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Abstract The vibroacoustic study of a horizontal, finite-long cylindrical shell partially submerged in a fluid
is presented in this paper. First, the mathematical and physical model of the system is established using two
different coordinate systems for the sound field and the structure. Second, using the Galerkin method to deal
with the continuity condition for the velocity on the acoustic–structure coupling surface, the matrix relation
of the coefficient vector of the sound field and the displacement field is obtained, followed by the analytical
solution of the vibration. The accuracy of this new method is verified through numerical simulations, while
its broad applicability and reduced computational cost are demonstrated. Moreover, the method is extended to
obtain the far-field sound radiation using the stationary phase method. Altogether, the present work introduces
a new thought for solving the vibroacoustic characteristics of a partially coupled system consisting of elastic
structures and external fluid fields.

Keywords Partially submerged · Finite-long cylindrical shell · Vibration · Far-field sound radiation · Free
surface

1 Introduction

Cylindrical shells are widely used in naval architecture and ocean engineering due to their excellent geometric
and mechanical properties, e.g., the main hull structures of submarines, ocean pipelines, some liquid storage
containers, etc., are cylindrical shells. With the development of science and technology, the requirements
for vibroacoustic quality are becoming increasingly strict, and the basic requirements for strength, stiffness,
and stability. Therefore, research on the vibroacoustic properties of underwater cylindrical shells has been an
essential field of naval architecture and ocean engineering. Besides, the vibroacoustic properties of underwater
cylindrical shells have attracted the attention of many researchers.
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For decades, a large number of studies on the vibroacoustic characteristics of submerged or fluid-filled
cylindrical shells have been reported, the previous studies focused mainly on cylindrical shells which were
fully filled with liquid [1, 2] or completely submerged in the fluid domain (infinite domain [3, 4], half-space
domain [5, 6], quarter-space domain [7, 8], etc.). So that the cylindrical shells were in complete contact with
the surrounding fluid, and the circumferential discontinuity of the fluid load on the shell surface was not taken
into account. However, cylindrical shells partially coupled with external/internal fluid (the shell centerline
is parallel to the free surface) are frequently encountered in engineering, e.g., tanks containing oil, pipes
conveying fluid, and ship or submarines floating on the sea. The studies on the vibroacoustic characteristics
of shells partially coupled with fluid still receive scant attention compared with those of shells fully coupled
with the surrounding fluid.

In some cases, a better understanding of the vibroacoustic behaviors for a partial shell-liquid coupling
system is urgent to keep perfect dynamic performance. In previous studies, numerical methods [9–14] are the
most commonly used methods, such as the finite element method (FEM), boundary element method (BEM),
and boundary integral method (BIM). However, no matter from an aspect of verifying numerical methods or
revealing the characteristics of a fluid–structure interaction system in the mechanism, developing an analytical
or semi-analytical approach is necessary [15–19].

In the theoretical research of the vibroacoustic characteristics of partial cylindrical shell-liquid coupling
systems, the models of semi-liquid-filled or semi-submerged cylindrical shells are just exceptional cases [20,
21]. That is because when the free surface of the fluid and the shell centerline are coplanar, the analytical
expression of the fluid load is easy to achieve by adopting sine series to meet the free surface boundary
condition automatically.

For more general cases, such as free surface and shell centerline are non-coplanar, there are currently two
commonly used approximate analytical methods. One method is presented by Ergin [22] and Selmane [23],
which ignores the influence of the free surface, so it is convenient to obtain an analytical expression of the fluid
velocity potential, and it applies to any submerged depth. However, the calculation results are not accurate
enough, and the relative error of the natural frequencies can reach more than ten percent. The other one is
presented by Amabili [24, 25], which replaces the free surface boundary with two hypotenuse boundaries.
However, to ensure the accuracy of results, the wet angle of the partially coupled system is limited to between
3/4 and 5/4 in his work. Besides, other scholars [26–28] studied the free vibration characteristics or the added
mass effects of partially fluid-filled circular tubes by the experimental method. However, the experimental
method is difficult to analyze the dynamic mechanism of partial shell-liquid coupling systems.

It can be seen from the above references that it is difficult to take into account the range of applications
and accuracy of the method simultaneously for the analytical or semi-analytical study of partial coupling
problems. This is because the sound field’s coordinate origin often coincides with the coordinate origin of the
structural displacement field, regardless of whether the cylindrical shell is semi-fluid-filled, fully fluid-filled,
semi-submerged, or submerged in an infinite domain. Therefore, in the partial coupling problem analysis, the
researchers will habitually set the coordinate origin of the sound field and the structural displacement field at
the same point (center of the circle). As a result, the free surface boundary condition will be challenging to
handle and can only be ignored or approximately replaced.

The first is to break through the shackles of inertial thought to overcome the above deficiencies. The authors
proposed a newmethod [29, 30] to solve the vibroacoustic characteristics of two-dimensional cylindrical shells
partially coupled with internal or external fluids. Its core idea is to use the Galerkin method to establish the
soundfield and structural displacement field in two coordinate systems and obtain themathematical relationship
between the structural and sound fields. Expressly, the coordinate origin of the sound field is set on the free
surface, and the sinusoidal trigonometric series is adopted to satisfy the sound pressure release boundary
condition. Meanwhile, the motion equation of the shell is established in a coordinate system with a cylindrical
center as the coordinate origin. Then, theGalerkinmethod is applied to deal with the continuous condition at the
acoustic–structure interaction interface. Therefore, the relationship between the acoustic and structure fields
can be obtained. Based on our method, Zhao et al. [20] further studied the sound radiation of an infinite-long
cylindrical shell submerged partially in fluid and subject to a point harmonic excitation.

In order to further expand our previous work to a 3-D model, we study a finite-long cylindrical shell with
both ends simply supported. And the influence of structural axial bending waves is considered by applying the
trigonometric series expansion. Then, the free and forced vibration analysis model is established by combining
two sets of coordinate systems and the Galerkin method. Finally, the vibration analysis model is solved, and the
relationship between vibration characteristics and immersion depth is also analyzed. In addition, the present
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Fig. 1 The cylindrical coordinate systems of the physical model

method is extended to obtain the far-field sound radiation by combining the stationary phase method and the
Fourier transform technique.

2 Theoretical analysis of fluid–structure coupling vibration

2.1 The physical model

As shown in Fig. 1, a finite-long cylindrical shell of these parameters, length L, thickness h, radius Rs, Young’s
modulus E, Poisson’s ratio μ, and density ρ, is considered to be partially submerged in a fluid with the density
ρf and the sound velocity cf . The fluid domain is assumed to be semi-infinite and bounded by a free surface,
and the space above the free surface is considered a vacuum.

The cylindrical coordinate systems (x, r, ϕ) and (x, R, θ ) are assumed to be the structural and the acoustical
coordinate systems of this model (0≤ϕ ≤2π and 0≤θ ≤π), respectively, which are used to deduce theoretical
equations. The origins of these two coordinate systems are O (the center of the circular cylindrical shell) and
Q (the intersection of the y-axis and the free surface), respectively. The opposite of the y-coordinate value
of point Q is defined asH (− Rs ≤H ≤Rs), which denotes the free surface’s height. So the immersion depth
equals Rs + H, and the non-dimensional immersion depth Ld � (Rs + H)/(2Rs). f 0 is a harmonic point force
exciting on the cylindrical shell with amplitude F0 and frequency f at (Rs, x0, ϕ0) in the axial direction. α

(sinα � H/Rs) represents the angle between the x-axis and
⇀
r direction, and β is the angle between

−→
R and

⇀
r .

2.2 The fluid field model and fluid field boundary conditions

In Sect. 2.1, the physical model is considered a typical sound–structure coupling model. The key points are
how to express the sound pressure p, which can satisfy the corresponding boundary conditions. Therefore, an
independent acoustical coordinate system is introduced to address this problem.

Assuming that the liquid around the shell is an acoustic medium, the sound pressure p should satisfy the
acoustic Helmholtz equation:

∇2 p + k2f p � 0 (1)

where k f � ω
/
c f is the acoustic wave number, ω � 2π f is the circular frequency, and ∇2 denotes the

Laplace operator.
In addition, the sound pressure p needs to satisfy the Sommerfeld condition at infinity field:

lim
R→∞[R(∂p

/
∂R − ik f p)] � 0 (2)

where i � √−1 denotes the imaginary unit.
On the free surface, the sound pressure release boundary condition can be expressed as follows:

p � 0, on the free surface (3)
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Since the origin of the acoustical coordinate system is established on the free surface, all the above boundary
conditions can be satisfied by constructing sine series and Bessel functions as follows:

p(R, θ, x) �
+∞∑

m�1

+∞∑

j�1

Am, j K j (kr R) sin( jθ ) sin(kmx) (4)

where m and j are the expansion coefficients and Am, j is the function of sound pressure amplitude. K j () is the

jth-order fixed Bessel function of the second kind, kr �
√
k2m − k2f is the radial wavenumber and k f � ω

/
c f

is the compression wavenumber,ω � 2π f is the circular frequency, and f is the frequency of the time-harmonic

surface velocity distribution. However, k f > km kr �
√
k2f − k2m , and K j () should be placed by the jth-order

Hankel function of the first kind H (1)
j ().

2.3 The governing equations of the cylindrical shell

After deriving the analytical expression of the sound pressure, the governing equations of the sound–structure
coupling system could be obtained. The Flügge shell equations [5] are applied to depict the motions of the
cylindrical shell:

[L]

⎡

⎣
u
v
w

⎤

⎦ �
(
1 − μ2

)
R2
s

Eh

⎡

⎣
0
0
fr − f p

⎤

⎦ (5)

where u, v, and w are the displacements of the shell in the axial, tangential, and radial directions, respectively.
f p is the acoustic load which is imposed by the liquid on the inner surface of the shell, [L] represents the
classical Flügge differential operator for the thin shell theory:

L11 � R2
s

∂2

∂x2
+ 1−μ

2 (K + 1) ∂2

∂ϕ2 − ρR2
s (1−μ2)
E

∂2

∂t2
,L12 � L21 � Rs

1+μ
2

∂2

∂x∂ϕ

L13 � L31 � Rsμ
∂

∂x
− K R3

s
∂3

∂x3
+ K Rs

1 − μ

2

∂3

∂x∂ϕ2

L22 � R2
s
1 − μ

2
(3K + 1)

∂2

∂x2
+

∂2

∂ϕ2 − ρR2
s (1 − μ2)

E

∂2

∂t2

L23 � L32 � ∂

∂ϕ
− K R2

s
3 − μ

2

∂3

∂x2∂ϕ

L33 � 1 + K + 2K
∂2

∂ϕ2 + K∇4 +
ρR2

s (1 − μ2)

E

∂2

∂t2

∇4 � (R4
s

∂4

∂x4
+ 2R2

s
∂4

∂x2∂ϕ2 +
∂4

∂ϕ4 ),K � h2/12R2
s .

As the shell structure and the fluid are coupled partially, the acoustic load f p imposed on the shell could be
expressed in the forms of piecewise functions:

f p �
{
p|r�Rs

, −π
2 − α ≤ ϕ ≤ π

2 + α

0 , the others
(6)

Assuming that the cylindrical shell is excited by a point harmonic force at (x0, Rs, ϕ0), and the force f r could
be described as [31]:

fr (x, ϕ) � F0
Rs

δ(x − xa)δ(ϕ − ϕ0) (7)

where δ() represents the Delta function.
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Therefore, u, v, w, f p, and f r could be written in the following forms, respectively:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u �
+∞∑

m�1

+∞∑

n�−∞
Umn cos(kmx) exp(inϕ)

v �
+∞∑

m�1

+∞∑

n�−∞
Vmn sin(kmx) exp(inϕ)

w �
+∞∑

m�1

+∞∑

n�−∞
Wmn sin(kmx) exp(inϕ)

fr �
+∞∑

m�1

+∞∑

n�−∞
Fmn sin(kmx) exp(inϕ)

f p �
+∞∑

m�1

+∞∑

n�−∞
fmn sin(kmx) exp(inϕ)

(8)

where Umn, Vmn, and Wmn are amplitudes of the displacements in the axial, tangential, and radial directions,
respectively. Fmn and f mn are the amplitudes of f r and f p, respectively. m and n are the expansion coefficient.

Substituting Eq. (4) and Eq. (7) into Eq. (8), respectively, and then conducting the orthogonal processing,
the expression of f mn and Fmn is obtained:

fmn �
+∞∑

j�1

1

2π

∫ π
2 +α

− π
2 −α

Am, j K j (kr R) sin( jθ ) exp(−inϕ)dϕ (9)

Fmn � F0sin(kmx0) exp(−inϕ0)

LRsπ
(10)

As shown in Fig. 1, the geometrical relations between the structural and the acoustical coordinate systems
can be learned:

{
R sin θ + r cosϕ � H
R cos θ + r sin ϕ � 0 (11)

Therefore, for an arbitrary point on the fluid–structure interface (r � Rs), Eq. (11) can be turned into the
following forms:

⎧
⎪⎨

⎪⎩

R �
√
H2 − 2HRs cosϕ + R2

θ � arcos

(
− Rs sin ϕ

R

) (12)

Because theBessel function exists in Eq. (9), the integral of f mn cannot be calculated directly by substituting
Eq. (12) into Eq. (9). The discrete method is employed to address this problem. The integral domain is divided
intoK segments, and the value of the function at themidpoint of each segment is substituted into the summation
formula:

∫ α+ π
2

−α− π
2

F(ϕ)dϕ �
K∑

k�1

F(ϕk)�ϕ, �ϕ � π + 2α

K
, ϕk � −π

2
− α + (k − 0.5)�ϕ (13)

where F(ϕ) denotes the integral function in Eq. (9). When K � 100, the discrete method makes the integral
convergent.

In the same way, by substituting Eq. (8) into (5) and conducting the orthogonal processing, the decoupling
motion equations of the cylindrical shell are obtained:

[T ]

⎡

⎣
Umn
Vmn
Wmn

⎤

⎦ �
(
1 − μ2

)
R2
s

Eh

⎡

⎣
0
0
Fmn − fmn

⎤

⎦ (14)
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where the elements ofmatrix [T] are: ζ � km Rs , T11 � �2−ζ 2−n2(1+K )(1−μ)/2, T12 � iζn(1+μ)/2, T13 �
μζ +K ζ 3−K (1−μ)ζn2/2, T21 � −T12, T22 � �2−ζ 2(1+3K )(1−μ)/2−n2, T23 � in+ i Knζ 2(3−μ)/2,
T31 � −T13, T32 � T23, T33 � 1 + K + K ζ 4 + 2Kn2ζ 2 + Kn4 − 2Kn2 −�2. where � � ω

√
ρR2

s (1 − μ2)/E
is the non-dimensional frequency.

From Eq. (14), one can obtain the sound–structure coupling equation related to the radial displacement [5]:

Wmn � Imn
(
1 − μ2

)
R2
s

Eh
(Fmn − fmn) (15)

where Imn � (T11T22 − T12T21)
/
det(T ) and det (T) is the determinant of the matrix [T].

2.4 The treatment of the velocity continuity condition on the sound–structure interface

The relationship between the radial displacement amplitudes Wmn and the acoustic load amplitudes f mn is
the key to solving Eq. (15). Thus, it is essential to emphasize the coupling condition on the interface, and in
particular, the radial velocity on the inner surface of the cylindrical shell should be equal to that of the fluid:

∂2w

∂t2
� − 1

ρ f

∂p

∂r

∣∣
∣∣
r�Rs

, on the sound - structure interface (16)

The Galerkin method is employed here to deal with the velocity continuity Eq. (16). The optional weight
functions are the circumferential function of the radial displacement of the cylindrical shell:

fn(ϕ, x) � exp(inϕ) sin(kmx) , Weight function (17)

By substituting Eqs. (17) into Eq. (16), the weak forms of the Galerkin integral are obtained:

ρ f ω
2
∫ L

0

∫ α+ π
2

−α− π
2

w(ϕ, x) fn(ϕ, x)dϕdx �
∫ L

0

∫ α+ π
2

−α− π
2

∂p(R, θ, x)

∂r

∣
∣∣∣
r�Rs

fn(ϕ, x)dϕdx (18)

where n � [− N, − N + 1, ……, N− 1, N], j � [1, 2, ……, 2 N, N + 1], and N is the truncated number.
Since the axial integrals in Eq. (18) are decoupled, the relationship between the radial displacement amplitudes
and the sound pressure amplitudes can be obtained at a given value of m:

ρ f ω
2[V s]{Wmn} � [V p]

{
Amj

}
(19)

where [Vs] and [Vp] are square matrices of 2 N + 1 orders. {Wmn} � [Wm, − N , Wm, − N+1, ……, Wm, N− 1,
Wm, N ]T and {Amj} � [Am, 1, Am, 2, ……, Am, 2 N , Am, 2 N+1]T are amplitude vectors of the radial displacement
and the sound pressure, respectively. The superscript T denotes matrix transposition.
Based onEq. (11), the radial derivative of the sound pressure can be converted to that in the acoustical coordinate
system:

∂p

∂r
� ∂p

∂R
cosβ +

∂p

∂θ

sin β

R
(20)

where β � 3π / 2 − θ − ϕ.
Then, by using the weight function exp(in ϕ), the forms of elements in [Vs] and [Vp] are expressed as follows,
respectively:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[V s]a,b � ∫ α+ π
2

−α− π
2
exp[i(b − 1 − N )ϕ] · exp[i(a − 1 − N )ϕ]dϕ

[V p]a,b �
∫ α+ π

2

−α− π
2

kr K
′
b(kr R) sin(bθ ) cosβ · exp[i(a − 1 − N )ϕ]dϕ

+
∫ α+ π

2

−α− π
2

bKb(kr R) cos(bθ )
sin β

R
· exp[i(a − 1 − N )ϕ]dϕ

(21)

where a and b denote the row and the column of matrices, respectively, and Eq. (21) should be worked out
with the discrete method as Eq. (13), due to the difficulty of the Bessel functions.
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Table 1 Comparison of the first-order natural frequencies at different Ld (unit: Hz)

Ld 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PM 129.8 125.7 117. 0 112.9 111.4 109.6 107.2 105.9 105.0
FEM 129.5 125.6 117.0 113.0 111.5 109.7 107.3 106.0 105.2

2.5 The solution of the sound–structure coupling equation

For convenience, the sound–structure coupling Eq. (21) is converted to the matrix equation:

Eh

(1 − μ)R2
{Wmn} � [G]({Fmn} − { fmn}) (22)

where {Fmn} � F0sin(kmx0)
/

(LRsπ)·{exp(i Nϕ0), exp[i(N − 1)ϕ0], ......, exp(−i Nϕ0)} T , [G] is the diag-
onal matrix, [G]j, j � Im, j-1-N ,

{
f mn

} � {
fm,−N , fm,−N+1, ......, fm,N

}
T .

Similarly, Eq. (9) is also converted to the matrix equation:
{
f mn

} � [T p]
{
Amj

}
(23)

where the element in the matrix [Tp] is expressed as:

[T p]a,b �
∫ α+ π

2

−α− π
2

exp[−i(a − 1 − N )ϕ] · K (1)
b (k f R) sin(bθ )dϕ (24)

By substituting Eqs. (19) and (23) into (22), the matrix equation related to the radial displacement {Wmn}
is obtained:

(
Eh

R2
s

(
1 − μ2

) [J] + ρ f ω
2[G][T p][V p]

−1[V s]

)

{Wmn} � [G]{Fmn} (25)

where [J] is the unit matrix of 2 N + 1 orders. With the exciting force {Fmn} being zero, a series of frequencies
ω could be obtained by combining stepwise search and dichotomy.

The radial displacement can be obtained by solving the matrix Eq. (25). Then, by substituting {Wmn} into
Eq. (19), {Amj} can be obtained as well as the sound pressure. The value range ofm is 1 to a truncated number
M.

3 Numerical analysis

The following parameters of the coupling model are used in the calculation: E � 206GPa, μ � 0.3, ρ �
7850 kg/m3, ρf � 1025 kg/m3, cf � 1500 m/s, L � 1.284, Rs � 0.18 m, h � 0.003 m. The complex elastic
modulus of the shell is expressed as E ′ � E(1 + iη), where the structural damping factor η � 0.01.

3.1 Application scope of the present method

In the previouswork byAmabili [24], angleα is limited between –π /8 andπ /8, and the corresponding limitation
of the non-dimensional immersion depth Ld is from 0.31 to 0.69 approximately. However, the application range
can be significantly expanded using thismethod. For verifying this advantage, the first-order natural frequencies
calculated from the present method (PM) and the finite element method (FEM) are compared in Table 1 when
Ld � 0.1~0.9 (this range covers most engineering practices). The cylindrical shell is divided into 2400 shell
elements in the numerical simulation. The free and forced vibration of the partially submerged cylindrical shell
can be solved by setting the fluid–structure interaction (FSI) surface and the immersion depth in MSC.Nastran
with the virtual mass method.

It is shown in Table 1 that the natural frequencies of the first order obtained from the proposed method
agree well with those from the FEM. Also, the scope of Ld is from 0.1 to 0.9, which shows a larger application
scope of the present method than that proposed by Amabili [24].
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Table 2 Comparison of the natural frequencies (Hz) between the present method and FEM at different Ld

Order Ld � 0.25 Ld � 0.5 Ld � 0.75

f PM f FEM Error (%) f PM f FEM Error (%) f PM f FEM Error (%)

1 121.1 121.0 0.08 111.4 111.5 0.09 106.5 106.6 0.09
2 125.0 124.5 0.40 113.5 113.4 0.09 108.2 108.3 0.09
3 179.2 178.8 0.22 160.6 160.5 0.06 140.1 140.5 0.28
4 194.3 194.2 0.05 165.6 164.9 0.42 144.6 144.4 0.14
5 254.2 255.5 0.51 239.3 240.7 0.58 231.5 232.9 0.60
6 263.0 263.3 0.11 242.8 243.9 0.45 233.1 234.4 0.55
7 281.2 282.3 0.39 265.7 267 0.49 242.7 244.5 0.74
8 293.7 294.2 0.17 267.7 269.4 0.63 249.4 250.7 0.52
9 367.8 367.9 0.03 320.9 321.9 0.31 287.7 289.2 0.52
10 370.5 369.8 0.19 321.6 322.4 0.25 288.4 290 0.55

PM 1st PM 2nd PM 3rd PM 4th

FEM 1st FEM 2nd FEM 3rd FEM 4th

Fig. 2 The circumferential mode shapes of the first four orders when Ld � 0.75

3.2 Accuracy verification of the present method

After analyzing the convergence and scope of application of the method, we further explore the accuracy of the
present method. We take free vibration as an example. The first ten-order natural frequencies obtained with the
present method and the numerical simulation are compared in Table 2 at different non-dimensional immersion
depths (Ld � 0.25, 0.5 and 0.75), where f PM and f FEM represent the natural frequencies calculated with the
present method and the FEM, respectively. The relative error of the natural frequencies between both methods
is defined as Error �| f PM – f FEM | / f FEM. In addition, we compared the circumferential mode shapes of the
first four orders calculated with the present method and the FEM when Ld � 0.75, as seen in Fig. 2.

From Table 2 and Fig. 2, it is clear that the results obtained with the present method agree quite well with
those obtained with FEM. For the first ten-order natural frequencies, the relative errors are less than 1%, which
verifies the accuracy of the present method in calculating free vibration.

In order to further demonstrate the accuracy and reliability of the present method, the natural frequencies
andmode shapes calculatedwith the presentmethod are comparedwith those inRef. [9] (based on the boundary
integral method). The material parameters in Ref. [9] are listed as E � 206GPa, μ � 0.3, ρ � 7680 kg/m3,
and the dimensions of the shell are L � 0.664 m, R � 0.175 m, and thickness h � 0.001 m. The density of
the fluid is ρf � 1000 kg/m3. The relative error of the natural frequencies calculated with the two methods is
defined as Error �| f PM – f Ref | / f Ref, where f PM represents the natural frequencies calculated with the present
method and f Ref represents the natural frequencies in Ref. [9].

In Table 3, the differences between the results of the present method and Ref. [9] are relatively small
(not more than 1%). In Fig. 3, the model shapes further prove that the present method for the free vibration
is accurate and reliable. Furthermore, since the fluid and the structure are partially coupled, the sound wave
radiated by the structure encounters the sound wave reflected by the free surface, making the sound field
very complex. At the same time, the circumferential structural wave is cross-coupling, which makes the mode
shapes of the cylindrical shell irregular (as seen in Fig. 3).
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Table 3 Comparison of the first six natural frequencies when Ld � 0.5

Order number 1 2 3 4 5 6

f PM /Hz 98.9 99.9 128.1 131.8 182.4 184.6
f Ref /Hz 99.9 100.8 129.1 133.1 184.1 185.1
Error 1.00% 0.89% 0.77% 0.98% 0.92% 0.27%

PM 1st PM 2nd PM 3rd PM 4th PM 5th PM 6th

Ref. 1st Ref. 2nd Ref. 3rd Ref. 4th Ref. 5th Ref. 6th

Fig. 3 The circumferential mode shapes of the first six orders when Ld � 0.5

Fig. 4 Model of the rigid barrier-cylindrical shell

4 The far-field sound radiation model

After getting the forced vibration response, the far-field sound pressure can be obtained using the presented
method, which combines the Fourier transform technique and the stationary phase method.

Given that the model is the rigid barrier-cylindrical shell model, the model image is shown in Fig. 4. In
this model, there are two semi-infinite rigid barrier columns (the velocity is zero). Point P is the far-field
observation point, the distance between the point P and Q is R0, and the included angle between axis x and
the vector 	R0 is γ . Simultaneously, the original center of the spherical coordinate system (R0, γ , θ ) is set as
the point Q for solving the far-field sound radiation more conveniently.

By transforming the vibration response from the frequency domain to thewavenumber domain, the response
function can be rewritten as follows:

w̃(kx , ϕ)�
+∞∑

n�−∞
w̃n(kx ) exp(inϕ) (26)

where w̃n � (kx ) � 1
2π

+∞∑
m�1

Wmnkm
k2m−k2x

[1 − (−1)m exp(−ikx L)].
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And then, assuming that the acoustic boundary satisfies the boundary condition and the Helmholtz equations
as follows:

p̃(R, θ, kx ) �
+∞∑

j�1

P̃j (kx )H
(1)
j (k̃r R) sin( jθ ) (27)

where P̃j (Kx ) is the amplitude of the sound pressure in the wavenumber domain, k̃r �
√
k2f − k2x is the

radial wavenumber in the wavenumber domain.
By the use of the sound-solid coupled continuous condition which is transformed to the wavenumber

domain, the relationship between the soundpressure amplitude and transformation amplitude could beobtained,
and the continuous condition can be expressed as:

∂ p̃

∂r

∣∣∣
∣
r�Rs

� ρ f ω
2w̃(kx , ϕ) (28)

Combining Eqs. (28), (29), and (30), the relationship between the sound pressure amplitude and transformation
amplitude can be written by using the Galerkin method as follows:

ρ f ω
2[V 1]{w̃n} � [V 2]

{
P̃ j

}
(29)

where {w̃n} � [w̃−N (kx ), w̃−N+1(kx ) . . . , w̃N (kx )]T,
{
P̃j

}
� [P̃1(kx ), P̃2(kx ) . . . , P̃2N+1(kx )]T.

Assuming that the weight function is the radial displacement function, the elements of the matrixes [V1]
and [V2] can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[V 1]a,b � ∫ α+ π
2

−α− π
2
exp[i(b − 1 − N )ϕ] · exp[i(a − 1 − N )ϕ]dϕ

[V 2]a,b �
∫ α+ π

2

−α− π
2

k̃r H
(1)′
b (k̃r R) sin(bθ ) cosβ · exp[i(a − 1 − N )ϕ]dϕ

+
∫ α+ π

2

−α− π
2

bH (1)
b (k̃r R) cos(bθ )

sin β

R
· exp[i(a − 1 − N )ϕ]dϕ

(30)

where β=3π /2− θ− ϕ.
The transformed matrix of Eq. (31) can be written as:

{
P̃ j

}
� [Tran]{w̃n} (31)

where the order of the matrix [Tran] is 2 N + 1, and [Tran] � ρ f ω
2[V 2]−1[V 1]。

And applying the inverse Fourier transformation, the expression of the sound pressure can be obtained as the
infinite integrates:

p(R, θ, x) �
∫ +∞

−∞

+∞∑

j�1

P̃j (kx )H
(1)
j (k̃r R) sin( jθ ) exp(ikx x)dkx (32)

Due to the approximate expansion of the Hankel function in the analysis of the far-field sound radiation,
the sound pressure can be written as the approximate form:

p(R, θ, x) �
∫ +∞

−∞

+∞∑

j�1

P̃j (kx )

√
2

π k̃r R
exp[i(k̃r R − jπ

2
− π

4
)] sin( jθ ) exp(ikx x)dkx (33)

Transforming Eq. (35) to the spherical coordinate system, the sound pressure could be described as:

p(R0, θ, γ ) �
∫ +∞

−∞

+∞∑

j�1

P̃j (kx )

√
2

π k̃r R0 sin γ
sin( jθ ) exp[−i(

π

4
+

jπ

2
)] × exp[i(kx R0 cos γ+k̃r R0 sin γ )]dkx

(34)
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By the use of the stationary phase method, the infinite integral can be solved, and the stationary phase point
ks � kf cosγ can be obtained. The final expression of the sound pressure is:

p(R0, θ, γ ) � −2i exp(ik f R0)

R0

+∞∑

j�1

P̃j (k f cos γ ) sin( jθ ) exp(−i
jπ

2
) (35)

Combining Eqs. (28), (33), (35) and substituting the stationary phase point into Eqs. (28), (33), the far-field
sound pressure can be solved.

5 Results and discussion

The following parameters of the coupling model are used in the calculation: E � 206GPa, μ � 0.3, ρ �
7850 kg/m3, ρf � 1025 kg/m3, cf � 1500 m/s, L � 1.284 m, Rs � 0.18 m, h � 0.003 m. The complex elastic
modulus of the shell is expressed as E ′ � E(1 + iη), where the structural damping factor η � 0.01.

The location of the point exciting force is assumed as x0 � L/2, ϕ0 � π And the force amplitude is assumed
as F0 � 1. The far-field sound pressure can be obtained with the exciting frequencies of 300 Hz and 600 Hz
and the immersion depth of − 0.09 m and 0.09 m. After calculation by the present method, the results are
compared with the results which got by the BEM as shown in Fig. 5. The far-field observation point is set as
R0 � 1000 m, observation angle γ � π /3, θ � 0~π(ϕ � − π /2~π /2).

As seen from Fig. 5, the results obtained by the present method have good agreement with those obtained
by the BEM. So it is believed that the present method is accurate. Besides, since there is only a simple algebraic
summation in Eq. (35), the efficiency of the stationary phase method is higher than the BEM.

As shown in Fig. 6, the far-field sound pressures are presented as functions of the exciting frequency. The
location and amplitude of the exciting force are assumed as x0 � L/2, ϕ0 � π , and F0 � 1. In addition, the
observation point is set as γ � π/3, θ � π/4 and π /2. It can be seen from Fig. 6 that the far-field sound
pressure values of θ � π /4 and π /2 at different frequencies are relatively close, which is consistent with the
law shown in Fig. 5.

For different exciting frequencies, the far-field sound pressures can be calculated by the present method.
Figure 7 shows the difference in the circumferential distribution of far-field sound pressure at the different
exciting frequencies. The sound pressures are calculated for γ � π/3 and the Ld � 0.75,0.25. It is clear from
these figures that the directivity of far-field sound pressure varies with the immersed depth and the frequency.
Moreover, the petal number of the directivity increases with the frequency increase.

As shown in Fig. 8, it is the directivity of far-field sound pressure when the cylindrical shell is located
at different immersed depths at the frequencies f � 200,600,800 and 3000 Hz, respectively. As seen in the
sound pressure directivity curves in Fig. 8, the maximum sound pressure is always at a � 0, directly under the
shell. Moreover, the directivity curves are symmetrical about the vertical axis of symmetry (θ � π/2). These
could be explained by the image method [6]. Because the observation point is far from the cylindrical shell, the
submerged radiation surface could be assumed as a point radiation source. Due to the free surface, the far-field
sound pressure is superimposed by the part directly produced by the real source and the other part reflected
by the free surface according to the image method. The reflected part could be assumed that produced by the
mirror image source. In this case, the distance between the real source and the image source is so close that
the physical model could be seen as a dipole model. So that the dipole could be expressed as:

P � A

R
exp

(−ik f R
)[−2i sin

(
k f D sin θ

)]
(36)

where A is the sound pressure amplitude, R is the distance between the field and origin points, andD represents
the distance between the real source and the image source. The value of kf D is minor than π /2, when the
exciting frequency is low. Therefore, the sound pressure is maxed at the θ � π/2. The symmetry can also be
obtained in Eq. (36) according to the characteristic of the sine function.

6 Conclusion

This paper proposes a new method to solve the vibration and far-field sound radiation of partially submerged
cylindrical shells. Conclusions are summarized in the following:
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Fig. 5 Comparison of the results obtained by the stationary phase method (SPM) and BEM with different frequencies and
immersion depth a f � 300 Hz, H � − 0.09 m; b f � 600 Hz, H � − 0.09 m; c f � 300 Hz, H � 0.09 m; d f � 600 Hz, H �
0.09 m;

Fig. 6 The far-field sound pressure in the region γ � π/3 andθ � π/4 ,π/2 due to a point force on the shell
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Fig. 7 The circumferential distribution of far-field sound pressure at different exciting frequencies: a Ld � 0.75; b Ld � 0.25

Fig. 8 The circumferential distribution of far-field sound pressure at different immersed depths
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(1) The accuracy of the proposed method is verified by comparing the cylindrical shell’s vibration and
acoustic radiation between the proposed method and the finite element method. Moreover, the present
method demonstrated a broader application scope of the immersed depth than the previous analytical
method.

(2) The increase in the free surface height leads to an increase in the fluid–structure interface. In turn, this
increased the added mass of the fluid–structure system, which reduced the natural frequencies of the
coupled cylindrical shell.

(3) A model for the far-field sound radiation was introduced, combining the method with the stationary phase
approach. And the present method was shown to have superior accuracy and efficiency concerning the
boundary element method.

(4) The directivity of far-field sound pressure varies with the immersed depth and the frequency. And the petal
number of the directivity increases with the frequency increase. Besides, the sound pressure is maxed at
the θ � π/2 when the exciting frequency is low. The directivity curves are also symmetrical about the
vertical axis of symmetry (θ � π/2).
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