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Abstract This article outlines the use of Fredholm integral equations (also known as Fredholm transformation
approach) for free vibration analysis of non-uniform and stepped axially functionally graded (AFG) beams. The
method is shown to be capable of dealing with beams of arbitrary variations of both cross section dimensions
and material properties. Tabulated results of free vibration analysis for beams with various classical boundary
conditions are presented. The governing equation with varying coefficients is transformed to Fredholm integral
equations. Natural frequencies can be determined by requiring that the resulting Fredholm integral equation
has a non-trivial solution. Ourmethod has fast convergence, and obtained numerical results have high accuracy.
Effects of axial force and shear deformation are investigated on the natural frequencies of AFG beams. The
accuracy of obtained results is verified with those obtained in other available references. The present results
are of benefit to optimum design of non-homogeneous tapered beam structures and graded beams of special
polynomial non-homogeneity.

Keywords Axially functionally graded beams · Fredholm integral equations · Natural frequencies · Axial
force effects · Shear deformations effect

1 Introduction

Fredholm integral equations arewell-knownclassical relationswhich havemany applications in the engineering
problems. The novelty of presented approach in this paper is based on the conversion of governing equation
into its weak form. A differential equation includes a function and its derivatives. We obtain the weak form
of differential equation through the repetitive integrations according to Fredholm transformation approach.
The integration continues till the resulting integral equation and includes only the function itself after the last
integration stage; derivatives of function will have been eliminated due to the integration. The solution of weak
form of differential equation instead of initial equation has many applications in the finite elements analysis.
For example, we consider function y(x) as a dependent function with the following governing differential
equation:

d4

dx4
y + y(x) � 0
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in which “x” is independent variable. Since this equation contains
{

d4

dx4
y
}
, we need four repetitive inte-

grations with respect to “x” from “0” to “x” to convert this equation into its weak form as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3

dx3
y +

x∫

0

y(s)ds � C1

d2

dx2
y +

x∫

0

(x − s)y(s)ds � C1x + C2

d

dx
y +

x∫

0

(x − s)2

2
y(s)ds � C1

2
x2 + C2x + C3

y(x) +

x∫

0

(x − s)3

6
y(s)ds � C1

6
x3 +

C2

2
x2 + C3x + C4

The last equation after four repetitive integrations includes only the function y(x) itself, and its derivatives
have been eliminated due to integrations process. The last equation is the weak form of governing differential
equation. After this transformation, we approximate dependent function y(x) using a power series in order to
convert this equation into a solvable one. Also, we apply four independent boundary conditions to calculate
the integration constants Ci i�1,2,3,4. Functionally graded materials (FGMs) are a new kind of composite
materials which are applicable for construction of beams, plates, shells and other engineering structures. The
material properties of FGMs can vary continuously along the both cross section and axial direction of structure.
The asymptotic development method (ADM) has been utilized to investigate the free vibration of uniformAFG
beams with different boundary conditions [1]. The approximation of higher-order linear Fredholm integro-
differential-difference equations (IDDEs), with the mixed conditions, has been performed by a new collocation
technique based on the balancing polynomials [2]. The rapid stabilization of heat equation on the 1-dimensional
torus using the backstepping method with a Fredholm transformation has been studied [3]. Jacobi collocation
method for the numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations
has been considered [4]. A direct transcription approach for solving a notable category of optimal control
problems governed by nonlinear fractional Fredholm integral equations having delays in both input and output
signals has been developed [5]. The best approximate solution of Fredholm integral equations of first kind
with some scattered observations has been studied [6]. The harmonic differential quadrature (HDQ) method
has been employed by Singh and Sharma [7] to investigate the vibration characteristics of axially functionally
graded (AFG) tapered beam. The comparison between the receptancematrices of isotropic homogeneous beam
and the axially functionally graded beam carrying concentrated masses has been presented [8]. The symbolic-
numeric method of initial parameters (SNMIP) has been applied to study free vibrations of Euler–Bernoulli
axially functionally graded tapered, stepped and continuously segmented rods and beams with elastically
restrained end with attached masses [9]. The analytical solutions of steady-state dynamic responses of axially
functionally graded and non-uniformed beams subjected to harmonic loadings with damping effect have been
presented by using the Green’s function element method [10]. Effects of axial load distribution on buckling
loads and their modes of functionally graded (FG) beams including a shear effect have been investigated
[11]. An effective approximation for free vibration analysis of axially functionally graded material (AFGM)
beams based on the Jacobi polynomial theory has been presented [12]. Natural frequencies and mode shapes
of un-damped hybrid system are obtained by forming mass and stiffness matrices and solving the eigenvalue
problem [13]. The refined plate theory considering the simplified form of governing differential equations
has been used by Wankhade and Niyogi [14] to solve the buckling analysis of laminated composite plates.
The effects of seismic soil–structure interaction on seismic response of hardening single degree of freedom
systems located in diverse geologies have been evaluated by Anand and Satish Kumar [15]. The envelopes of
frequency response function (FRF) have been obtained by the experimental modal analysis, and the variation
in dynamic property values has been determined from curve fitted FRFs using modal analysis software, and the
results have been correlated with the damage level [16]. A simple mathematical method, based on a continuous
approach, has been proposed to determine the natural frequencies and mode shapes of trussed-tube systems
in tall buildings [17]. The dynamic analysis of soil–structure interaction by using the spectral element method
has been presented. In this paper, the partial differential equation governing the motion has been derived and
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Fig. 1 Variations of material properties along the axial direction

solved by using spectral element method [18]. A general solution for the free transverse vibration of non-
uniform, axially functionally graded cantilevers loaded at the tips with point masses has been presented by
Mahmoud [19]. The vibration problem of beams with axial functionally graded materials (FGMs) and variable
thickness has been investigated by isogeometric analysis (IGA) in conjunction with three-dimensional (3D)
theory [20]. The buckling behaviors of axially functionally graded and non-uniform Timoshenko beams have
been investigated [21]. The vibration problem of axially functionally graded beams has been investigated using
various approaches [22–38].

2 The equation of motion with bending deformation

In this paper, the vibration of axially functionally graded (AFG) beams is investigated. It is assumed that the
beam has a constant cross section along the axial direction, but the material properties of beam have continuous
variations along the axial direction of beam. The equation of motion for a beam with varying properties of
material along the axial direction of beam is given as follows:

∂2

∂x2

[
Ē(x)I ∂2W (x,t)

∂x2

]
+ ρ̄(x)A ∂2W (x,t)

∂t2
� 0 0 ≤ x ≤ L (1)

in whichW (x, t) is the lateral deflection of beam, and Ē(x) and ρ̄(x) are the functions of modulus of elasticity
and mass density of beam material, respectively, that vary along the axial direction of beam. I and A are the
moment of inertia and area of cross section of beam which in this paper, and they are assumed to be constant
along the axial direction of beam. L is beam length. Figure 1 presents the schematic variations of material
properties along the axial direction of beam. It is assumed that beam deflects along the “y” direction; however,
deflection along “z” direction can also occur in practical cases. In this paper, the y lateral deflection and z
lateral deflection are decoupled.

In order to compare the results obtained using presented approach in this paper with other available
references, the function of variations of material properties is considered as the same with those given in Ref
[1]. This function is considered as follows:

Y (x) �
⎧⎨
⎩
YL

(
1 − e

υx
L −1
eυ−1

)
+ YR

e
υx
L −1
eυ−1 υ �� 0

YL
(
1 − x

L

)
+ YR

x
L υ � 0

(2)

in which YL and YR are the parameters corresponding to properties of material for left and right sides of beam
length, respectively. υ is the gradient parameter describing the intensity of variation of properties along the
axial direction. The variations of Y (x)

YL
with non-dimensional location parameter ξ � x

L along the axial direction

of beam for YR
YL

� 3 are presented in Fig. 2.
The lateral vibration of beam is assumed to be a harmonic vibration as follows:

W (x, t) � φ(x)eiωt (3)

in which φ(x) and ω are the mode shape function and natural frequency of vibration, respectively. Considering
the non-dimensional location parameter ξ � x

L and substituting Eq. (3) into Eq. (1) result in the following
equation:

d2

dξ2

[
Ē(ξ )I d

2
φ

dξ2

]
− Aω2L4ρ̄(ξ )φ(ξ ) � 0 0 ≤ ξ ≤ 1 (4)
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Fig. 2 The variations of material properties along the axial direction of beam

For simplicity of calculations, the following relations are introduced into Eq. (4):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ē(ξ ) � EL .E(ξ )

ρ̄(ξ ) � ρL .ρ(ξ )

λ2 � ρL Aω2L4

EL .I

(5)

The result is the following equation based on the non-dimensional location parameter ξ :

d2

dξ2

[
E(ξ )

d2φ

dξ2

]
− λ2ρ(ξ )φ(ξ ) � 0 (6)

In Eq. (5), EL and ρL are the modulus of elasticity and mass density of left side of beam, respectively
(Fig. 1).λ is the non-dimensional natural frequency of vibration. In order to convert Eq. (6) into Fredholm
integral equation, both sides of this equation are integrated twice with respect to ξ within the range 0–ξ . The
results are the integral equations as follows:

d

dξ

[
E(ξ )

d2φ

dξ2

]
− λ2

ξ∫

0

ρ(s)φ(s)ds � C1 (7)

E(ξ )
d2φ

dξ2
− λ2

ξ∫

0

(ξ − s)ρ(s)φ(s)ds � C1ξ + C2 (8)

Further, integration from both sides of Eq. (8) twice with respect to ξ from 0 to ξ yields:

E(ξ )
dφ

dξ
− E ′(ξ )φ(ξ ) +

ξ∫

0

E ′′(s)φ(s)ds

− λ2

2

ξ∫

0

(ξ − s)2ρ(s)φ(s)ds � C1

2
ξ2 + C2ξ + C3 (9)

E(ξ )φ(ξ) − 2

ξ∫

0

E ′(s)φ(s)ds +
ξ∫

0

(ξ − s)E ′′(s)φ(s)ds

− λ2

6

ξ∫

0

(ξ − s)3ρ(s)φ(s)ds � C1

6
ξ3 +

C2

2
ξ2 + C3ξ + C4 (10)

Equation (10) is Fredholm integral equation of governing equation ofmotion. Ci |i�1,2,3,4 are the integration
constants which are determined through corresponding end boundary conditions of beam. In this paper, the
boundary conditions for clamped–free (C–F) beam, simple–simple (S–S) beam, clamped–simple (C–S) beam
and clamped–clamped (C–C) beam are considered.
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2.1 Clamped–free beam

The following boundary conditions are introduced for a clamped–free beam. It is assumed that the left side of
beam is clamped and right side is free. ⎧⎨

⎩
ξ � 0 φ � 0, dφ

dξ
� 0

ξ � 1 d2
φ

dξ2
� 0, d3φ

dξ3
� 0

(11)

Introducing the boundary conditions (11) into Eqs. (7–10) result in the following integral equation based
on the mode shape function φ(ξ ):

E(ξ )φ(ξ) +

ξ∫

0

h1(ξ, s)φ(s)ds +

1∫

0

h2(ξ, s)φ(s)ds � 0 (12)

where ⎧⎪⎪⎨
⎪⎪⎩

h1(ξ, s) � −2E ′(s) + (ξ − s)E ′′(s) − λ2

6
(ξ − s)3ρ(s)

h2(ξ, s) � λ2

6
ξ3ρ(s) − λ2

2
ξ2sρ(s)

(13)

2.2 Simple–simple beam

When both end conditions of AFG beam are pinned, the following boundary conditions are introduced:⎧⎨
⎩

ξ � 0 φ � 0, d2
φ

dξ2
� 0

ξ � 1 φ � 0, d2
φ

dξ2
� 0

(14)

Introducing the boundary conditions (14) into Eqs. (7–10) results in the integral equation introduced in
Eq. (12). The resulting integral equation and function h1(ξ, s) are exactly the same as what was stated in
clamped–free section. The difference, however, is the function h2(ξ, s). For simple–simple beam, this function
is calculated as follows:

h2(ξ, s) � λ2

6
(1 − s)ξ3ρ(s) + 2E ′(s)ξ − (1 − s)E ′′(s)ξ

+
λ2

6
ξ (1 − s)3ρ(s) − λ2

6
ξ (1 − s)ρ(s)

(15)

2.3 Clamped–simple beam

For a beam with clamped–simple boundary conditions, the following relations are considered:⎧⎨
⎩

ξ � 0 φ � 0, dφ

dξ
� 0

ξ � 1 φ � 0, d2
φ

dξ2
� 0

(16)

Introducing the boundary conditions (16) into Eqs. (7–10) results in the integral equation introduced in
Eq. (12). The difference is the function h2(ξ, s). For clamped–simple beam, this function is calculated as
follows:

h2(ξ, s) � g1(s)ξ
3 + g2(s)ξ

2 (17)

in which ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(s) � −E ′(s) + 1
2 (1 − s)E ′′(s)−

λ2

12 (1 − s)3ρ(s) + λ2

4 (1 − s)ρ(s)

g2(s) � −λ2

4 (1 − s)ρ(s) + 3E ′(s)−
3
2 (1 − s)E ′′(s) + λ2

4 (1 − s)3ρ(s)

(18)
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2.4 Clamped–clamped beam

The following boundary conditions are considered for a clamped–clamed beam:⎧
⎨
⎩

ξ � 0 φ � 0, dφ

dξ
� 0

ξ � 1 φ � 0, dφ

dξ
� 0

(19)

Introducing the boundary conditions (19) into Eqs. (7–10) results in the following relation for h2(ξ, s):

h2(ξ, s) � g1(s)ξ
3 + g2(s)ξ

2 (20)

in which
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(s) � −E ′′(s) + λ2

2 (1 − s)2ρ(s) − 4E ′(s)
+2(1 − s)E ′′(s) − λ2

3 (1 − s)3ρ(s)

g2(s) � E ′′(s) − λ2

2 (1 − s)2ρ(s) + 6E ′(s)
−3(1 − s)E ′′(s) + λ2

2 (1 − s)3ρ(s)

(21)

3 Shear deformation and axial force effects

The governing equation for AFG beam with effects of axial force and shear deformation is given as follows
[25]:

∂2

∂x2

[
E(x)I

∂2W (x, t)

∂x2

]
− ∂

∂x

[
κAG(x)

∂W (x, t)

∂x

]

+N
∂2W (x, t)

∂x2
+ ρ(x)A

∂2W (x, t)

∂t2
� 0

(22)

in which κ,G(x) andN are the shear correction factor, shear modules and constant axial compressive force
acting on the cross section of beam. The following relations are considered in the later calculations process:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

W (x, t) � φ(x)eiωt

Ē(ξ ) � EL .E(ξ )
G(ξ ) � GL .G(ξ )
ρ̄(ξ ) � ρL .ρ(ξ )

ξ � x
L , α2 � κAL2GL

EL I
,

β2 � NL2

EL I
, λ2 � ρL AL4

EL I
ω2

(23)

in which α andβ are the non-dimensional parameters corresponding to beam stiffness and axial force
acting on the cross section of beam, respectively. GL is the left side shear modules of beam material (Fig. 1).
Substitution of relations (23) into Eq. (22) results in the following governing differential equation based on
the non-dimensional location parameter ξ :

d

dξ

[
E(ξ )

d2φ

dξ2

]
− d

dξ

[
α2G(ξ )

dφ

∂ξ

]

+ β2 d
2φ

∂ξ2
− λ2ρ(x)φ(ξ ) � 0 (24)

Similar to preceding section, four times repetitive integrations are carried out to convert the governing
equation into Fredholm integral equation. The results are as follows:

d

dξ

[
E(ξ )

d2φ

dξ2

]
− α2G(ξ )

dφ

∂ξ

+β2 dφ

∂ξ
− λ2

ξ∫

0

ρ(s)φ(s)ds � C1

(25)
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E(ξ )
d2φ

dξ2
− α2G(ξ )φ(ξ ) + α2

ξ∫

0

G ′(s)φ(s)ds

+β2φ(ξ ) − λ2

ξ∫

0

(ξ − s)ρ(s)φ(s)ds � C1ξ + C2

(26)

E(ξ )
dφ

dξ
− E ′(ξ )φ(ξ ) +

ξ∫

0

E ′′(s)φ(s)ds − α2

ξ∫

0

G(s)φ(s)ds

+α2

ξ∫

0

(ξ − s)G ′(s)φ(s)ds + β2

ξ∫

0

φ(s)ds

−λ2

2

ξ∫

0

(ξ − s)2ρ(s)φ(s)ds � C1

2
ξ2 + C2ξ + C3

(27)

E(ξ )φ(ξ ) +

ξ∫

0

h1(ξ, s)φ(s)ds � C1

6
ξ3 +

C2

2
ξ2 + C3ξ + C4 (28)

Equation (28) is Fredholm integral equation based on the mode shape function φ(ξ ). In this equation,
h1(ξ, s) is calculated as follows:

h1(ξ, s) � −2E ′(s) + (ξ − s)E ′′(s) − α2(ξ − s)G(s)

+
α2

2
(ξ − s)2G ′(s) + β2(ξ − s) − λ2

6
(ξ − s)3ρ(s)

(29)

The following boundary conditions are considered for clamped–free beam with axial force effects and
shear deformation:

ξ � 0 φ � 0, dφ

dξ
� 0 (30)

ξ � 1 d
dξ

[
E(ξ )d

2
φ

dξ2

]
− α2G(ξ )dφ

∂ξ
+ β2 dφ

∂ξ
� 0 (31)

ξ � 1 E(ξ )d
2
φ

dξ2
(32)

Introducing the boundary conditions (30–32) into Eqs. (25–28) results in the following integral equation:

E(ξ )φ(ξ) +

ξ∫

0

h1(ξ, s)φ(s)ds +

1∫

0

h2(ξ, s)φ(s)ds � 0 (33)

In Eq. (33), h2(ξ, s) is calculated as follows:

h2(ξ, s) � T1(s)ξ
3 + T2(s)ξ

2 (34)

in which

{
T1(s) � κ1ρ(s)

T2(s) � κ2ρ(s) + κ3h1(1, s) + κ4G
′(s) + κ5(1 − s)ρ(s)

(35)
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where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ1 � λ2

6

κ2 �
[−λ2β2 + λ2α2G(1) + 6E(1)λ2

6β2 − 6α2G(1) − 12E(1)

]

κ3 �
[ −β2 + α2G(1)

β2 − α2G(1) − 2E(1)

]

κ4 �
[

E(1)α2

β2 − α2G(1) − 2E(1)

]

κ5 �
[

E(1)λ2

−β2 + α2G(1) + 2E(1)

]

(36)

4 Calculation of natural frequencies

In preceding sections, we convert the governing differential equations of motions into Fredholm integral
equation with the following format:

E(ξ )φ(ξ) +

ξ∫

0

h1(ξ, s)φ(s)ds +

1∫

0

h2(ξ, s)φ(s)ds � 0 (37)

The functions h1(ξ, s) and h2(ξ, s) which are different for each boundary condition have been calculated.
The mode shape function φ(ξ ) is the only unknown parameter in the resulting integral equations. This function
is approximated by a power series as follows:

φ(ξ ) �
R∑

r�0

ξ rCr (38)

where Cr are unknown coefficients to be determined and R is a given positive integer, which is adopted such
that the accuracy of results is sustained. Introducing Eq. (38) into integral Eq. (37) leads to:

R∑
r�0

⎡
⎣E(ξ )ξ r +

ξ∫

0

h1(ξ, s)srds +

1∫

0

h2(ξ, s)srds

⎤
⎦Cr � 0 (39)

Both sides of Eq. (39) are multiplied by ξm and integrated subsequently with respect to ξ between 0 and
1. This results in a system of equations in Cr :

R∑
r�0

[G(m, r ) + H1(m, r ) + H2(m, r )]Cr � 0 m � 0, 1, 2, . . . R (40)

in which the functions G(m, r ), H1(m, r ) and H2(m, r ) are expressed as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(m, r ) �
1∫

0

ξ r+mE(ξ ) dξ

H1(m, r ) �
1∫

0

ξ∫

0

h1(ξ, s)srξmds dξ

H2(m, r ) �
1∫

0

1∫

0

h2(ξ, s)srξmds dξ

(41)
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Table 1 Material properties of AFG beam for left and right sides

Properties Unit Aluminum Zirconia

E GPa 70 200
ρ kg

/
m3

2702 5700
G GPa 25.5 76.33

The system of linear algebraic Eqs. (40) may be expressed in matrix notations as follows:

[A](R+1)×(R+1)[C](R+1)×1 � [0](R+1)×1 (42)

in which [A] and [C] are the coefficients matrix and unknowns’ vector, respectively. In order to obtain the
non-dimensional natural frequencies of beam, functions h1(ξ, s) and h2(ξ, s) are first obtained. By introducing
these functions into (41), the functionsG(m, r ),H1(m, r ) and H2(m, r ) associatedwith the coefficients ofmatrix
[A] are obtained next. The unknown parameter in the coefficients matrix [A] is, therefore, the non-dimensional
natural frequency of beam. [C] � 0 is a trivial solution for the resulting system of equations introduced in
Eq. (42). The non-dimensional natural frequencies are determined through calculation of a non-trivial solution
for resulting system of equations. To achieve this, the determinant of coefficients matrix of system has to
be vanished. Accordingly, a frequency equation in λ [which is a polynomial function of order 2(R + 1)] is
obtained. Given the fact that the mode shape function is approximated by the power series of (38), the results
accuracy is improved if a greater number of series sentences are taken into account. In this case, the order of
polynomial is also increased accordingly. Hence, adoption of larger R yields more accurate results.

5 Damping effects

The presented approach in this paper can be used to calculate the natural frequencies of AFG beam with
damping effects. Damping effects result in complex natural frequencies. We have investigated damping effects
in another published paper [38]. The governing equation of AFG beams with damping term is obtained as
follows:

∂2

∂x2

[
Ē(x)I

∂2

∂x2
W (x, t)

]
+ ρ̄(x)A

∂2

∂t2
W (x, t) + C̄(x)

∂

∂t
W (x, t) � 0 (43)

in which C(x) � a0m(x) is adopted. “C(x)” is damping resistance per unit velocity which depends on both
coefficients a0 and mass per unit length m̄(x) � ρ̄(x)A. “a0” is called mass proportional damping coefficient
and can be calculated as follows:

a0 � 2ζnωn (44)

In relation (44), ζn and ωn are damping ratio and natural frequency corresponding to n th mode.

6 Numerical examples

6.1 Verification of presented solution

In order to verify the accuracy of presented approach, the results obtained using presented approach have been
compared with those obtained in other available references. The first four non-dimensional natural frequencies
of beam with various end boundary conditions have been calculated, and the results have been compared
with results of Ref [1] and results of finite elements method. It is assumed that the left side of beam is pure
aluminum and the right side is pure zirconia. Table 1 presents the properties of aluminum and zirconia. The
variations of material properties along the axial direction of beam are considered as Eq. (2). Table 2 presents
the results obtained with υ � 3 for clamped–free beam, simple–simple beam, clamped–simple beam and
clamped–clamped beam.

The variations of first three non-dimensional natural frequencies with υ for various end boundary con-
ditions have been calculated. The results are presented in Fig. 3. The results of Fig. 3 present the excellent
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Fig. 3 The variations of first three non-dimensional natural frequencies with υ for various end boundary conditions

agreement with those obtained in Ref [1]. The results of Fig. 3 present that the variations pattern for beam
with clamped–clamped condition in first mode is different from other ones. Also, the gradient parameter cal-

culated as %Diff �
[

λϑ�10−λϑ�−10
λϑ�10

]
× 100 for beam with clamped–free condition is more intense and they

were calculated equal to 16%, 14% and 13% for first, second and third mode, respectively.

6.2 Shear deformation and axial force effects

In order to investigate the effects of shear deformation and axial force effects on the natural frequencies of
AFG beam, the first three non-dimensional natural frequencies of beam have been calculated in this section.
The beam cross section is square with section’s width � 0.5 m. The shear correction factor and beam length
are κ � 5

6 and 3 m, respectively. The axial force acting on the cross section of beam is N � 10 × 107 kN .
The non-dimensional parameter α corresponding to stiffness of beam is adopted as α � 131.1428, and the
non-dimensional parameter β corresponding to axial force acting on the cross section of beam is adopted as
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Fig. 4 The variations of first three non-dimensional natural frequencies of a clamped–free beam with υ under effects of axial
force and shear deformation

β � 50. The results are presented in Fig. 4. This figure presents the variations of first three non-dimensional
natural frequencies of a clamped–free beam with υ when the axial force and shear deformation are considered.
The results of Fig. 4 present that the variations pattern in first mode is different from other ones. Also, gradient
parameter “%Diff” is more intense when the axial force and shear deformation are considered simultaneously.
In this case, “%Diff” was calculated equal to %25, %22 and %19 for first, second and third mode, respectively.

6.3 Vibration along z direction

Regarding to relations (23), λ is a non-dimensional parameter. Therefore, it is independent from selected
moment of inertia. But obviously, it would be interesting to see the original natural frequencies corresponding
to y and z lateral directions by selecting different values of Iyy and Izz . Accordingly, the original natural
frequency is calculated as follows:

ω2 � λ2EL I

ρL AL4 (45)
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In order to compare the natural frequencies for vibration along the “y” and “z” direction, a clamped–free
beamwith rectangular cross section is considered. Section’s width� 0.2 m, section’s height� 0.5 m and beam
length � 3 m are applied. Regarding Fig. 1, section’s width and section’s height are parallel to “z” and “y”
direction, respectively. The variations of original natural frequencies for first three modes with υ have been
calculated, and the results are presented in Fig. 5. The results of Fig. 5 present that the variations pattern with
clamped–clamped condition for both Iyy and Izz is different from other ones. Also, gradient parameter %Diff
for clamped–free and simple–simple conditions is larger from other ones and they were calculated equal to
16% and %15 for C–F and S–S, respectively.

7 Conclusion

Application of Fredholm integral equations for free vibration analysis of axially functionally graded beams
has been presented. Through repetitive integrations, the governing partial differential equations with variable
coefficients have been converted into Fredholm integral equations. In order to solve the resulting integral
equations, the mode shape function of vibration has been approximated by a power series and substitution of
power series into Fredholm integral equations transformed them into a systemof linear algebraic equations. The
natural frequencies of AFG beams have been calculated by determination of a non-trivial solution for system
of linear algebraic equations. Presented approach has been also used for investigation of axial force effects
and shear deformation on the natural frequencies of AFG beams. The accuracy, simplicity and reliability of
proposed method are verified thorough several numerical examples. Differences between natural frequencies
of proposed method and previous published works are in acceptable ranges. The results of paper present that
the variations pattern for beam with clamped–clamped condition in first mode is different from other ones.
Also, the gradient parameter calculated for beam with clamped–free condition is more intense. Considering
axial force and shear deformation for clamped–free beam, the results present that the variations pattern in first
mode is different from other ones. Also, gradient parameter is more intense when the axial force and shear
deformation are considered simultaneously. In case of vibration along “y” and “z” lateral direction, the results
present that the variations pattern with clamped–clamped condition for both lateral directions is different from
other ones. Also, gradient parameter calculated for clamped–free and simple–simple conditions is larger from
other.
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