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Abstract This paper proposes amodifiedhybridmethod combiningfinite elementmethod and aLambseries, to
derive the displacement amplitude of a symmetric canyon embedded within a single-layer half-space subjected
to shear horizontal (SH) waves. Four canyon shapes and various site effects were also examined under various
incident angles and dimensionless frequencies. The site effects included the canyon-decay effects and canyon-
area effects (due to the existing canyon) as well as the thickness effect (due to the soft layer). We discuss
the resonance frequencies of the single-layer half-space under various shifts in incident angle imposed by the
existed canyon. We also compare the responses obtained in this paper with those of a canyon embedded in a
half-space. Finally, we employed the fast Fourier transform to obtain responses in the time domain with series
responses in the frequency domain. These results support our discovery that site effects dominated responses at
the free surface. This paper provides a valuable reference furthering our understanding of site effects associated
with surface irregularities in a single-layer half-space.

Keywords SH waves · Single-layer half-space · Symmetric canyon · Hybrid method · Ricker wavelet

1 Introduction

Irregular surface topographies, including canyons and alluvial valleys or hills, generate site effects capable
of affecting seismic waves. Pronounced surface responses (such as displacement, velocity, or acceleration)
appear in various site locations, for example, the rim of canyons [1, 2], the central area of alluvial valleys [2,
3], and the top of hills [2, 4–6]. These results can be observed in seismic records [1, 7]. Numerous simulations
of the site effects have been conducted over the last four decades. However, valuable seismic records are not
easily obtained, due to a lack of seismographs and/or strong ground motion. Thus, the analysis of the site
effects relies heavily on numerical simulations, including the wave function expansion method [1, 3, 5, 6,
8–11], boundary element method [4, 12–15], pseudo-spectral method [16], and hybrid method [2, 17–24].
In most research papers, problems related to scattering have been simplified through the use of an isotropic
homogeneous model, despite the fact that the most of the materials in the earth’s crust are anisotropic, due
to effects of sediment deposition and weathering [25]. Under these conditions, a layered medium tends to be
far closer to the ground truth than is a homogeneous isotropic half-space. Thomson [26], Kennett and Kerry
[27] introduced the propagator matrix method to study responses within a multilayer half-space. Nguyen and
Tassoulas used a reciprocal absorbing boundary condition combined with perfectly matched discrete layers to
discuss the propagation of SH waves in a layered half-space [28]. Their approach allows surface irregularities
embedded in the layered half-space to producewave propagation responses of greater complexity via scattering
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and diffraction. In the last decade, many researchers have focused on the problems of scattering related to
irregularities embedded within (or crossing through) a layered half-space. A number of recent studies have
employed indirect boundary element methods to investigate the surface responses of a layered half-space
with various irregularities, including an alluvial valley [29], a hill [30], an earth dam [31], a canyon [32–34],
and topographic features [35, 36]. Numerical methods such as wave function expansion have also been used
to model the layer-effect of a circular-arc canyon embedded within a double-stratified half-space [37]. In a
previous study, the wave function expansion was used to solve a P wave scattering problem pertaining to a
layer-interface crossing a V-shaped canyon [38]. To discuss the phenomena due to the complex topography,
the ratio of characteristic length of topography to the incident wavelength was convenient to analyze the
amplification and interference effects due to incident waves scattering problem [1, 2].

Over last six years, the hybrid method used in the references above [18–21, 23, 24] has been applied to the
problem of an isotropic half-space with irregularities. In addition, the problem of scattering associated with an
alluvial valley embedded within a single-layer half-space has been resolved [22]. We previously developed a
series function to represent the scattering of waves in a single-layer half-space in the formulation of a matrix
equation for the modified hybrid method. In this current study, we extended our experiments to symmetric
canyons embedded within a single-layer half-space. The formulation of an alluvial valley can be attributed
to the accumulation of sedimentary soil within a canyon. It is for this reason that canyons embedded within
a single-layer half-space are a common topographical feature. For example, a U-shaped canyon forms when
a glacier travels across and down a slope, whereas a V-shaped canyon in cross section is carved out when a
river traverses a similar slope [25]. We therefore developed symmetric canyons of various shapes, including
a semicircle, a shallow semi-ellipse, a trapezium, and a triangle in cross section. We meshed the various
canyons using the transfinite interpolation (TFI) function [39] to obtain the nodal coordinates required for
FEM calculations. We then introduced incident SH waves with specified resonance frequencies (RFs) in a
single-layer half-space (in accordance with previous study) [22] to facilitate the analysis of site effects. In the
current study, we verified the accuracy of sequenced frequency results to ensure the accuracy of our results
under relatively high frequencies. This was achieved by combining the Ricker wavelet [8, 10] with canyon
surface responses in the frequency domain in order to obtain displacements in the time domain. Takemiya and
Fujiwara also employed BEM in the time domain to facilitate computation involving SH wave propagation
at irregular sites embedded within the half-space [14]. Site effects proved helpful to our analysis in both the
frequency and time domains.

2 Methodology

2.1 Model

Figure 1 presents a two-dimensional (2-D) model that includes a soft layer (�1) of thickness H on a hard
bedrock half-space (�2) with interface L on the x–z plane. A symmetric canyon with width 2aand depth d is
enclosed as �0 with boundary C entirely embedded within the soft layer, such that the depth of the canyon is
less than the thickness of the soft layer (i.e., d < H ). An anti-plane incident SH wave with circular frequencyω
and incident angle θ2 impinges on this topography. In the anti-planemodel, only responses along the y-direction
can occur. Each of the materials in the soft layer and hard bedrock is isotropic and elastic, wherein densities

(ρ j ) and shear modulus (μ j ) can be used to obtain the shear velocity (Csj �
√

μ j
/
ρ j ). Note that j � 1, 2,

respectively, refer to different materials of �1 and �2. Note also that the materials of �0 are equivalent to
those of �1.

Our numerical modeling scheme was used to examine the problem of scattering by a symmetric canyon
embedded within the single-layer half-space which is presented as follows:

(1) A short introduction to displacement responses and stress associated with incident SH waves within a
followed the reference single-layer half-space is presented in Sect. 2.2.

(2) The surface displacement responses in the single-layer half-space to identify important incident angles
and relative resonance frequencies are examined in Sect. 2.3.

(3) The hybrid method combining the series scattering function of a single-layer half-space is introduced in
Sect. 2.4.

(4) The use of a novel hybrid method to deal with the problem of scattering by a symmetric canyon embedded
within a single-layer half-space is also introduced in Sect. 3.
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Fig. 1 Schematic diagram showing symmetric canyon with width 2a and depth d embedded within a soft layer of depth H above
the half-space

(5) Finally, the Ricker wavelet used to derive surface responses in the time domain is introduced in Sect. 4.

2.2 Equations of SH waves propagation in single-layer half-space

As outlined in reference [22], the incident displacement (uiy j ) and reflective displacement (ury j ) due to an
incident SH wave impinging on a single-layer half-space without an existing canyon can be derived as follows:

In the soft soil layer (i.e., z ≤ H ),

uiy1 � A1e
−i(ξ1x−β1z) and ury1 � B1e

−i(ξ1x+β1z) (1)

And in the half-space bedrock (i.e., z > H ),

uiy2 � A2e
−i(ξ2x−β2z) and ury2 � B2e

−i(ξ2x+β2z) (2)

where i � √−1, ξ j � ks j sin θ j and β j � ks j cos θ j represent the apparent wave numbers, and ks j represents
the wave number derived using the following formula: ω � ks jCs j . As shown in Fig. 1, θ1 is the refractive
angle obtained using Snell’s law equal to sin−1

(
Cs1 sin θ2

/
Cs2

)
. It can be regarded as a new incident angle

in �1. The unit amplitude of incident waves can be derived as A2 � 1.0, and the relative coefficients can be
derived as follows:

A1 � B1 � cos Q2 + i sin Q2

cos Q1 + iP sin Q1
A2 (3a)

B2 � (cos Q2 + i sin Q2)(cos Q1 − iP sin Q1)A1 (3b)

where

P � μ1β1

μ2β2
, (3c)

Q j � β j H ; j � 1, 2. (3d)

Thus, we can obtain the displacements (u f
y j ), stresses (σ

f
xy j , and σ

f
zy j ), and tractions (t fy j ) in the free field

(represented by superscript f ), including the contributions from incident and reflected plane waves as follows:

u f
y j � uiy j + ury j ; j � 1, 2 (4a)

σ
f
xy j � σ i

xy j + σ r
xy j , σ

f
zy j � σ i

zy j + σ r
zy j ; j � 1, 2 (4b)

t fy j � σ
f
xy j nx + σ

f
zy j nz ; j � 1, 2 (4c)

where nx and nz are the components of the unit normal vector, respectively, in the x and z directions.
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Fig. 2 Free surface displacement of single-layer half-space impinged by incident waves with a various incident angle θ2

2.3 Surface displacement amplitudes of single-layer half-space

In accordance with the formulae in Sect. 2.2, it is possible to derive the theoretical amplitudes of displacement

in a single-layer half-space (i.e.,
∣∣∣u f

y j

∣∣∣) impinged by incident SH waves, including the soft layer �1 (i.e.,∣∣∣u f
y1

∣∣∣) and the hard bedrock �2 (i.e.,
∣∣∣u f

y2

∣∣∣), based on the following assumptions. The material properties are

set at μ1 � 1.0 and ρ1 � 1.0 in �1 with μ2 � 6μ1 and ρ2 � 1.5ρ1 in �2, leading to shear wave speeds
Cs1 � 1.0 and Cs2 � 2.0. According to the Snell’s law and the relative coefficients of incident waves (and
reflective waves) discussed in 2.2, it could be obtained with the given ratio of materials (i.e., shear modulus
and density, or wave speed). Hence, we could choose the wave speeds Cs1 � 1.0 and Cs2 � 2.0, which equals
Cs2

/
Cs1 � 2.0. It was helpful to simplify the problem. The values of refractive angle (θ1) due to various

incident angles and the changes in wave speed crossing boundary L can be obtained using Snell’s law as
follows: 0◦ (due to θ2 � 0◦), 14.48◦ (due to θ2 � 30◦), and 25.66◦ (due to θ2 � 60◦). Generally, the value of
θ1 is only one half that of θ2, with the result that the incident waves in �1 are nearly vertical (0◦ ≤ θ2 ≤ 60◦).

Following the convenient parameter introduced from Trifunac [1, 2], we use the ratio of the thickness of
the soft layer (H) to the wavelength of the incident shear waves (λ1) in �1. Then, we define a dimensionless
frequency ζ � H

/
λ1. We also use the relationship between wavelength and wave number (ks) (i.e., λ1 �

2π
/
ks1) to derive ζ � ωH

/
2πCs1.Based on the abovematerial properties, the theoretical results of

∣∣∣u f
y1(x, 0)

∣∣∣
versus ζ on the free surface of a single-layer half-space are presented in Fig. 2.Note that the values of

∣∣∣u f
y1(x, 0)

∣∣∣
in horizontal position x are independent, such that

∣∣∣u f
y1(x, 0)

∣∣∣ can be shortened as
∣∣∣u f

y1

∣∣∣. The solid blue line,

dashed red line, and dash-dot black line, respectively, represent variations in displacement associated with ζ
under θ2 � 0◦, 30◦, and 60◦. For a given ζ value ranging from 0.01 to 2.0, it was possible to obtain a response

value for
∣∣∣u f

y1

∣∣∣ at the free surface. Note, however, that some ζ values occurring at the resonance frequency

(RF) generated large
∣∣∣u f

y1

∣∣∣ values. The highest
∣∣∣u f

y1

∣∣∣ values and corresponding ζ values were nearly the same

under θ2 � 0◦ and 30◦; therefore, Table 1 and Table 2 list only the ζ values obtained under θ2 � 0◦ and

60◦. We identified ζ M
n (n � 1, 2, 3, 4) as the first to fourth modes of the RFs generating the highest

∣∣∣u f
y1

∣∣∣
values (i.e.,

∣∣∣u f M
y1

∣∣∣) at the surface (see Table 1). We then identified ζm
n (n � 1, 2, 3, 4) as the first to fourth

modes of the RFs generating the lowest
∣∣∣u f

y1

∣∣∣ values (i.e.,
∣∣∣u f m

y1

∣∣∣) at the surface (see Table 2). We observed

only three RFs of ζm
n under θ2 � 60◦ over the range of values discussed above. Further details can be found

in the discussion section of a paper previously published by the authors [22].
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Table 1 Maximum absolute values of free surface displacement and corresponding frequencies under θ2 � 0◦ and 60◦
∣∣∣u f M

y1

∣∣∣ ζ M
1 ζ M

2 ζ M
3 ζ M

4

θ2 � 0◦
6.00 0.25 0.75 1.25 1.75

θ2 � 60◦
3.33 0.28 0.83 1.39 1.94

Table 2 Minimum absolute values of free surface displacement and corresponding frequencies under θ2 � 0◦ and 60◦
∣∣∣u f m

y1

∣∣∣ ζm
1 ζm

2 ζm
3 ζm

4

θ2 � 0◦
2.00 0.50 1.00 1.50 2.00

θ2 � 60◦
2.00 0.56 1.11 1.66 –

2.4 Hybrid method with series functions introduced in single-layer half-space

The hybrid method combining FEMwith series functions was developed to deal with the anti-plane problem of
scattering due to surface irregularities in a half-space [2, 16–22]. In formulating the mass matrix and stiffness
matrix for FEM, we meshed irregular region �0 with a semicircular boundary C using the TFI formula, based
on the details outlined in our previous work [16]. The series functions were based on the anti-plane Lamb load
in the half-space (or in the single-layer half-space). Thus, the hybrid method is essentially a combination of
FEM with a Lamb series formulated as a matrix equation as follows:

[
Kaa − ω2Maa −Kac

−Kca Kcc

]{
uy0
c

}
�

{
Pa

−Pc

}
(5)

where
[
Kaa

]
and

[
Maa

]
, respectively, represent the stiffness matrix and mass matrix obtained using the FEM

formulation, {Pa} refers to the force vector from the product of the traction of the free field and the displacement
at boundary C, and {Pc} refers to the force vector from the product of the displacement of the free field and
the traction of the scattered field at boundary C.

[
Kac

]
and

[
Kca

]
indicate the coupling matrices formed by

combining displacement in�0 with the traction of the scattered field at boundaryC.
[
Kcc

]
indicates the matrix

formed by combining the traction and displacement of the scattered field at boundary C. Vector
{
uy0

}
refers

to the displacements of each node in region �0, whereas vector {c } refers to the unknown coefficients in the
scattered field. In one previous study [19], we altered the series function using in-plane scattering waves to
resolve the problem of wave scattering due to P waves. In another previous study, the scattering of waves in
a single-layer half-space was used to resolve the problem of scattering due to an alluvial valley embedded
within the single-layer half-space [22]. This approach was meant to extend the range problems that can be
solved using the hybrid method. In the current study, we used the hybrid method to examine the site effects of
a canyon embedded within a single-layer half-space. The formula of series functions was shown to satisfy the
boundary conditions of a single-layer half-space, as shown in “Appendix 1”.

3 Results and discussion

3.1 The responses of displacement at free surface

In this paper, the symmetric canyon was embedded in the soft layer of a half-space. As shown in Table 3,
we examined four types of canyon: the semicircular (Case 1), triangular (Case 2), trapezoidal (Case 3), and
shallow semi-elliptical (Case 4). The ratio of the deepest canyon depth (d) to the half-width of the canyon (a)
was set to 1.00, except in Case 4 (0.75). The thickness of the soft layer was set at H � 2a, which means that
the symmetric canyon was embedded entirely within the soft layer. Thus, the irregular region �0 including the
canyon (referred to as the physical region) was bounded by a portion of the free surface and a semicircle with
radius 1.5a(auxiliary boundary C), as shown in Fig. 1. To mesh region �0, we used the transform equation of
transfinite interpolation (TFI) to calculate nodal coordinates within�0 in order to obtain the sequence of nodal
points. Details pertaining to use TFI can be found in a previous study by the author [16]. Figure 3 presents
the FEM meshed grids of �0 in Case 1 (semicircular canyon), Case 2 (triangular canyon), Case 3 (trapezoid
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Table 3 Dimensionless parameters of symmetric canyons of four types

Canyon shape d
/
a (area of canyon)

/
a2

Case 1 Semicircular canyon 1.00 1.57
Case 2 Triangular canyon 1.00 1.00
Case 3 Trapezoid canyon 1.00 1.50
Case 4 Shallow semi-elliptical canyon 0.75 1.18

(b) 

(d) 

(a)

(c)

Fig. 3 FEMmesh of �0 including (a) semicircular canyon (Case 1), (b) triangular canyon (Case 2), (c) trapezoidal canyon (Case
3), and (d) shallow semi-elliptical canyon (Case 4)

canyon), and Case 4 (shallow semi-elliptical canyon), in which each case included 400 Q8 elements and 1301
nodes.

3.2 Verification of single-layer half-space model via degeneration

Though the authors did their best, the similar problems were fewer in the previous study. However, depending
on the successful experiment in solving the anti-plane scattering problem in a single-layer half-space [22], it
prompted us to extend a similar procedure to solve for different topographies. Nonetheless, we were unable to
find a similar model in previous studies. We therefore sought to verify our numerical results by degenerating
the single-layer half-space model into a half-space model. We used the parameters in �2 and �0 in �1, as
follows: μ � 1.0 and ρ � 1.0 (i.e., Cs � 1.0). These led to dimensionless frequency ζ � ωa

/
2πCs . The

curves in Fig. 4 produced variations in
∣∣uy

∣∣, where x /a at θ2 � 0◦ (Fig. 4a) and θ2 � 60◦ (Fig. 4b) under
ζ � 0.25 (i.e., ζ M

1 ), as well as at θ2 � 0◦ (Fig. 4c) and θ2 � 60◦ (Fig. 4d) under ζ � 0.75 (i.e., ζ M
2 ). The

numerical results obtained are shown using four curves: solid blue line (Case I), dashed red line (Case II),
dash-dot black line (Case III), and dash-dot pink line (Case IV). Cases I to IV use the shape of the symmetric
canyon in Cases 1 to 4 embedded within the half-space. These symbols, respectively, represent the numerical
results obtained by the author in a previous work [2]. As shown in Fig. 4a–d, the numerical results obtained in
the current study are in reasonable agreement with those obtained in the previous work. Note that the dashed

light-blue line represents the response of
∣∣∣u f

y

∣∣∣. Note also that the uniform value (i.e., 2.0) is an arbitrary value

independent of position (x /a), incident angle (θ2), and dimensionless frequency (ζ ).
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Fig. 4 Variations in surface response
∣∣uy

∣∣ of canyon embedded in half-space including (a) θ2 � 0◦ and (b) θ2 � 60◦ with
ζ � 0.25 and (c) θ2 � 0◦ and (d) θ2 � 60◦ with ζ � 0.75, where the circles, squares, and diamonds indicate results reported by
Shyu et al. [2]

In Fig. 4, we investigated asymptotic variations in
∣∣uy

∣∣ resulting from a series of changes in the shape of
the canyon by calculating the responses in Case I to Case IV. In Fig. 4a and c, the symmetric responses of

∣∣uy
∣∣

are due to the symmetric shapes of a canyon, where θ2 � 0◦. The maximum value of
∣∣uy

∣∣ (i.e.,
∣∣∣uM

y

∣∣∣) tended
to occur at the corner of the canyon; however, the minimum value of

∣∣uy
∣∣ (i.e.,

∣∣∣umy
∣∣∣) occurred at the bottom

of a canyon with a relatively low dimensionless frequency (e.g., ζ � 0.25). Note that
∣∣∣uM

y

∣∣∣ occurred in the

canyon corner as well as the bottom of the canyon; however,
∣∣∣umy

∣∣∣ occurred adjacent to the side of the canyon
with a relatively high dimensionless frequency (e.g., ζ � 0.75). A smaller wavelength (λ � (2a) × 4

/
3 for

ζ � 0.75) would almost allow insertion of the canyon, leading to a pair of wave crests and wave troughs.
In Fig. 4b and d, the evolution following an oscillation in

∣∣uy
∣∣ in the illuminated zone (i.e., x /a < −1.0)

to the decay of
∣∣uy

∣∣ in the shadow zone (i.e., x /a > 1.0) was sufficient to suppress the canyon-decay effect
[15] of

∣∣uy
∣∣ along the free surface of the canyon (i.e., −1.0 ≤ x /a ≤ 1.0). Following an increase in ζ , the

corresponding increase in oscillation in the illuminated zone led to an increase in
∣∣∣uM

y

∣∣∣ in the left corner of the
canyon. A sharp canyon-decay effect along the canyon surface led to

∣∣∣umy
∣∣∣ adjacent to the right corner. Due to

the shielding effect [16], the responses to
∣∣uy

∣∣ in the shadow zone rapidly approached
∣∣∣u f

y

∣∣∣ with an increase

in ζ . We observed that the values of
∣∣∣uM

y

∣∣∣ (and
∣∣∣umy

∣∣∣) were affected by the shape of canyon, particularly the

slope discontinuous point(s) (SDCPs) within a non-smooth canyon (NSC) [18], such as in Cases II and III. The
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(a) (b) 

(d) (c)

x a x a

x a x a

1yu

ζ

1yu

1yu
1yu

ζ

ζ ζ

Fig. 5 Variations in
∣∣uy1

∣∣ on free surface of single-layer half-plane where θ2 � 0◦ with −5 ≤ x /a ≤ 5 in four types of canyon:
(a) Case 1; (b) Case 2; (c) Case 3; and (d) Case 4

combined effects of SDCP and canyon corner points caused fluctuations in displacements, which produced

the smallest
∣∣∣uM

y

∣∣∣ (and
∣∣∣umy

∣∣∣) values in Case II.

3.3 The transfer functions of specific locations at canyon surface embedded in single-layer half-space

We display the free surface responses (
∣∣∣uy

∣∣∣) of a symmetric canyon embedded in a single-layer half-space

under various ζ by 3-D plots of surface displacement amplitudes in Cases 1 to 4 with SH waves at various
incident angles (θ2 � 0◦ and 60◦) (see Figs. 5 and 6). Using the materials introduced in Sect. 2.3, ζ was
ranging from 0.01 to 2.0, and the dimensionless distance (x /a) was ranging from −5 to 5. In Fig. 5, the effects

of canyon shape were obvious under low ζ values where θ2 � 0◦. When ζ was increased, the value of
∣∣∣uy

∣∣∣ in
the surface of the triangular canyon was smaller than at the surface of the other canyons, as shown in Fig. 5b.
The responses at the surface of shallow canyons were more pronounced than those at the surface of deeper
canyons, due to a weakening of the canyon-decay effect, such as Case 4 in Fig. 5d. Canyons with smaller
areas (i.e., Cases 1 and 3 in Table 3) generated similar response patterns, except in regions close to the SDCPs.

As shown in Fig. 6, the amplitudes of
∣∣∣uy

∣∣∣ under θ2 � 60◦ were smaller than those under θ2 � 0◦, and the

responses in
∣∣∣uy

∣∣∣ along the canyon surface were smoother. However, reflective waves from the boundary of

the soft layer generated an oscillation with larger wavelength in the shadow zone, which was likely due to the
canyon-decay effect and the thickness effect [22] associated with the soft layer in Fig. 2.

Figures 5 and 6 present 3-D plots illustrating surface responses (i.e., near and at the canyon surface) as
a function of frequency in the seven selected locations shown in Fig. 7a, the details of which are listed in
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(a) (b) 

(d) (c)

xa xa

xa xa

1yu

ζ

1yu

1yu
1yu

ζ

ζ ζ

Fig. 6 Variations in
∣∣uy1

∣∣ on free surface of single-layer half-plane where θ2 � 60◦ with −5 ≤ x /a ≤ 5 in four types of canyon:
(a) Case 1; (b) Case 2; (c) Case 3; and (d) Case 4

Table 4 Information related to specific locations

x /a z/a Slope

P1(P7) −2.0(2.0) 0.00 0.00
P2(P6) −1.0(1.0) 0.00 none
P3(P5) Case 1 −0.488(0.488) 0.873 ±0.56

Case 2 −0.5(0.5) 0.5 ±1.00
Case 3 −0.5(0.5) 1.0 none
Case 4 −0.508(0.508) 0.647 ±0.44

P4 Case 1 0.0 1.00 0.00
Case 2 1.00 none
Case 3 1.00 0.00
Case 4 0.75 0.00

Table 4. It was observed that the slopes at the canyon surface were discontinuous at SDCPs, such as P4 in
Case 2, P3(P5) in Case 3, and P2(P6) in all cases. The surface responses versus ζ are presented in the form
of displacement spectra, which could be treated as transfer functions, as shown in Fig. 7b–e and Fig. 8 under
various incident angles (θ2 � 0◦, and 60◦). The transfer functions are indicated by four curves: solid blue
line (Case 1), dashed red line (Case 2), dash-dot black line (Case 3), dash-dot pink line (Case 4), and dashed
light-blue line (single-layer half-space). Due the symmetric nature of the system, the transfer functions in
Fig. 7b–d are presented at only four locations.

As shown in Figs. 7b–e and 8, the patterns in Cases 1 and 3 were similar at locations P1(P7), P2(P6), and
P4 under θ2 � 0◦ and 60◦. These similarities can be attributed to similarities in the areas and shapes of these
two cases. We observed similar patterns of Cases 2 and 4 at locations P1 and P2 under θ2 � 0◦ and 60◦. The
response patterns were affected by the area of the canyon (i.e., canyon-area effect). Thus, the four cases could
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(P6); (d) P3(P5); and (e) P4

be divided into two groups: Group 1 (Cases 1 and 3) and Group 2 (Cases 2 and 4). The canyon-area effect
weakened the responses under ζ M

2 in the illuminated zone where θ2 � 0◦, as shown in Fig. 7b. However, the
responses under ζ M

1 , ζ M
3 and ζ M

4 were more pronounced under θ2 � 60◦, as shown in Fig. 8a. The canyon-area
effect increased the transfer function in the left canyon corner of the canyon, near the wave fronts shown in
Figs. 7c and 8b.

As shown in Table 4, position x /a was closer to boundary L at location P3 (P5), indicating that under the
effects of a thinner soft layer, the transfer functions differed considerably from the surface responses (i.e.,
P1 and P7), particularly at higher RFs, as shown in Figs. 7d and 8c and e. Note that the regular RFs of the
single-layer half-space were disturbed under θ2 � 60◦, particularly in location P3 in Case 2. Furthermore,

the flat canyon boundary generated responses
∣∣∣uy1

∣∣∣ ≈ 2.0 under an oblique incident angle within a range
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of 0.8 ≤ ζ ≤ 1.3, as shown in Fig. 8c. The canyon-area effect thoroughly disturbed the transfer function at
location P5, as shown in Fig. 8e. Note that we observed a similar pattern for Group 1 in Fig. 8a–e; however,
the value of ζ M

3 shifted forward in Group 2, but shifted backward in Group 1, as shown in Fig. 8e.
We considered the transfer function at location P4 at the bottom of the canyon, which is closest to layered

boundary L, corresponding to the thinnest region of the soft layer in Figs. 7e and 8d. The wave front that
reached P4 generated creeping waves along the canyon surface toward each corner of the canyon. This had
the effect of splitting the carrying energy and thereby decreasing the strength of responses within the region

adjacent to ζ M
1 . In Case 3, the flat surface at the location of P4 resulted

∣∣∣uy1

∣∣∣ responses closer to those of the

half-space under θ2 � 0◦ as ζ > ζ M
1 , as shown in Fig. 7e. In Case 2, P4 occurred at an SDCP, such that the

corresponding responses were markedly lower when θ2 � 60◦, as shown in Fig. 8d.
Figure 8f and g illustrates the transfer functions in the right corner of the canyon (i.e., P6) and shadow

zone (i.e., P7) under θ2 � 60◦. The shielding effect of the canyon reduced the amplitudes of
∣∣∣uy1

∣∣∣ under ζ M
1 ;

however, the range of
∣∣∣uy1

∣∣∣ values was closer to that of a single-layer half-space, where ζ > ζ M
1 . In all cases,

the RFs of ζ M
2 to ζ M

4 shifted forward at location P6, and a relatively clear RF (ζ M
2 ) existed only at P7, as

shown in Fig. 8f and (g), respectively.

3.4 Site effects of the canyon in a half-space and single-layer half-space under specific ζ

To analyze the responses of RFs on the free surface, we plotted Figs. 9 and 10 with specific frequencies versus
positions. We selected four dimensionless frequencies (0.25, 0.75, 1.35, and 1.64) under θ2 � 0◦, as shown in
Fig. 9. We also selected another four dimensionless frequencies (0.28, 0.71, 1.39, and 1.94) under θ2 � 60◦,
as shown in Fig. 10. Most of these specific frequencies were based on the RFs in Table 1. Nonetheless, some
of the RFs were selected from the transfer functions shown in Figs. 7 and 8, including ζ � 1.35, and 1.64
(Fig. 9), and ζ � 0.71 (Fig. 10). The transfer functions were illustrated using four curves: solid blue line (Case
1), dashed red line (Case 2), dash-dot black line (Case 3), dash-dot pink line (Case 4), and dashed light-blue
line (indicating responses under specific ζ values within a single-layer half-space).

With the exception of Fig. 10c, Figs. 9 and 10 confirm that the surface response patterns were indeed
altered by canyon-area effect. Under θ2 � 0◦ (Fig. 9), the responses in Group 2 (Cases 2 and 4) along canyon
surfaces (particularly in the central region of the canyon) were far smaller than those inGroup 1 (Cases 1 and 3).
Overall, the canyon-decay effect weakened responses along the surface of canyon, except for Group 1 at higher
frequencies. Responses in illuminated zone and shadow zone fluctuated with displacement values at the free

surface of the single-layer half-space (i.e.,
∣∣∣u f

y1

∣∣∣). This resulted in more pronounced responses at the canyon

surface, but weaker responses in the free half-space under vertical incident waves. Under θ2 � 60◦, canyon-
area effect observed in the illuminated zone was similar to those at the canyon surface, as shown in Fig. 10a,
b and d. However, under specific ζ values, the canyon-decay effect was not observed. These gaps included all
cases under ζ � 0.71 (Fig. 10b), Case 4 under ζ � 1.39 (Fig. 10c), and Group 1 under ζ � 1.94(Fig. 10d).
We speculate that the thickness effect destroyed the canyon-decay effect. Thus, under oblique incident waves,
reflective waves with a shorter wavelength (i.e., higher frequency) generated a constructive interference at the
surface of the canyon and within the shadow zone, as shown in Fig. 10.

As shown in Figs. 11 and 12, we examined the thickness effect due to the soft layer by focusing on ζ in
Cases 1 to 4 and Cases I to IV under θ2 � 0◦ and θ2 � 60◦. The results for Cases 1 to 4 are indicated by the
solid blue line, and the results for Cases I to IV are indicated by the dashed red line. As shown in Fig. 11,
the patterns for Cases 1 to 4 were similar to those for Cases I to IV. This is an indication that the soft layer
generated more pronounced responses at the surface under vertical incident waves. However, the responses in
Cases 1 to 4 were similar to those in Cases I to IV under relatively high ζ values (such as 1.35 and 1.64), as
shown in Fig. 11c, d. Thus, the short wavelengths transformed the soft layer into a half-space. In Fig. 12, the
thickness effect was obviously under an oblique incident angle such as θ1 � 25.66◦. We therefore added a
dash-dot black line indicating the results of Cases I to IV with an incident angle of 30◦ in the half-space. We
can see that the patterns of Cases 1 to 4 (θ2 � 60◦) were similar to those for Cases I to IV with an incident
angle of 30◦. This is a clear indication that the thickness effect brought the incident angle closer to the vertical
direction.
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∣∣ in Cases 1 to 4 where −5 ≤ x /a ≤ 5 and θ2 � 0◦ under (a) ζ � 0.25; (b) ζ � 0.75; (c) ζ � 1.35; and
(d)ζ � 1.64

4 Results of displacement in the time domain

4.1 Ricker wavelet in the time domain and frequency domain

Responses in the time domain were derived from results obtained in the frequency domain results using the
inverse fast Fourier transform (FFT) algorithm. The incident time signal was a Ricker wavelet as follows:

uRic(t) � [
2π2 f 2c (t − ts)

2 − 1
]
exp

[−π2 f 2c (t − ts)
2] (6)

where fc indicates the characteristic frequency of the wavelet and ts is the peak amplitude of the wavelet in
the time domain. The Ricker parameters were set as ts � 0.0sec and fc � 0.5Hz, and we considered that these
values were able to emphasize the effect of a canyon embedded within single-layer half-space. The response
in the time domain and its corresponding Fourier amplitude spectrum are presented in Fig. 13. The maximum
amplitude of displacement in the time domain was 1.0, such that the maximum amplitude at the free surface
of the half-space was 2.0. The half-width of the canyon (a) was set 1.0 km, and the depth of the soft layer
(H) was set as 2.0 km. The shear wave velocities in the soft layer and half-space were Cs1 � 1.0km

/
sec and

Cs2 � 2.0km
/
sec, respectively. The canyon depths are listed in Table 3. We selected a reference point in the

half-space (or single-layer half-space) under θ2 � 0◦ and 60◦, as shown in Fig. 14. The time required for the
peak of uRic(t) to arrive at original pointO (i.e., (x, z) � (0, 0)) from the reference point was 6 s. The number
of calculated frequencies was 96, ranging from 0.00 to 1.52 at intervals of 0.016, and the time window was set
at 15 s.

4.2 Time domain responses of the canyon surface in half-space and single-layer half-space

In this section, we consider time domain responses (i.e., uy(t)) in the specific locations discussed in Sect. 3.2.
Figures 15 and 16, respectively, present the responses in these locations under θ2 � 0◦ and 60◦. The results



904 W.-S. Shyu, W.-C. Yeh

(a) (b) 

(d) (c)

x a x a

x a x a

0.28ζ =

Case 1 Case 2 Case 4Case 3

0.71ζ =

1.94ζ =1.39ζ =

1yu

1yu1yu

1yu

single-layer half-space

Fig. 10 Variations in
∣∣uy1

∣∣ in Cases 1 to 4 where −5 ≤ x /a ≤ 5 and θ2 � 60◦ under (a) ζ � 0.28; (b) ζ � 0.71; (c) ζ � 1.39;
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for Cases 1 to 4 are indicated by the solid blue line, and those of Cases I to IV are indicated by the dashed
red line. As this analysis focused on symmetric canyons impinged by vertical incident wave, Fig. 15 presents
only four locations. Figures 15a–d and 16a–d, respectively, present the semicircular, triangular, trapezoid, and
shallow semi-elliptical canyons.

As shown in Fig. 15, larger responses occurred in Cases 1 to 4 under the effect of a soft layer on hard
bedrock. The maximum absolute value of displacement (i.e.,

∣∣uy(t)
∣∣) occurred in the corner of the canyon (i.e.,

P2 and P6), as shown in Fig. 15a2–d2. We also observed that uy(t) at the surface of the canyon (including
the corner) was the reverse of the pattern of uRic(t) under the effects of the canyon surface. Note that in each
location, the arrival times of the peaks in uy(t) (i.e., ta) in Cases 1 to 4 were similar to those in Cases I to
IV, under the effects of the first wave front. For example, ta � 6 sec at locations P1 (P7) and P2 (P6) (see
Fig. 15a1–d1 and a2–d2, ta � 5.5 sec at locations P3 (P5) (see Fig. 15a3–d3) and ta � 5 sec at location P4
(see Fig. 15a4–d4). These results could be easily derived from Fig. 14a using ray theory. Note also that the
responses observed in the time domain for Cases 1 and 4 were identical to the patterns for Cases I and IV under
a vertical incident angle, except for the ratio of amplitude values. Note that the response durations in Case 2
and 3 were relatively long (15 s), as indicated by a peak at roughly 10 s in locations P1 (P7) and P2 (P6), as
shown in Fig. 15b1–b2 and c1–c2. Note also that the time interval between the two peaks (4 s) was equal to
the value of 2H

/
Cs1. This resulted in a reflective wave from boundary L. A shorter distance between location

P3 (P5) or P4 and the position of first wave front produced a series of rapid oscillation responses, as shown in
Fig. 15 a3–d3 and a4–d4.

As shown in Fig. 16a2–d2, the larger responses in Cases 1 to 4 generated maximum values of
∣∣uy(t)

∣∣ in
the corner of the canyon near the wave front (i.e., P2). We also observed the reverse pattern of uRic(t) in
the canyon corners and along the canyon surface (i.e., P2 to P6), except in flat locations (i.e., P1 and P7).
Arrival time ta was similar in Cases 1 to 4: P1 (5.1 s), P2 (5.5 s), P6 (6.4 s), and P7 (6.9 s). Arrival time ta
was also similar in Cases I to IV: P1 (4.3 s), P2 (5.1 s), P6 (7.1 s), and P7 (7.7 s). These results could also be



Determining anti plane responses of symmetric canyon 905

(a) (b) 

(d) 

x a x a

x a x a

yu

0.25ζ =

Case 1 Case I

yu

yu

1.35ζ = 1.64ζ =

0.75ζ =

yu

Case 2

Case III Case 4

Case II

Case 3 Case IV

(c) 

Fig. 11 Variations in
∣∣uy

∣∣ where −5 ≤ x /a ≤ 5 and θ2 � 0◦: (a) Case 1 versus Case I under ζ � 0.25; (b) Case 2 versus Case
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derived using ray theory, as shown in Fig. 14b. As shown in Fig. 14b, we calculated distance D ≈ 4.3km in
the half-space, as well as D1 ≈ 5.9km and D2 ≈ 2.2km in the single-layer half-space in order to derive the
arrival time at location P1. Note, however, that this did not allow us to obtain the results in other locations, due
to wave front attacking the canyon surface to generate creeping waves. Thus, the arrival times were faster in
the illuminated zone (i.e., P1) and in the left corner (i.e., P2), as shown in Fig. 16a1–d1 and a2–d2. The arrival
times were slower in the right corner (i.e., P6) and in the shadow zone (i.e., P7), as shown in Fig. 16a6–d6 and
a7–d7. At location P3, arrival times were similar in all the cases (about 5 s). Beyond location P3, arrival times
differed according to case in locations P4 and P5, due to the shape of the canyon. At location P4, the arrival
times in Cases I to IV were slower than those in Cases 1 to 4. As mentioned above, it was easier to obtain this
information under an oblique incident angle, due to the fact that the thickness effect did not play a pronounced
role in cases of vertical incident waves.

The three-dimensional (3-D) illustrations in Figs. 17 and 18 illustrate variations in the responses of uy(t)
as functions of position (i.e., x /a, ranging from −5.0 to 5.0) and time (t, ranging from 0.0 to 15.0). Figures 17
and 18a–d present Cases 1 to 4, respectively, under θ2 � 0◦ and 60◦. Based on the parameters of the Ricker
wavelet, the arrival time to the free surface of flat plane was set at 6 s after the first wave front. As shown
in Fig. 17, the shapes of the canyon could be detected prior to 6 s under the effect of wave propagation. The
reverse patterns of uy(t) are indicated by the red color in Fig. 17 along the surface of the canyon and in the
canyon corners. Due to the symmetric shapes of the canyon and vertical incident angle, the responses of uy
(t) in the illuminated zone (x /a ≤ −1.0) and shadow zone (x /a ≥ −1.0) were precisely the same. The slope
of the dashed red line shown in Fig. 17 indicates the wave speed on the flat free surface which was equal to
Cs1 � 1km

/
sec. However, the slope of dashed light-blue line suggests that the wave speed along the canyon

surface (i.e., 0.6km
/
sec) was lower than Cs1. The dashed black lines in Fig. 17b, c also indicate the obvious

reflective wave from boundary L in Cases 2 and 3, which was largely obscured in Cases 1 and 4, as discussed
above.
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Fig. 13 Ricker wavelet response in (a) the time domain and (b) the frequency domain

As shown by the travel time curves in Fig. 18, the canyon shapes were twisted under the effect of oblique
incident angle θ2 � 60◦. The angle of the solid black line in Fig. 18a is 23.16◦, which is close to refractive
angle θ1 � 25.66◦. The apparent speed on the free surface was equal toCs1

/
sin θ1 (about 2.33km

/
sec), which

was faster than Cs1. Thus, it appears that the thickness effect generated a faster apparent speed on the free
surface. The slope of the dashed red line in the illuminated zone indicates that the wave speed was equal to
Cs1. The slope of the dashed and dash-dot light-blue lines, respectively, indicates wave speeds of 0.6km

/
sec

and 0.48km
/
sec along the canyon surface. The slope of the dash-dot red line in the shadow zone indicates that

the wave speed (1.12km
/
sec) was greater than Cs1, resulting in faster reflective waves in the shadow zone.

The dashed black line in Fig. 18b, c indicates that the boundary effect due to L was clear only in Cases 2 and
3.
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Fig. 18 Variations in uy(t) under θ2 � 60◦ with −5 ≤ x /a ≤ 5 and 0 ≤ t ≤ 15 on the free surface of single-layer half-plane
with (a) Case 1; (b) Case 2; (c) Case 3; and (d) Case 4

5 Conclusions

In this paper, we used amodified hybridmethod combining FEMwith a Lamb series to investigate the scattering
of SH waves and the related site effects resulting from a symmetric canyon embedded in a single-layer half-
space. Important points are as follows:

(1) To introduce the dimensionless frequency and the ratio of materials was helpful to simplify the discussion
of scattering problem.

(2) The thickness effect generated by soft layer could enhance surface responses, bringing the incident angle
toward vertical. This generated larger surface responses inCases 1 to 4 under relatively low frequencies and
produced responses similar to those of a half-space (i.e., Cases I to IV) under relatively high frequencies.
In cases where the canyon shape included SDCPs, the flat surface of the canyon could bring the responses
closer to those of flat free surface under thickness effect.

(3) We observed a canyon-decay effect and shielding effect resulting from the canyon topography. However,
the thickness effect increased the complexity of the responses.

(4) Similar patterns in the response spectrum can be attributed to similar areas. For example, RFs in Group
2 (smaller area) shifted forward and RFs in Group 1 (larger area) shifted backward.

(5) The effects on uy(t) at the canyon surface (such as locations P3, P4, and P5) and in the corners (such as
location P2, and P6) represented a reversal of the patterns (as shown in Figs. 15 and 16) related to incident
waves (e.g., uRic(t), as shown in Fig. 13a), which were affected by the existing canyon.

(6) The arrival time of uy(t) in some locations (such as the illuminated zone) could be obtained using ray
theory. However, the arrival time in locations along the canyon (and shadow zone) could not be discerned
under the creeping waves.

(7) A soft layer in combination with an oblique incident angle could enhance the speed of apparent waves,
such that the time of arrival at the canyon (and in shadow zone) in Cases 1 to 4 occurred sooner than in
Cases I to IV.
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(8) Calculations of high-frequency response were the limitations of this modified hybrid method. (For exam-
ple, the dimensionless frequencywas limited to 1.5 [23].) However, it was still useful to obtain the response
under relative low dimensionless frequencies (i.e., the larger H or λ1).

Embedding a canyon in a layered half-space proved effectively in elucidating site effects. The modified
hybrid method proposed in this paper made it possible to systematically study the scattering of anti-plane SH
incident waves induced by a complex topography embedded within a single-layer half-space.
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Appendix 1

The single-layer half-space in Fig. 19 was disturbed by a virtual load acting at the original point:(
σ s
zy1

)
m

� −μ1δ
(m)(x), at (x, z) � (0, 0) (A-1)

where δ(x) is the Dirac delta function. Symbol δ(m) represents the m-th derivative of δ(x) with respect to
x. The virtual load in Eq. (A-1) is one type of Lamb load.

The displacements generated by the disturbance satisfied the governing equation as well as the correspond-
ing boundary conditions as follows:

∂2usy j
∂x2

+
∂2usy j
∂z2

+ k2s j u
s
y j � 0; j � 1 , 2 (A-2)

(
σ s
zy1

)
m

�
(
σ s
zy2

)
m
, at z � H (A-3)

(
usy1

)
m

�
(
usy2

)
m
, at z � H (A-4)

where superscript s refers to displacements or stresses in the scattering field. The solutions to Eq. (A-
2) are series functions, based on the given value of m, which can be obtained using the following boundary
conditions: (1) traction free at the free surface except at the original point, as shown inEqs. (1) and (2) continuous
displacements and tractions along interface L, as shown in Eqs. (A-3) and (A-4). The series functions also
satisfied the radiation condition, which means that the energy of waves decayed after propagating over an

extended distance. This makes it possible to express the displacements
(
usy j

)
m
, stresses including

(
σ s
xy j

)
m

and
(
σ s
zy j

)
m
, as well as tractions

(
t sy j

)
m
in the scattered field, as follows:

(
usy1

)
m

� 1

2π

∫ ∞

−∞
A1
Ue

−ν′
1(H−z)−ikxdk +

1

2π

∫ ∞

−∞
A1
De

−ν′
1z−ikxdk (A=5a)

Fig. 19 Schematic diagram showing single-layer half-space under excitation via surface loading
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(
usy2

)
m

� 1

2π

∫ ∞

−∞
A2
De

−ν′
2(z−H )−ikxdk (A-5b)

ν′
j �

√
k2 − k2s j , j � 1 , 2 (A-5c)

A1
D � 1

1 − R12
D e−2ν′

1H

(−ik)n

ν′
1

; A1
U � R12

D A1
D; A2

D � T 12
D A1

D (A=5d)

R12
D � μ1ν

′
1 − μ2ν

′
2

μ1ν
′
1 + μ2ν

′
2
e−ν′

1H ; T 12
D � 2μ1ν

′
1

μ1ν
′
1 + μ2ν

′
2
e−ν′

1H (A-5e)

and
(
σ s
xy j

)
m

� μ j
∂

∂x

(
usy j

)
m
;

(
σ s
zy j

)
m

� μ j
∂

∂z

(
usy j

)
m

(A-6a)
(
t sy j

)
m

�
(
σ s
xy j

)
m
nx +

(
σ s
zy j

)
m
nz ; j � 1, 2. (A-6b)

Note that
(
usy j

)
m
is expressed using the integral form, as shown in Eq. (A-5a) or Eq. (A-5b). It can be

obtained using the modified steepest descent method [37].
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