuracy. In the Reddy’s model, rotation of the normal is
divided into the transverse shear components and the derivatives of deflection with respect to x and y, so
that it is convenient to construct reasonably transverse shear components for accurate analysis of composite
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plates with hybridized laminates. In the light of such assumption, a Reddy-type higher-order model with
five unknowns is to be presented in present work. Compared to the classical Reddy’s model, the compatible
conditions of transverse shear stresses at the adjacent laminates will be enforced in advance.

To acquire the improved Reddy’s model, the classical Reddy’s model should be recalled, which can be
presented by

u(x, y, z) � u0(x, y) + f (z)γx (x, y) − zwx (x, y)

v(x, y, z) � v0(x, y) + f (z)γy(x, y) − zwy(x, y)

w(x, y, z) � w0(x, y)

(1)

in which u0, v0 and w0 represent the displacements on the mid-plane of plate along x and y directions; γ x and
γ y signify the transverse shear components; wx and wy denote separately the derivatives of deflection with
respect to y and x axes.

According to three-dimensional elasticity theory [4], transverse shear stress components should be com-
patible at the interfaces of adjacent laminates. For a sandwich plate with form core, transverse shear modulus
suddenly changes at common surface of adjacent laminates, whichwill induce a large transverse shear deforma-
tion. Thereby, it is required to construct a transverse shear deformation function f (z) with a good performance.
To achieve this goal, local displacement functions will be utilized at each laminate. By inserting the second-
order local functions into displacement field, the displacements at arbitrary point of plate can be described
as

u(x, y, z) � u0(x, y) + f (z)γx (x, y) − zwx (x, y) + ςku
k
1(x, y) + ς2

k u
k
2(x, y)

v(x, y, z) � v0(x, y) + f (z)γy(x, y) − zwy(x, y) + ςkv
k
1(x, y) + ς2

k vk2(x, y)

w(x, y, z) � w0(x, y)

(2)

where transverse shear function developed by Reddy [7] f (z) � z(1 − 4z2/3h2), in which h denotes whole
thickness of plate; ςk signifies the thickness coordinate at the kth laminate. Relationship between the local
coordinate ςk and the global coordinate z can be expressed as

ςk�ck1z − ck2 (3)

in which ck1�2/(zk+1 − zk), ck2�(zk+1 + zk)/(zk+1 − zk), where zk+1 signifies the thickness coordinate at the
interface between the kth layer and (k + 1)th layer.

In Eq. (2), it is found that four displacement parameters uk1, u
k
2, v

k
1 and vk2 are involved in the kth laminate.

For a composite plate made up of N laminates, 4 N additional displacement variables will be introduced.
In order to decrease calculational cost, these additional variables should be reduced without compromising
accuracy. As a result, making use of compatible conditions of displacements at the common interfaces between
adjacent laminates, the variables at each laminate can be reduced, which can be expressed as

uk2(x, y)�uk1(x, y) + uk−1
1 (x, y) + uk−1

2 (x, y)

vk2(x, y)�vk1(x, y) + vk−1
1 (x, y) + vk−1

2 (x, y)
(4)

where k is always more than one.
To further reduce displacement parameters, the compatible conditions of transverse shear stresses between

the kth laminate and (k-1)th laminate will be enforced, which may be given by

τ kxz(x, y, zk)�τ k−1
xz (x, y, zk)

τ kyz(x, y, zk)�τ k−1
yz (x, y, zk)

(5)

For free vibration problems, the lower and upper surfaces of sandwich plates do not subject to any loadings.
Therefore, transverse shear stresses on the lower and upper surfaces should be equal to be zero, so the following
equation can be given by

τ 1xz(x, y, z1)�τ N
xz(x, y, zN+1) � 0

τ 1yz(x, y, z1)�τ N
yz(x, y, zN+1) � 0

(6)

where N denotes the total number of layers.



A novel finite element formulation based on five unknown model 1539

Once the constrained conditions above mentioned are fulfilled, all displacement parameters depending on
laminates can be completely removed from the initial displacement field. As a result, the proposed Reddy-type
higher-order model can be presented by

u(x, y, z) � u0(x, y) + f ku (z)γx (x, y) − zwx (x, y)

v(x, y, z) � v0(x, y) + f kv (z)γy(x, y) − zwy(x, y)

w(x, y, z) � w0(x, y)

(7)

In Eq. (7), it can be found that the form of the present model is nearly the same as that of Reddy’s model
[7], and transverse shear functions through thickness direction f ku (z) and f kv (z) only differ from those of
Reddy’s model. Furthermore, the proposed model can meet compatible conditions of transverse shear stresses
at the interfaces, which can elevate accuracy predicting natural frequencies of sandwich plates. In addition,
the zig-zag effect of in-plane displacements has been also taken into account in the proposed model, which is
induced by the mismatching material properties at the adjacent layers.

Transverse shear functions f ku (z) and f kv (z) can be determined by utilizing the constrained conditions of
displacements and stresses, which can be explicitly shown as follows

f ku (z) � λk1ςk + λk2ς
2
k + f (z)

f kv (z) � κk
1ςk + κk

2ς2
k + f (z)

(8)

where f (z) is the transverse shear function proposed by Reddy [7].

λ k
i � Fk

i1L + Fk
i2

κk
i � Hk

i1M + Hk
i2

(9)

where coefficients Fk
i1, F

k
i2, H

k
i1 and Hk

i2 can be determined by using the compatible conditions of transverse
shear stresses.

In the light of the compatible conditions of transverse shear stresses at the interfaces, the following equations
can be presented by

Fk
11 � −

(
2 + αk

1

)
Fk−1
11 − 2

(
1 + αk

1

)
Fk−1
21

Fk
12 � −

(
2 + αk

1

)
Fk−1
12 − 2

(
1 + αk

1

)
Fk−1
22 + αk

2

Fk
21 � Fk

11 + Fk−1
11 + Fk−1

21

Fk
22 � Fk

12 + Fk−1
12 + Fk−1

22

Hk
11 � −

(
2 + βk

1

)
Hk−1
11 − 2

(
1 + βk

1

)
Hk−1
21

Hk
12 � −

(
2 + βk

1

)
Hk−1
12 − 2

(
1 + βk

1

)
Hk−1
22 + βk

2

Hk
21 � Hk

11 + Hk−1
11 + Hk−1

21

Hk
22 � Hk

12 + Hk−1
12 + Hk−1

22

(10)

whereas k � 1, Fk
11 � Hk

11 � 1, Fk
12 � Hk

12 � 0; Fk
21 � Hk

21 � 1/2, Fk
22 � Hk

22 � (
1 − 4z2k/h

2
)
/
(
2ck1

)
; as k

is more than one, Fk
i j and Hk

i j can be obtained by Eq. (10).

αk
1 �

(
ck−1
1 Qk−1

44

)
/
(
ck1Q

k
44

)

αk
2 �

(
Qk

44 − Qk−1
44

)(
1 − 4z2k/h

2)/
(
ck1Q

k
44

)

βk
1 �

(
ck−1
1 Qk−1

55

)
/
(
ck1Q

k
55

)

βk
2 �

(
Qk

55 − Qk−1
55

)(
1 − 4z2k/h

2)/
(
ck1Q

k
55

)
(11)

in which Qk
44�Gk

13 and Qk
55�Gk

23, where G
k
13 and Gk

23 denote the shear moduli in 1–3 plane and 2–3 plane,
respectively.



1540 W. Tangzhen et al.

Coefficients L and M can be determined by using the free-surface conditions of transverse shear stresses
on the upper surfaces, which are presented by

L � −
(
cN1 FN

12 + 2cN1 FN
22 +

(
1 − 4z2N+1/h

2))/
(
cN1 FN

11 + 2cN1 FN
21

)

M � −
(
cN1 GN

12 + 2cN1 GN
22 +

(
1 − 4z2N+1/h

2))/
(
cN1 GN

11 + 2cN1 GN
21

) (12)

In order to appraise the proposedmodel, several Reddy-type higher-order models [51–53] recently reported
in the literature will be selected for comparison.

2.2 Finite element formulation based on the proposed model

In present work, free vibration of sandwich circular and ellipse plates with clamped boundaries will be inves-
tigated, so that it is hard to present an analytical solution. To extend the proposed model for dynamic analysis
of circular and ellipse sandwich plates, the finite element formulation of a three-node triangular element by
means of the present model is to be established.

Displacement parameters in the plane can be expressed by using the area coordinates and nodal displace-
ments, so that the displacement parameters u0, v0, γ x and γ y within one element can be presented by

u0 �
3∑

i�1

Liu0i , γx �
3∑

i�1

Liγxi

v0 �
3∑

i�1

Liv0i , γy �
3∑

i�1

Liγyi

(13)

where Li represents the area coordinate, and i � 1~3.
For the present model, the first partial derivatives of transverse displacement are contained in the displace-

ment field, so in-plane strains will contain the second partial derivatives of transverse displacement. As a result,
the first partial derivatives of transverse displacement are required to be compatible on the common edges of
elements. For the sake of such requirement, the refined-element method proposed by Cheung and Chen [50]
will be recalled. According to the refined-element approach, transverse displacement can be discretized as
follows

w0 �
3∑

i�1

(N1
i wi + N1

xiwxi + N1
yiwyi ) (14)

Shape functions in Eq. (14) can be explicitly expressed as

N1�[
N1
1 N1

2 N1
3

] � N0 + P
(
Bc − B0) (15)

where P � [
0.5x2 0.5y2 xy

]
.

N0 denotes the shape function of the element BCIZ [54], which only satisfies the compatible conditions
of transverse displacement on the common edge of adjacent elements. Transverse shear strains in the present
model merely include the partial first derivatives of transverse displacement, so the shape function of BCIZ
will be used to discretize transverse displacement in transverse shear strain, which can be given as

N0�[
N0
1 N0

2 N0
3

]
(16)

where

N0
i �Li + L2

i L j + L2
i Lk − Li L

2
j − Li L

2
k

N0
xi � ckx L

2
i L j − c jx L

2
i Lk + 0.5

(
ckx − c jx

)
Li L j Lk

N0
yi � c jy L

2
i Lk − cky L

2
i L j + 0.5

(
c jy − cky

)
Li L j Lk

(17)
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in whichcix � xk − x j , ciy � y j − yk , where xj, yj, xk and yk signify, respectively, coordinates at the jth and
kth nodes.

In terms of refined-element approach, strain matrix Bc can be given by

Bc�[
Bc
1 Bc

2 Bc
3

]
(18)

where

Bc
1 �

⎡
⎣
l1m1 − l3m3 0.5(l21 y21 + l23 y13) 0.5(l21x12 + l23x31)
l3m3 − l1m1 0.5(m2

1y21 + m2
3y13) 0.5(m

2
1x12 + m2

3x31)
m2

1 − m2
3 0.5(l21x12 + l23x31) 0.5(m2

1y21 + m2
3y13)

⎤
⎦ (19)

in which li and mi signify the cosines of vector normal to the ith edge; xi j � xi − x j , yi j � yi − y j . Further
rotating the subscript, matrices Bc

2 and Bc
3 can be acquired.

In addition, the matrix B0 can be expressed as follows

B0 � 1

A

¨
Bdxdy (20)

where A signifies the area of one element, and B represents the strain matrix of BCIZ.
Bymeans of relationship between displacements and strains, the strain vector at the kth ply can be presented

by

εk � Bue (21)

in which B � [
B1 B2 B3

]
, ue � [

u1 u2 u3

]T , ui � [u0i, v0i, w0i, γ xi, wxi, γ yi, wyi], i � 1, 2, 3.
By means of the present model, strain matrix Bi at the ith node can be written as follows

Bi �

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Li
∂x 0 B1,3 
k

1
∂Li
∂x B1,5 0 B1,7

0 ∂Li
∂y B2,3 0 B2,5 �k

1
∂Li
∂y B2,7

∂Li
∂y

∂Li
∂x B3,3 
k

1
∂Li
∂y B3,5 �k

1
∂Li
∂x B3,7

0 0 B4,3
∂
k

1
∂z Li B4,5 0 B4,7

0 0 B5,3 0 B5,5
∂�k

1
∂z Li B5,7

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

where

B1,3 � 
k
2
∂2N1

i

∂x2
,B1,5 � 
k

2
∂2N1

xi

∂x2
,B1,7 � 
k

2

∂2N1
yi

∂x2

B2,3 � �k
2
∂2N1

i

∂y2
,B2,5 � �k

2

∂2N1
yi

∂y2
,B2,7 � �k

2

∂2N1
yi

∂y2

B3,3 �
(

k

2 + �k
2

)∂2N1
i

∂x∂y
,B3,5 �

(

k

2 + �k
2

)∂2N1
xi

∂x∂y
,B3,7 �

(

k

2 + �k
2

)∂2N1
yi

∂x∂y

B4,3 �
(
1 +

∂
k
2

∂z

)
∂N0

i

∂x
,B4,5 �

(
1 +

∂
k
2

∂z

)
∂N0

xi

∂x
,B4,7 �

(
1 +

∂
k
2

∂z

)
∂N0

yi

∂x

B5,3 �
(
1 +

∂�k
2

∂z

)
∂N0

i

∂y
,B5,5 �

(
1 +

∂�k
2

∂z

)
∂N0

xi

∂y
,B5,7 �

(
1 +

∂�k
2

∂z

)
∂N0

yi

∂y

It should be shown that the coefficients 
k
i and �k

i can be given by


k
1 � f ku (z)

�k
1 � f kv (z)


k
2 � �k

2 � z

(23)
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Once stain matrix can be acquired, the stiffness matrix within one element can be presented by using the
following equation.

Ke �
N∑
i�1

∫ zi+1

zi

(¨
BT QBdxdy

)
dz (24)

Utilizing the Hamilton’s principle, equation of motion within one element may be written as

Meu̇ + Keu � 0 (25)

In Eq. (25), the mass matrix Me within one element can be presented by

Me �
∫

Ae

N∑
i�1

∫ zi+1

zi
N
T
ρiNdzd A (26)

In Eq. (26), the matrices N and ρi can be, respectively, expressed as

N � [
N1 N2 N3

]
(27)

in which

Ni �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Li 0 0 0 0 0 0
0 Li 0 0 0 0 0
0 0 N0

i 0 N0
xi 0 N0

yi
0 0 0 Li 0 0 0
0 0 N0

i,x 0 N0
xi,x 0 N0

yi,x
0 0 0 0 0 Li 0
0 0 N0

i,y 0 N0
xi,y 0 N0

yi,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

ρi � ρi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 
k
1 
k

2 0 0
0 1 0 0 0 �k

1 �k
2

0 0 1 0 0 0 0

k

1 0 0 
k
1


k
1 
k

1

k
2 0 0


k
2 0 0 
k

2

k
1 
k

2

k
2 0 0

0 �k
1 0 0 0 �k

1�
k
1 �k

1�
k
2

0 �k
2 0 0 0 �k

2�
k
1 �k

2�
k
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

where ρi signifies the density at the ith laminate.
Putting all the element mass and stiffness matrices into the global mass and stiffness matrices according

to the order of nodes, the dynamic equation may be presented as

MÜ + KU � 0 (30)

In Eq. (30), M and K represent the global mass and stiffness matrices. Natural frequencies of composite
and sandwich plates can be acquired by solving the following eigenvalue equation.

(
K − ω2M

)
U � 0 (31)

where ω denotes frequency of plate.
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Fig. 1 Geometry and structure of a sandwich ellipse plate

Table 1 Dimensionless frequencies of the clamped circular plate (h/R � 0.3)

Models Modes

1 2 3 4 5 6

RFEF (1027 eles) 8.4623 15.5187 22.6347 25.8114 31.0811 35.1154
RFEF (2013 eles) 8.4549 15.4910 22.6173 25.7351 30.9712 34.9811
RFEF (3278 eles) 8.4529 15.4857 22.6096 25.7097 30.9338 34.9555
3D-FEM (43910 eles) 8.4317 15.3950 22.5802 25.0540 29.9645 34.0923
Qin et al. [55] 8.4779 15.5123 22.2614 – – –
Civalek and Ersoy [56] 8.4681 15.4594 22.6698 – – –
Liew and Yang [57] 8.4676 15.453 22.667 – – –

3 Numerical examples

Free vibration of an isotropic plate with clamped boundaries will be firstly investigated, where present results
are compared with the published results [55–57]. Subsequently, free vibration analysis of a sandwich circular
plate made up of aluminum (Al) sheets and polymethacrylimide (PMI) core is further carried out, which is
utilized to account for the performance of the proposed model. In addition, influence of the ratios of major axis
to minor axis of ellipse on natural frequencies will be investigated. To improve the stiffness of sandwich plates,
we attempt to utilize the composite face sheets to replace the aluminum face sheets. Furthermore, impact of
lamination sequence on stiffness of sandwich plate is also investigated.

Example 1 Free vibration analysis of the sandwich circular and ellipse plates with clamped boundaries is
carried out to appraise the capability of the proposed model.

In Fig. 1, a, b and h denote length of semimajor axis, length of semiminor axis and height of the sand-
wich ellipse plate, respectively. In addition, tc and tf represent thicknesses of the core layer and face sheets,
respectively. As a is equal to b, radius of a circular plate is written as R � a � b.

To evaluate performance of the present finite element formulation, free vibration of an isotropic plate
with clamped boundaries will be firstly analyzed, in which Young modulus, Poisson ratio and density of
material properties are 71 GPa, 0.3 and 2700 kg/m3, respectively. Dimensionless frequencies are defined as
� � ωR2√ρh/D, where D � Eh3

12(1−υ2)
. In Table 1, results obtained from the present model using 1027

elements, 2013 elements and 3278 elements are compared with those presented by Qin et al. [55], Civalek and
Ersoy [56], and Liew and Yang [57]. In addition, 3D-FEM results using 43,910 elements are also presented for
comparison. Numerical results show that the present results using 2013 elements agree well with the 3D-FEM
results, which can verify accuracy of the present model.

Subsequently, free vibration of the sandwich circular and ellipse plates with clamped boundary will be
studied. Young modulus, Poisson ratio and density of face sheets made up of the aluminum are 71 GPa, 0.3 and
2700 kg/m3, respectively. For the core layer of PMI, Young modulus, Poisson ratio and density are 92 MPa,
0.375 and 75 kg/m3, respectively. The natural frequencies are normalized as � � ωd2

√
ρs/Es/h, in which d

� 2R signifies diameter of circular plate, and d � 2a for an ellipse plate, where a denotes the length of major
axis of ellipse; ρs and Es , respectively, denote the density and elastic modulus of face sheets.
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Fig. 2 Variation of natural frequencies acquired from 3D-FEM with increase of elements

Table 2 Comparison of natural frequencies obtained from various models for a three-layer sandwich circular plate (tc/tf � 8,
d/h � 100)

Mode number Models

3D-FEM
(29,505)

RFEF (2027) Shi et al. [51]
(2018)

Kumar et al.
[52] (2019)

Shukla et al.
[53] (2019)

Babu et al. [58]
(2021)

1 14.2924 14.5202 17.6519 17.7570 17.8852 17.4741
2 25.6723 26.2277 35.5614 35.9571 36.3989 34.9187
3 25.6938 26.2284 35.5468 35.8471 36.4017 34.9275
4 37.3668 38.2933 56.3298 57.0601 58.3167 54.9215
5 37.5971 38.3199 56.3801 57.1056 58.2645 54.9705
6 41.2980 42.2916 63.7517 64.6343 66.1219 62.0311
7 49.6291 50.6626 79.5973 80.8167 83.1365 77.0628
8 49.7664 50.6654 79.5874 80.8051 83.1477 77.0719
9 55.9235 57.2660 93.2885 94.4231 97.9653 90.0261
10 56.1010 57.2713 93.3816 95.3561 98.0051 90.0714
11 62.1737 63.1390 104.842 106.612 110.549 100.846
12 62.2989 63.1455 104.821 106.590 110.526 100.866
13 70.1623 71.7370 124.171 126.367 131.806 118.903
14 70.7425 71.8049 124.342 126.455 131.994 119.066
15 72.8193 74.2659 130.124 132.797 138.396 124.428
16 74.8638 75.6493 131.695 134.013 140.107 125.948
17 75.1452 75.6415 131.707 134.027 140.094 125.958
18 84.6749 85.9656 156.248 159.059 167.573 148.626
19 84.7601 85.9797 156.293 159.027 167.532 148.664
20 87.7623 88.1371 159.898 162.699 171.511 152.053

It requires to be indicated that three-dimensional elasticity solutions of natural frequencies for the sandwich
circular and ellipse plates are less reported in the published literature. Thus, the results acquired from 3D-FEM
will be selected for a reference to appraise the present model as well as the chosen models. Firstly, variation
of 3D-FEM results with refinement of meshes is depicted in Fig. 2, which shows that the converged results
can be obtained by using the 3D-FEM with 29,505 elements.

In order to explore the capability of the proposed model predicting the higher-order frequencies, the first
twenty frequencies of sandwich circular plate are compared with the 3D-FEM results in Table 2, where four
kinds of Reddy-type higher-order models recently proposed by Shi et al. [51], Kumar et al. [52], Shukla
et al. [53] and Babu et al. [58] are also selected for comparison. Differing from the present model, the shear
deformation functions of the selected models can be written as f (z) � (h/2)tanh(2z/h) − z/cosh2(1) [51], f (z)
� sin(2pπz/h) − (2pπz/h)cos(pπ) where p � 0.6 [52], f (z) � sin(2pπz/h) − (2pπz/h) cos(pπ) where p � 0.4
[53], and f (z) � g(z) + z� where g(z) � sinh−1(rz/h), � � − 2r/(h

√
r2 + 4) and r � 3 [58]. Typical finite

element mesh configuration with 2027 elements has been depicted in Fig. 3. In Fig. 4, displacement modes
corresponding to the higher-order frequencies are depicted, which can help to understand well the vibration
modes of sandwich circular plate.
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Fig. 3 Typical finite element mesh configuration with 2027 elements

Fig. 4 Displacement modes of a three-ply sandwich circular plate with clamped boundaries (tc/tf � 8, d/h � 100)
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Fig. 5 Comparison of natural frequencies acquired from various models for a three-layer sandwich circular plate (tc/tf � 8, d/h�
100)

In addition, all results in Table 2 are plotted in Fig. 5a. It can be noted that curved line of the results acquired
from present model RFEF nearly covers that of 3D-FEM results. With increase of mode number, complex
deformation of sandwich plate will occur, so that the zig-zag effect plays the more important rule in structural
deformation. Thus, natural frequencies acquired from the selectedmodels discarding the zig-zag effect [51–53,
58] rapidly deviate the 3D-FEM results. Furthermore, it can be observed that when mode number is more than
17, divergence between these results and 3D-FEM results is rapidly aggravated. For the sake of accounting
for such appearance, the percentage errors of results acquired from the selected models relative to 3D-FEM
results are depicted in Fig. 5b. Numerical results indicate that the maximum error of the present model is less
than 2.5%. However, the maximum errors of other models are more than 80%.

To extend range of application of the proposed model, natural frequencies of the sandwich ellipse plate
with major axis a along x direction andminor axis b along y direction are analyzed, which are shown in Table 3.
The first twenty displacement modes corresponding to diverse frequencies are depicted in Fig. 6. Variation of
displacement modes in the ellipse plate evidently differs from those of the circular plate attributing to dissimilar
stiffness along x and y directions. In fact, bending stiffness along the long axis is smaller than that of short axis,
so that bending deformation along the long axis more easily occurs in comparison with deformation along the
short axis. All results in Table 3 are plotted in Fig. 7 in conjunction with 3D-FEM results. Again, curved line
of the results acquired from the present model RFEF covers exactly the curved line of 3D-FEM results, which
may illustrate well the capability of the proposed model for a sandwich ellipse plate.

In addition, impact of the ratios of major axis a to minor axis b on natural frequencies is to be researched.
Natural frequencies of sandwich ellipse plates with diverse ratios of a/b are shown in Table 4. In order to
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Table 3 Comparison of natural frequencies obtained from various models for a three-layer sandwich ellipse plate (tc/tf � 8,
a/h � 50, a/b � 0.5)

Mode number Models

3D-FEM (58,245) RFEF (4398) Shi et al. [51] Kumar et al. [52] Shukla et al. [53] Babu et al. [58]

1 10.0568 10.1662 11.9191 11.9840 12.0451 11.8238
2 13.9231 14.0851 17.0501 17.1513 17.2765 16.8782
3 18.8319 19.0772 23.9273 24.0771 24.3194 23.6287
4 21.8957 22.2942 29.4467 29.7778 30.0791 28.9824
5 24.5617 24.9198 32.5249 32.7353 33.1784 32.0269
6 26.5032 26.9795 36.6941 37.1278 37.6091 36.0241
7 30.9375 31.3999 42.7618 43.0423 43.8048 41.9678
8 31.7636 32.2649 45.2520 45.8038 46.5485 44.3045
9 35.9588 36.7518 53.6874 54.6397 55.5077 52.3945
10 37.5126 38.0691 54.5177 54.8716 56.1099 53.3105
11 37.7944 38.3452 55.0985 55.7788 56.8972 53.7877
12 41.1666 41.9459 62.8511 63.9884 65.2216 61.1741
13 43.7192 44.2854 66.1982 67.0101 68.6430 64.4221
14 45.0106 45.6114 67.6483 68.0688 69.9769 65.8931
15 46.8166 47.5116 73.1094 74.4405 76.1583 70.9600
16 50.2962 50.8452 78.4912 79.4278 81.7467 76.1353
17 51.3312 52.3483 82.0097 82.4768 85.2847 79.5590
18 52.4264 53.0989 83.3333 85.3873 87.2800 80.6253
19 52.7777 53.4274 84.4185 85.9396 88.2874 81.7003
20 56.8752 57.6569 94.0644 96.3826 98.8870 88.8177

Table 4 Effect of the chosen parameters on the first natural frequencies of the three-layer sandwich plates (a/h � 50, tc/tf � 8)

a/b 3D-FEM RFEF Shukla et al. [53]

0.50 10.0568 10.1662 12.0451
0.75 11.7845 11.9311 14.2715
1.00 14.2924 14.5596 17.8733
1.25 17.3684 17.7586 22.9792
1.50 20.7819 21.4513 29.42682
1.75 24.5362 25.3942 37.0464
2.00 28.3594 29.6547 45.7181
2.50 36.1444 38.0572 65.5428
3.00 43.9487 46.7739 88.1532

explicitly illustrate performance of different models, results in Table 4 are depicted in Fig. 8. In Fig. 8a, results
acquired from the present model RFEF are consistent well with the 3D-FEM results, but a slight divergence
from 3D-FEM can be noted with increase of the ratios of major axis a and minor axis b. Furthermore, the
maximum error of present model RFEF reaches at 6.43% for a/b � 3, which can be found in Fig. 8b.

Example 2 Free vibration of the clamped sandwich circular plate with composite face sheets and PMI core is
analyzed.

In this case, material properties of face sheets [59] are E1 � 181 GPa, E2 � 10.3 GPa, E3 � E2,
G12 � 7.17 GPa, G13 � G12, G23 � 2.87 GPa, ν12 � 0.25, ν13 � 0.25 and v23 � 0.33, where subscripts
‘1’ and ‘2’ denote the direction parallel to the fibers and the direction vertical to the fibers in the 1–2 plane,
respectively; subscript ‘3’ denotes the direction vertical to the 1–2 plane. Material properties of PMI core can
be found in example 1. The natural frequencies are normalized as � � ωd2

√
ρs/E2s/h, where the density of

face sheet ρs � 1578 kg/m3, and elastic modulus E2s�10.3 GPa.
Firstly, performance of the proposed model predicting natural frequencies of the sandwich circular plate

with composite face sheets and PMI core will be researched, which is the foundations studying an impact
of face sheets on frequencies. In Table 5, results acquired from the higher-order models are compared with
the 3D-FEM results. It can be noted that present results are in good agreement with the 3D-FEM results.
Nevertheless, the results obtained from the selected higher-order models [51–53, 58] are largely more than the
3D-FEM results, as these models are unable to fulfill continuity conditions of interlaminar stresses. In order
to illustrate the relationships between the results obtained from the five-unknown higher-order models and
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Fig. 6 Displacement modes of a three-ply sandwich ellipse plate with clamped boundaries (tc/tf � 8, a/h � 50, a/b � 0.5)

the 3D-FEM results, all results in Table 5 have been plotted in Fig. 9, and it is found that several frequencies
acquired from the present model corresponding to displacementmodes 13, 16 and 20 are slight diverse from the
3D-FEM results. However, present results corresponding to other displacement modes are in exact agreement
with the 3D-FEM results.

In addition, natural frequencies of the same size sandwich plate made up of composite face sheets and PMI
core are comparedwith those of the sandwich plate composed of aluminum face sheets and PMI core in Fig. 10.
Numerical comparison reveals that the natural frequencies of sandwich circular plate made up of composite
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Fig. 7 Comparison of natural frequencies obtained from various models for a three-layer sandwich ellipse plate (tc/tf � 8, a/h �
50, a/b � 0.5)
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Fig. 8 Effect of the chosen parameters on the first natural frequencies of the three-layer sandwich plates (a/h � 50, tc/tf � 8)
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Table 5 Comparison of natural frequencies obtained from various models for a three-layer sandwich circle plate with composite
face sheets (tc/tf � 8, d/h � 100)

Mode number m, n

3D-FEM (29,676) RFEF (4288) Shi et al. [51] Kumar et al. [52] Shukla et al. [53] Babu et al. [58]

1 31.6270 32.3295 38.6527 39.3677 40.1810 37.8190
2 44.7085 45.3281 52.7879 53.4721 54.7035 51.7542
3 64.3049 64.8192 73.7384 74.1726 76.1420 72.4513
4 64.3561 66.6088 87.0729 89.8408 93.0365 84.0211
5 78.7625 80.9964 103.649 106.270 110.439 99.2372
6 89.0935 89.5467 100.919 100.746 104.044 100.180
7 98.3568 100.430 125.548 127.742 133.271 121.605
8 101.946 106.268 133.329 132.057 137.546 131.015
9 117.536 117.964 146.105 152.059 159.202 139.726
10 118.259 122.400 152.412 153.706 161.212 147.895
11 122.174 124.130 164.801 166.697 175.439 157.939
12 139.477 143.239 170.215 170.668 179.508 166.899
13 141.283 147.617 183.659 183.452 193.784 178.385
14 147.355 148.416 188.605 192.907 203.886 181.053
15 149.030 151.068 209.868 204.487 217.767 200.015
16 158.992 165.189 210.550 216.246 230.462 205.331
17 165.433 168.732 218.602 219.446 232.868 208.551
18 177.314 179.216 216.783 220.531 233.335 212.241
19 177.491 179.890 231.457 240.096 254.955 220.307
20 181.097 186.827 249.184 243.155 266.977 240.219

Fig. 9 Comparison of natural frequencies obtained from various models for a three-layer sandwich circle plate with composite
face sheets (tc/tf � 8, d/h � 100)

face sheets have been significantly improved, which imply that relative stiffness of sandwich circular plate can
be largely elevated by utilizing the composite face sheets to replace aluminum face sheets.

In the above study, it can be observed that if aluminum face sheets are replaced by composite face sheets,
the stiffness of sandwich circular plate can be significantly elevated, so an approach increasing the stiffness
of sandwich circular plate should be explored. Therefore, configuration of face sheets will be designed to
improve stiffness of such structure. As a result, three groups of sandwich plates containing aluminum face
sheets [Al/C/Al] (Sandwich-1), composite face sheets [0°/C/0°] (Sandwich-2) and composite face sheets
[0°/90°/C/90°/0°] (Sandwich-3) will be analyzed, and all results have been shown in Table 6 in conjunction
with 3D-FEM results.

To find out variation of natural frequencies, all results in Table 6 have been plotted in Fig. 11. Numerical
results imply that relative stiffness of sandwich circular plate can be surely elevated by using the composite
face sheets. In addition, the relative stiffness of sandwich circular plate can be further elevated by changing
the laminated configuration. For example, stiffness of sandwich plate [0°/90°/C/90°/0°] is explicitly more than
that of sandwich plate [0°/C/0°], which can show that composite face sheets possess the designability.
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Fig. 10 Comparison of natural frequencies for the three-layer sandwich circle plates with aluminum face sheet and composite
face sheets (tc/tf � 8, d/h � 100)

Table 6 Comparison of natural frequencies obtained from various models for the sandwich circle plates with different face sheets
(tc/tf � 18, d/h � 100)

Mode number [Al/C/Al] [0°/C/0°] [0°/90°/C/90°/0°]

3D-FEM (70,221) RFEF (2027) 3D-FEM (87,345) RFEF (2027) 3D-FEM (68,825) RFEF (2027)

1 15.6265 15.8338 34.7300 35.1679 38.3301 39.0444
2 29.1842 29.8176 48.8278 48.6155 70.5575 72.9242
3 29.2024 29.8221 70.0104 68.9846 72.4061 74.7488
4 43.5039 44.6956 74.5454 76.4452 103.847 107.542
5 43.5270 44.7311 90.5898 91.8590 109.314 114.755
6 48.3412 49.7778 98.1845 95.5105 118.474 123.812
7 58.4423 60.2703 112.540 112.765 142.642 149.197
8 58.4810 60.2744 121.699 125.297 144.367 150.546
9 66.6260 68.9046 130.997 127.378 162.382 170.061
10 66.7401 68.8818 139.986 138.665 166.853 175.253
11 73.7275 76.2473 140.314 143.007 182.055 190.759
12 73.9052 76.2581 164.668 162.696 182.886 191.225
13 84.6749 87.6142 168.507 165.740 205.977 214.009
14 84.7108 87.7122 171.620 168.935 211.120 222.693
15 87.8922 91.0018 172.488 177.937 220.241 231.365
16 89.3810 92.4675 193.391 193.444 221.679 232.705
17 89.4788 92.4596 195.094 196.972 223.407 232.830
18 102.469 106.182 206.271 200.258 252.632 263.129
19 102.745 106.204 207.884 202.980 255.559 266.433
20 104.964 112.017 219.358 221.096 262.932 275.026

4 Conclusions

IN this work, a finite element formulation is developed for free vibration analysis of sandwich circular and
ellipse plates. Compared to the existing five-variable theories, the present model can fulfill in advance compat-
ible conditions of transverse shear stresses at the adjacent laminates, but they possess the same displacement
parameters. Strain components of present model have the second derivatives, so the refined-element method
is utilized to overcome the compatible requirement of the first derivatives of transverse displacement at the
shared edge of the adjacent elements. In order to appraise capability of the proposed model, free vibration
analysis of sandwich circular plate with aluminum face sheets and PMI core is firstly carried out. Subsequently,
effect of ratios of major axis to minor axis for an ellipse plate on natural frequencies is further studied. An
approach improving the stiffness of sandwich plates is also discussed by changing the face sheets. By means
of the outcome of analysis, the following conclusions will be drawn:

(1) Possessing the same expression of displacements, the proposed model can more precisely produce natural
frequencies of sandwich circular and ellipse plates than the existing five-variable higher-order models.
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Fig. 11 Comparison of natural frequencies obtained from various models for the sandwich circle plates with different face sheets
(tc/tf � 18, d/h � 100)

(2) Variation of displacement modes in the ellipse plate evidently differs from those of the circular plate
attributing to dissimilar stiffness along x and y directions. Moreover, the ratios of major axis a to minor
axis b influence the capability of the models predicting natural frequencies.

(3) The relative stiffness of sandwich circular plate can be surely elevated by using the composite face
sheets. Moreover, the relative stiffness of sandwich circular plate can be further elevated by changing the
lamination configuration, which can account for the designability of sandwich plate with composite face
sheets.
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