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Abstract The main purpose of present work is to find approximated periodic solution in the compact form of
the circular Sitnikov restricted four-body problem by getting liberate of the secular terms using the Multiple
Scale Method. Also, we found numerical solutions of the prospective model and compared it with analytically
obtained solutions for bounded small amplitude (z(0) ≤ 0.3). However, its solution goes away from the actual
motionwhen z(0) > 0.3.We observed that themotion obtained by bothmethods is well ordered and periodical,
whenever the infinitesimal body starts moving close to the primary’s common center of mass. Whereas, the
motion starts a longway from the center ofmass, the second-order approximation results always give a periodic
solution and numerical result may not present periodic solution for long time. The initial conditions play most
important part in numerical as well as logical system. TheMultiple ScaleMethod is more realistic and accurate
than the numerical because it always provide commitment that the motion will be periodic all time. We also
discussed and compared an exact solution of this problem with MacMillan problem.

Keywords Sitnikov restricted four-body problem · Multiple scales method · Linear stability analysis ·
Periodic solution

1 Introduction

The celestial mechanics is the branch of astronomy which deals with the motions of astronomical objects in
space. Different dynamical models of the celestial bodies are studied in celestial mechanics such as two-body,
three-body, restricted three-body and N-body problem. A number of space missions have been successfully
operated by using these mathematical models. A reduced model of the restricted N-body problem where the
infinitesimal body oscillates in the perpendicular to the orbital plane of the primaries along the Z-axis is called
Sitnikov problem.

The circular Sitnikov restricted three-body problem is a dynamical model that was first time originally
introduced by [1]. Later on, the circular Sitnikov problem, admitted as the MacMillan problem, was discussed
in detailed by [2]. According to [3], the restricted three-body problem has several applications in celestial

R. Kumari
Department of Mathematics and Computing, IIT(ISM) Dhanbad, Dhanbad 826004, India
E-mail: reena.ism@gmail.com

A. K. Pal · L. K. Bairwa (B)
Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
E-mail: latabairwa9@gmail.com

A. K. Pal
E-mail: ashokpalism@gmail.com

http://orcid.org/0000-0001-8999-8919
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-022-02266-3&domain=pdf


3848 R. Kumari et al.

mechanics and dynamical astronomy. This is a particular example that includes the Sitnikov problem. Long-
standing awareness of the issuewas rekindled bySitnikov’s article,which established the presence of oscillating
motion for the three-body problem [4]. Finding the third body’s motion down the perpendicular line while
the primary bodies are being pulled apart by Newtonian gravity is the challenge at hand. A nonlinear second-
order, ordinary differential equation can be used to model the problem which is not easily integrable. So,
finding a precise solution to the problem is impossible. Therefore, many researchers have developed a number
of different techniques to solve the differential equation of motion to know behavior of this problem. [5]
investigated the mapping rather than the original differential equations and show that a hyperbolic invariant
set exists. Also, found that the disorder region’s of theoretical forecast matches numerical findings very well
and discussed LCEs and KS-entropy of the dynamical system .The stability of periodic orbits in vertical
motion and bifurcations into three-dimensional families in the Sitnikov constrained N-body problem was
discussed by [6]. Further, [7] investigated the stability of Sitnikov problem in periodic movements when the
amplitude of periodic vertical movements is adjusted in a continuous monotone way, special emphasis is
paid to the alternation of stability and instability within the family. The Sitnikov problem is simplified to a
particular limited (N + 1)-body problem introduced by [8] and prove that a limited or unlimited amount of
periodic solutions exist. After that symmetric regular solution in the circular Sitnikov problem is founded
by [9]. Furthermore, Newton–Raphson(N-R) basins of convergence, which correspond to the libration points
for the Sitnikov four-body problem, together with non-spherical primaries are numerically investigated by
[10]. In the circular Sitnikov problem, for numerous approaches they compared the basins of attraction with
spheroid primary [11,12]. For the convex configuration, [13,14] calculated the basin of convergence for the
axial-symmetric five-body problem and [15] found the periodic solutions of a generalized Sitnikov problem.

The elliptical Sitnikov restricted three-body problem was first time investigated by [4], who show the
subsistence of oscillatory form solution which is known as Sitnikov problem. In the elliptic Sitnikov problem,
the families of symmetric periodic orbits were analytically obtained by [16]. The radiation pressure effect is
studied in the elliptic Sitnikov problem of restricted four-body problem (RFBP) by [17]. Further, the elliptic
Sitnikov five-body problem is studied by [18]. They examined the periodicity as well as stability of the problem
by using Poincare surfaces of section (PSS).Moreover, the elliptical aswell as circular case of Sitnikov problem
of three and four-body problem are discussed by several authors [19–23]. Recently, [15,24,25] studies on the
periodic solution in elliptic or circular Sitnikov four andfive-bodyproblemunder several perturbation forces.By
[26], the Sitnikov three-body problem is subjected to themethod ofmultiple scales is investigated and produced
an analytical result that is congruent with a numerical solution. In addition, [21] computed periodic solution
of linear and nonlinear Sitnikov restricted three-body problem (SRTBP). The circular Sitnikov restricted four-
body problem by taking perturbation theory and found the periodic orbits upto second- and fourth-order
approximations is studied by [23].

The ambition of our present study is to utilize Multiple Scales Method in order to calculate analytical
periodic solution for the Sitnikov restricted four-body problem (SRFBP) and comparing it with the numerical
solution to demonstrate how important this perturbation approach. Our work is organized in the following way:
We give a quick summary of the periodic solution of SRTBP as well as SRFBP in Sect. 1. We describe circular
SRFBP equations of motion and its dynamical properties in Sect. 2. In Sect. 3, we describe linear stability
of periodic solution using eigenvalue approach. Further, we investigate the zeroth-, first- and second-order
approximated periodic solution with the help of Multiple Scales Method in Sect. 4. In Sect. 5, the results of
the numerical simulations are examined as well as a comparison between the analytic and numerical solutions
are presented. Finally, we added the conclusion of the paper in Sect. 6.

2 Descriptions and equations of motion of the proposed model

TheSitnikovmotions are constructed from theRFBPby takingm1 = m2 = m3 = m = 1
3 ; x(t) = y(t) = 0 and

r1 = r2 = r3 =
√
z2 + 1

3 . The fourth primary body has massm′ which is less than the masses of the primaries,
and it does not influence the motion of the primaries. All the primaries are at vertices of an equilateral triangle
and moving in circular orbit around the center of mass of the system. Therefore, the distances of primaries
from the center of mass of the system at any time remain in the same ratio [27] which is shown in Fig. 1.

The equation of motion of the infinitesimal body along z-axis is given [23] by

z̈ = �z = −z

( 13 + z2)
3
2

. (1)
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Fig. 1 Schematic diagram of the circular Sitnikov restricted four-body problem

In this dynamical system, energy integral with one degree of freedom is given as

ż2 = 2√
1
3 + z2

− 2C, (2)

where C is an arbitrary constant which depends on the initial conditions. The distance between either of the
primaries or the fourth body is

r =
√
1

3
+ z2.

When we substitute these values into Eq. (2), we get the following expression

ṙ2 =
(
2

r
− C̄

)(
1 − 1

3r2

)
, (3)

where C̄ = 2C . Eliminating fractional form of Eq. (3) with the help of following transformation

ū = 1

r
,

as the dependent variable. Using this expression into Eq. (3), we have

(
dū

dt

)2

= ū4(2ū − C̄)

(
1 − ū2

3

)
. (4)

We change the scale by introducing u = ū√
3
and c = C̄

2
√
3
. The quadrature of Eq. (4) with this notation takes

the form
∫ u

1

du√
6
√
3u4(u − c)(1 − u2)

=
∫ t

0
dt. (5)

The lower limit is so chosen in such a way that at t = 0, u = 1 or ū = √
3 or r = 1√

3
and ż =

√
(2

√
3 − C̄).

The infinitesimal body begins its motion at the origin of the reference system. If C̄ > 2
√
3 or c > 1, then
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Table 1 Comparison between Sitnikov restricted three and four-body problem for period of oscillation

z(0) ż(0) RTBP RFBP

0.0 0 6.28319 2.14702
0.5 0 7.12607 2.12773
1.0 0 9.12811 3.24052
1.5 0 11.27920 4.50365
2.0 0 13.10200 5.48864
2.5 0 14.54880 6.22331
3.0 0 15.6885 6.77916
3.5 0 16.5956 7.21012
4.0 0 17.3290 7.55235

motion is not possible at the origin. The quadrature given in Eq. (5) may be reduce to Legendre’s form by
taking

v2 = 1 − u

1 − c
and k2 = 1 − c

2
.

In this connection, we get the integral
∫ v

0

dv

(1 − 2k2v2)2
√

(1 − v2)(1 − k2v2)
= 3

√
3
∫ t

0
dt, (6)

and can be solved in terms of the third kind of elliptical integral. The motion of the infinitesimal body in the
direction of z-axis will be regular and periodic provided that 0 < c ≤ 1. Of course, the period is a function of
the constant c, and by integrating Eq. (6), it can be obtained the quarter period between the limits 0 and 1. The
period is given by

∫ 1

0

dv

(1 − 2k2v2)2
√

(1 − v2)(1 − k2v2)
=

√
3
√
3
∫ T

4

0
dt, (7)

where T is the period. The complete elliptic integral can be obtained by setting the upper bound of the integral
to its maximum range, i.e., sin θ = 1 or θ = π

2 so that we put v = sin θ , then the integral of Eq. (7) becomes

∫ π
2

0

dθ

(1 − 2k2 sin2 θ)2
√

(1 − k2 sin2 θ)
=

√
3
√
3
T

4
.

Applying Binomial expansion, the above integral can be written as

∫ π
2

0

(
1 + 9

2
k2 sin2 θ + 115

8
k4 sin4 θ + 375

48
k6 sin6 θ + . . .

)
dθ =

√
3
√
3
T

4
.

Using reduction formula in this integral, we get

T = 2π√
3
√
3

(
1 + 9

4
k2 + 345

64
k4 + 5625

2304
k6 + . . .

)
, (8)

and this expression converges for all values of k2 < 1
2 and k2 = 1

2

(
1 − 1√

1
3+z(0)2

)
. The general solution can

be obtained by inverting the quadrature given in Eq. (6) as an elliptic integral of the third kind. But, it is not
possible to reverse of Eq. (6) to find the expression of z(t). So that an approximation solution is needed for

this problem. Further, if we multiply Eq. (8) by
√
3
√
3, then it agree to get the period of MacMillan [2] work.

With the help of Eq. (8), we obtained numerical values of the period, which is shown in Table 1. In this
table, we observe that when the initial values of z(0) increase their corresponding period of oscillation also
increases that means initial conditions play a vital role for period of oscillation.
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Using Eqs. (1) and (2), the equation of motion upto O(z3) can take the form

z̈ + ω2
r z + βω2

d z
3 = 0, (9)

where ω2
r = 3

√
3, ω2

d = 27
√
3

2 and β = −1. Here, β = −1 < 0, i.e., equation represents a “soft spring”
and closed curves. Eq. (9) is known as duffing equation, which has a wide range of practical application such
as non-harmonic oscillations and chaotic nonlinear behavior. Also, it is used in mechanical, electrical and
physics. Further, Eq. (9) can be written as a system of first-order ordinary differential equations by assuming

ż = q, q̇ = −ω2
r z − βω2

d z
3. (10)

At fixed points ż = q = 0 so that q = 0 and q̇ = z(−ω2
r − βω2

d z
2) = 0. Therefore, the fixed points are (0, 0),

(
√
2
3 , 0) and (−

√
2
3 , 0), respectively.

3 Linear stability analysis of periodic solution

Analysis of the stability of the fixed points can be done by linearizing Eq. (10) which gives

z̈ = q̇, q̈ = (−ω2
r − 3βω2

d z
2)ż. (11)

The matrix for Eq. (11) can be written as
[
z̈
q̈

]
=

[
0 1

(−ω2
r − 3βω2

d z
2) 0

] [
ż
q̇

]
.

Examining the stability at the critical point (0, 0), the characteristics equation of the above matrix is given as
∣∣∣∣
0 − λ 1
−ω2

r 0 − λ

∣∣∣∣ = 0,

and its eigenvalues are λ1,2 = ±i
√

ω2
r = ±i

√
3
√
3. This shows that the critical point is center for which

stability is ensured. Again, at the other two critical points (
√
2
3 , 0) and (−

√
2
3 , 0), the characteristics equation

of the matrix is given by
∣∣∣∣
0 − λ 1
−6

√
3 0 − λ

∣∣∣∣ = 0,

and its eigenvalues are λ1 =
√
6
√
3 and λ2 = −

√
6
√
3, respectively. This shows that the critical points are

saddle points and the period is hyperbolic. Hence, Hartman–Grobman theorem concludes that we have critical

points which lose stability at (
√
2
3 , 0) and (−

√
2
3 , 0), respectively, which is shown in Fig. 2.

The phase curves are given as

dq

dz
= (−ω2

r z − βω2
d z

3)

q
. (12)

Integrating Eq. (12), we get

q2

2
+ ω2

r
z2

2
+ βω2

d
z4

4
= K1,

where K1 is a constant and we may state that phase curves are on the function’s level sets.

G(z, q) = q2 + ω2
r z

2 + βω2
d
z4

2
.
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Fig. 2 Phase curves of the restricted Sitnikov four-body problem

4 Periodic solution using multiple scales method

The Multiple Scales Method is a technique for analyzing the impact of weak nonlinearities on the solution of
ordinary and partial differential equations. Instead of a single variable, the original time is expressed in terms of
numerous time scales, which are termed multiple independent variables or scales. In the form of perturbation
series, we express the solution z(t) as

z(t) =
∞∑
n=0

εnzn(t, τ, σ ), (13)

where τ = εt and σ = ε2t are slow variables, depends on t . The variable t , τ and σ are correlated with each
other. The purpose of Multiple Scales Method is to reduce the secular terms using two variables which are
independent variables. We enlarged the ordinary differentiation in fast variable t to the differential operator
Dt , which contains partial derivative in regard fast variable t , slow variable τ and σ . The differential operator
Dt is denoted by the chain rule as

d

dt
= Dt =

(
∂

∂t
+ ε

∂

∂τ
+ ε2

∂

∂σ

)
, (14)

and hence

d

dt
z(t) = Dt

∞∑
n=0

εnzn(t, τ, σ ). (15)

For all t and d
dt τ = ε and d

dt σ = ε2. Using the conditions that zn(t, τ, σ ) follow continuity as well as
differentiability for t, τ and σ , respectively. Putting Eq. (14) into Eq. (15) with easy calculation, we obtain
first and second derivative of z

dz

dt
= ∂z0

∂t
+ ε

(
∂z1
∂t

+ ∂z0
∂τ

)
+ ε2

(
∂z2
∂t

+ ∂z1
∂τ

+ ∂z0
∂σ

)
+ O(ε3), (16)

and

d2z

dt2
= ∂2z0

∂t2
+ ε

(
∂2z1
∂t2

+ 2
∂2z0
∂τ∂t

)
+ ε2

(
∂2z2
∂t2

+ 2
∂2z1
∂τ∂t

+ 2
∂2z0
∂σ∂t

+ ∂2z0
∂τ 2

)
+ O(ε3). (17)

With the help of Eqs. (13), (16), (17) and the initial conditions as z(0) = α and ż(0) = 0 into Eq. (9), we have
{

∂2z0
∂t2

+ ε

(
∂2z1
∂t2

+ 2
∂2z0
∂τ∂t

)
+ ε2

(
∂2z2
∂t2

+ 2
∂2z1
∂τ∂t

+ 2
∂2z0
∂σ∂t

+ ∂2z0
∂τ 2

)
+ O(ε3)

}

+ω2
r

{
z0 + εz1 + ε2z2 + O(ε3)

} − εω2
d

{
z0 + εz1 + ε2z2 + O(ε3)

}3 = 0.
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Equating the coefficients of ε0, ε1 and ε2 to zero, we obtained the following set of equations

∂2z0
∂t2

+ ω2
r z0 = 0,

z0(0, 0, 0) = α,
∂

∂t
z0(0, 0, 0) = 0, (18)

∂2z1
∂t2

+ 2
∂2z0
∂τ∂t

+ ω2
r z1 − ω2

d z
3
0 = 0,

z1(0, 0, 0) = 0,
∂

∂τ
z0(0, 0, 0) + ∂

∂t
z1(0, 0, 0) = 0 (19)

∂2z2
∂t2

+ 2
∂2z0
∂σ∂t

+ 2
∂2z1
∂τ∂t

+ ∂2z0
∂2τ

+ ω2
r z2 − 3ω2

d z
2
0z1 = 0,

z2(0, 0, 0) = 0,
∂

∂τ
z1(0, 0, 0) + ∂

∂σ
z0(0, 0, 0) + ∂

∂t
z2(0, 0, 0) = 0. (20)

The solution of Eq. (18) can be given as

z0(t, τ, σ ) = z0(τ, σ )eiωr t + z̄0(τ, σ )e−iωr t .

Together with the initial constraints

z0(0, 0) + z̄0(0, 0) = α,

z0(0, 0) − z̄0(0, 0) = 0, (21)

where z̄0(τ, σ ) be the complex conjugate of z0(τ, σ ) and z0(τ, σ ) is complex function in the slow variables τ
and σ that is arbitrary.

4.1 First-order approximated periodic solution

We compute the partial derivatives of z0 with respect to t, τ and σ , considering them as uncorrelated variables,
and plug them into Eq. (19), we obtain

∂2z1
∂t2

+ ω2
r z1 = ω2

d

[
z30(τ, σ )e3iωr t + z̄30(τ, σ )e−3iωr t

]
+ k1(τ, σ )eiωr t + k2(τ, σ )e−iωr t , (22)

where

k1(τ, σ ) = 3ω2
d z

2
0(τ, σ )z̄0(τ, σ ) − 2iωr

∂z0(τ, σ )

∂τ
,

k2(τ, σ ) = 3ω2
d z0(τ, σ )z̄20(τ, σ ) + 2iωr

∂ z̄0(τ, σ )

∂τ
.

It is clear to see that the solution of Eq. (22) has secular terms, when the coefficients of eiωr t and e−iωr t are
nonzero. As a result, to prevent secular terms in differential Eq. (22), the coefficient k1(τ, σ ) and k2(τ, σ )must
vanish.

3ω2
d z

2
0(τ, σ )z̄0(τ, σ ) − 2iωr

∂z0(τ, σ )

∂τ
= 0, (23)

3ω2
d z0(τ, σ )z̄20(τ, σ ) + 2iωr

∂ z̄0(τ, σ )

∂τ
= 0. (24)

Here, we observe that Eq. (24) is complex conjugate of Eq. (23) and can be excluded. If z0(τ, σ ) satisfying
these conditions, z1(t, τ, σ ) will be free from secular terms and no singularities appear in the first two term in
the series of z(t) in Eq. (13). To solve Eq. (23) with the assistance of polar coordinate (R, θ), let

z0(τ, σ ) = R(τ, σ )eiθ(τ,σ ), (R, θ) : R → R.
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Substituting these values into Eqs. (23) and (24), we get

z0(τ, σ ) = f1(σ )e
i
(
− 81

12 f 21 (σ )τ+ f2(σ )
)
,

z̄0(τ, σ ) = f1(σ )e
−i

(
− 81

12 f 21 (σ )τ+ f2(σ )
)
, (25)

where f1(σ ) and f2(σ ) are functions (arbitrary) in the steady variable σ which is given as

R(τ, σ ) = f1(σ ).

θ(τ, σ ) = −81

12
f 21 (σ )τ + f2(σ ).

(26)

Substituting Eqs. (25) and (26), we get the zeroth-order approximated solution

z0(t, τ, σ ) = f1(σ )
[
eiγ1(t,τ,σ ) + e−iγ1(t,τ,σ )

]
,

where

γ1(t, τ, σ ) = ωr t − 81

12
f 21 (σ )τ + f2(σ ). (27)

Therefore, Eq. (22) will take the form

∂2z1
∂t2

+ ω2
r z1 = ω2

d

[
z30(τ, σ )e3iωr t + z̄30(τ, σ )e−3iωr t

]
,

and its general solution is given as follow,

z1(t, τ, σ ) = z1(τ, σ )eiωr t + z̄1(τ, σ )e−iωr t − f 31 (σ )ω2
d

6ω2
r

[
e3iγ1(t,τ,σ ) + e−3iγ1(t,τ,σ )

]
,

Together with initial conditions

z1(0, 0) + z̄1(0, 0) = f 31 (0)ω2
d

3ω2
r

cos(3γ10), (28)

z1(0, 0) − z̄1(0, 0) = f 31 (0)i

[
ω2
d

3ω2
r
sin(3γ10) + 81

6ωr
sin(3γ10)

]
, (29)

where
√−1 = i and γ10 = γ1(0).

4.2 Second-order approximated periodic solution

We compute the partial derivatives of z0 and z1 with respect to t, τ and σ , considering them as uncorrelated
variables, and plug them into Eq. (20), we get

∂2z2
∂t2

+ ω2
r z2 = −2187

8ω2
r

f 51 (σ )
[
e5iγ1(t,τ,σ ) + e−5iγ1(t,τ,σ )

]
+

(
81ω2

d

4ωr
− ω4

d

ω2
r

)

× f 51 (σ )
[
e3iγ1(t,τ,σ ) + e−3iγ1(t,τ,σ )

]
+ 3ω2

d f
2
1 (σ )

[
z1(τ, σ )ei(ωr t+2γ1(t,τ,σ ))

+z̄1(τ, σ )e−i(ωr t+2γ1(t,τ,σ ))
]

+ k3(τ, σ )eiωr t + k4(τ, σ )e−iωr t , (30)

where

k3(τ, σ ) = 6ω2
d f

2
1 (σ )z1(τ, σ ) − 2iωr

∂z1(τ, σ )

∂τ
+ 3ω2

d f
2
1 (σ )z̄1(τ, σ )ei2θ(τ,σ )
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+2ωr e
iθ(τ,σ )

[−81

6
f 21 (σ )

∂ f1(σ )

∂σ
τ + f1(σ )

∂ f2(σ )

∂σ
− i

∂ f1(σ )

∂σ

]

+
[(

6561

144
− ω4

d

2ω2
r

)
f 51 (σ )

2ωr

]
eiθ(τ,σ ),

k4(τ, σ ) = 6ω2
d f

2
1 (σ )z̄1(τ, σ ) + 2iωr

∂ z̄1(τ, σ )

∂τ
+ 3ω2

d f
2
1 (σ )z1(τ, σ )e−i2θ(τ,σ )

+2ωr e
−iθ(τ,σ )

[−81

6
f 21 (σ )

∂ f1(σ )

∂σ
τ + f1(σ )

∂ f2(σ )

∂σ
+ i

∂ f1(σ )

∂σ

]

+
[(

6561

144
− ω4

d

2ω2
r

)
f 51 (σ )

2ωr

]
e−iθ(τ,σ ).

Reducing the secular term k3(τ, σ ) = 0 and k4(τ, σ ) = 0, then Eq. (30) takes the form

∂2z2
∂t2

+ ω2
r z2 = −2187

8ω2
r

f 51 (σ )
[
e5iγ1(t,τ,σ ) + e−5iγ1(t,τ,σ )

]
+

(
81ω2

d

4ωr
− ω4

d

ω2
r

)

× f 51 (σ )
[
e3iγ1(t,τ,σ ) + e−3iγ1(t,τ,σ )

]
+ 3ω2

d f
2
1 (σ )

[
z1(τ, σ )ei(ωr t+2γ1(t,τ,σ ))

+z̄1(τ, σ )e−i(ωr t+2γ1(t,τ,σ ))
]
,

and its general solution is found as,

z2(t, τ, σ ) = z2(τ, σ )eiωr t + z̄2(τ, σ )e−iωr t + 2187

192ω4
r
f 51 (σ )(ei5γ1 + e−i5γ1)

−
(
81ω2

d

4ωr
− ω4

d

ω2
r

)
f 51 (σ )

8ω2
r

(ei3γ1 + e−i3γ1) − 3ω2
d f

2
1 (σ )

[
z1(τ, σ )

ei(ωr t+2γ1)

8ω2
r

+z̄1(τ, σ )
e−i(ωr t+2γ1)

8ω2
r

]
,

with initial circumstance

z2(0, 0) + z̄2(0, 0) = −2187 f 51 (0)

96ω4
r

cos(5γ10) +
(
81ω2

d

4ωr
− ω4

d

ω2
r

)
f 51 (0)

4ω2
r

cos(3γ10), (31)

z2(0, 0) − z̄2(0, 0) = −10935

96ω4
r

f 51 (0)i sin(5γ10) + 2i

ωr

∂ f1(0)

∂σ
. (32)

4.3 Periodicity conditions of Zeroth, first- and second-order approximated solution

With the initial circumstance in Eq. (21), the generalized zeroth-order estimated solution z0 is given as,

z0(t, τ, σ ) = 2 f1(σ ) cos γ1(t, τ, σ ), (33)

where f1(σ ) = α
2 = α0, f2(σ ) = f2(0) = 2nπ, n ∈ Z . The general first-order approximated solution z1

obtained as,

z1(t, τ, σ ) = z1(τ, σ )eiωr t + z̄1(τ, σ )e−iωr t − f 31 (σ )ω2
d

3ω2
r

cos 3γ1(t, τ, σ ), (34)

With the initial conditions given in Eqs. (28–29) and γ1 are defined in Eq. (27), while the estimated second-order
solution z2 may be represented as
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z2(t, τ, σ ) = z2(τ, σ )eiωr t + z̄2(τ, σ )e−iωr t + 2187

96ω4
r
f 51 (σ ) cos 5γ1(t, τ, σ )

−
(
81ω2

d

4ωr
− ω4

d

ω2
r

)
f 51 (σ )

4ω2
r

cos 3γ1(t, τ, σ )

−3ω2
d f

2
1 (σ )

8ω2
r

[
z1(τ, σ )ei(ωr t+2γ1(t,τ,σ )) + z̄1(τ, σ )e−i(ωr t+2γ1(t,τ,σ ))

]
, (35)

with the initial conditions are given in Eqs. (31-32). The solutions in Eqs. (33), (34) and (35) include four
arbitrary functions z1(τ, σ ), z2(τ, σ ), f1(σ ) and f2(σ ) in slow variables τ and σ , respectively. The conditions
in Eqs. (31-32) must be compatible with these three solutions. It is also evident that the function f2(σ ) has
just one restriction: f2(0) = 2nπ , whereas f1(σ ) has none. We will treat these two functions as constants with

f1(σ ) = α

2
= α0 and f2(σ ) = 2nπ , respectively. Initial circumstances can be chosen as follows to achieve

harmony among the solutions:

z1(τ, σ ) = z̄1(τ, σ ) = f 31 (0)ω2
d

6ω2
r

cos 3γ10,

z2(τ, σ ) = z̄2(τ, σ ) = f 51 (0)

8ω2
r

[−2187

24ω2
r

cos 5γ10 + δ1 cos 3γ10

]
,

where δ1 =
(
81ω2

d

4ωr
− ω4

d

ω2
r

)
. Therefore, the first three solutions in the perturbation series are controlled by

z0(t, τ ) = 2 f1(0) cosψ(t, τ ), (36)

z1(t, τ ) = f 31 (0)ω2
d

3ω2
r

[cosωr t − cos 3ψ(t, τ )] , (37)

z2(t, τ ) = f 51 (0)

4ω2
r

[
2187

24ω2
r

(cos 5ψ(t, τ ) − cosωr t) + δ1(cosωr t − cos 3ψ(t, τ ))

− ω4
d

2ω2
r
cos(ωr t + 2ψ(t, τ ))

]
, (38)

where

ψ(t, τ ) = ωr t − 81

12
f 21 (0)τ + 2nπ.

Since cos(θ + 2nπ) = cos θ, sin(θ + 2nπ) = sin θ , then the solution of Eqs. (36), (37) and (38) can be
written in a simplest form

z0(t, τ ) = 2 f1(0) cosωr

(
t − 81 f 21 (0)

12ωr
τ

)
, (39)

z1(t, τ ) = f 31 (0)ω2
d

3ω2
r

[
cosωr t − cos 3

(
t − 81 f 21 (0)

12ωr
τ

)]
, (40)

z2(t, τ ) = f 51 (0)

4ω2
r

[
2187

24ω2
r

{
cos 5ωr

(
t − 81 f 21 (0)

12ωr
τ

)
− cosωr t

}
+ δ1

×
{
cosωr t − cos 3ωr

(
t − 81 f 21 (0)

12ωr
τ

)}
− ω4

d

2ω2
r
cos 3ωr

(
t − 81 f 21 (0)

18ωr
τ

)]
. (41)
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Using the slow variable τ = εt and the parameter ε can be replaced by unity in the technique of place
maintaining parameters.With the help of Eqs. (39), (40) and (41), the zeroth-, first- and second-order estimated
multiple scales method solution is given by

z(0)(t) = 2 f1(0) cosωr

(
1 − 81 f 21 (0)

12ωr

)
t, (42)

z(1)(t) = 2 f1(0) cosωr

(
1 − 81 f 21 (0)

12ωr

)
t + f 31 (0)ω2

d

3ω2
r

[
cosωr t − cos 3

(
1 − 81 f 21 (0)

12ωr

)
t

]
, (43)

z(2)(t) = 2 f1(0) cosωr

(
1 − 81 f 21 (0)

12ωr

)
t + f 31 (0)ω2

d

3ω2
r

[
cosωr t − cos 3

(
1 − 81 f 21 (0)

12ωr

)
t

]

+ f 51 (0)

4ω2
r

[
2187

24ω2
r

{
cos 5ωr

(
1 − 81 f 21 (0)

12ωr

)
t − cosωr t

}
+ δ1

{
cosωr t − cos 3ωr

(
1 − 81 f 21 (0)

12ωr

)
t

}

− ω4
d

2ω2
r
cos 3ωr

(
1 − 81 f 21 (0)

18ωr

)
t

]
. (44)

5 Numerical results

Thefindings of zeroth-, first-, and second-order approximation solutions of the SRFBPunder various conditions
(initial) are compared in this section. The numerical solutions of Eq. (1), aswell as the zeroth-, first-, and second-
order approximation solutions of Eq. (9) are derived using the Multiple Scales Method and are included in
Eqs. (42), (43), and (44), respectively. Within the context of three alternative beginning positions (z(0) =
0.1, 0.2, 0.3) and initial zero velocity (ż(0) = 0), we compare the analytical and numerical solutions.
The examination of infinitesimal mass motion will be separated into two major categories. Three alternative
solutions are produced for three different conditions in the first group, as illustrated in the Fig. 3. The conditions
z(0) = 0.1, z(0) = 0.2 and z(0) = 0.3 are represented by the red, green, and blue curves in this diagram,
respectively.

On other hand, in the second important group,we compared numerically and analytically obtained solutions
at the same initial conditions used in the group first. This group include four figures, (Fig. 4), where the red
and blue curves denote the numerical solution (NS) and second-order approximations (SA) by the Multiple
Scales Method. The motion of the infinitesimal body is periodic and can be seen in Fig. 3d.We observe that the
infinitesimal body goes away from the center of mass, its amplitude increases and vice versa. The numerically
calculated solution does not sustain periodicity patterns all over time. When the condition z(0) ≤ 0.31 with
ż(0) = 0, the motion is periodic but beyond this interval, it is not bounded and periodic. From Fig. 4, we
see that the infinitesimal body begins to move with zero velocity and regard to the primary’s center of mass
from three separate positions. Moreover, motion is regular within the interval 0 ≤ t ≤ 928 with z(0) = 0.1.
However, motion beyond this interval is not regular in numerical case. Again, in the interval 0 ≤ t ≤ 718
with initial condition z(0) = 0.2, motion is periodic but when the interval t > 718 motion is non-periodic
in numerical sense. Furthermore, in the interval 0 ≤ t ≤ 661 with initial condition z(0) = 0.3, motion is
periodic in analytically as well as numerically but when the interval t > 661motion is not periodic numerically
while analytically it maintains the periodicity patterns. On the other hand, when an infinitesimal body begins
its motion far from its center of mass, we notice that motion might become chaotic. In addition, with rising
values of beginning circumstances, periodicity becomes relatively slow to complete the path in the numerical
simulation. Fig. 4d presents a comparison between zeroth-, first- and second-order analytical with numerical
solution at the initial condition z(0) = 0.1.

Now,we compare the solutions by themultiple scalesmethod of different orderswith numerically computed
solutions in the following items:
• The solution by the multiple scales method is regular periodic all time whatever the initial conditions are
taken.

• The major difference between the obtained periodic solutions by the Multiple Scales Method and by the
numerical solution is the difference in its frequency and period of time.

• In the numerical solution, when the infinitesimal body starts its motion near the center of masses of the
primaries, the period of time as well as the amplitude increases. On other hand, in analytical solution the
period of time seems to be same but amplitude increases in the time interval [0, 20].
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(a) (b)

(c) (d)

Fig. 3 Solutions at the three various values of initial conditions

• In the numerical solution for long time, we find that the motion is not periodic although by the multiple
scales method, it is regular and periodic.

6 Conclusion

In the present article, we have discussed themotion of an infinitesimal body of the restricted four-body problem,
which is known as particular circular Sitnikov problem by deleting the unbounded terms, known as secular
terms. The periodic solutions for SRFBP were produced adopting the Multiple Scales Method. We compared
these results to numerical results to see how important the perturbation approach.

One of the most important goal of eliminating secular terms is to determine the conditions that will compel
motion to be periodic or to establish motion’s periodicity criteria. We can discover approximated periodic
solutions form under these conditions in closed form. It was observed that the beginning circumstances (initial
conditions) have a significant effect in the patterns of numerical and analytical periodic solutions. The motion
was investigated numerically, and the estimated solution are computed using the Multiple Scales Method and
compared by each other.We noticed that in the time interval 0 ≤ t ≤ 928, the motion is periodic with condition
z(0) = 0.1, but it is non-periodic in the numerical sense beyond this interval. Again, when z(0) = 0.2 and
0 ≤ t ≤ 718, motion is periodic and as t > 718, it escape outside of the orbit so that motion is not periodic.
Further, when z(0) = 0.3 and 0 ≤ t ≤ 661, motion is periodic and whenever t > 661, orbit is escape
far from its position which leads motion to non-periodicity. For the time t > 0, however, the Multiple Scales
Method produces regular and periodicmotion. Furthermore, we remark that whenever the test particle begins its
motion near to the center of mass, the motion produced by the zeroth-, first-, and second-order approximation
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(a) (b)

(c) (d)

Fig. 4 Comparison of analytical and numerical solution

results is periodical and regularized. However, the test particle travels away from the center of mass, the
numerical simulation solutions for a long period may not be periodic, even if all of the zeroth- to second-order
approximation solutions come to be periodic. We showed that the Multiple scales technique yields the genuine
motion of the circular Sitnikov RFBP, and that higher order approximation solutions are more accurate than
lower order approximation solutions. Furthermore, since the numerical solution for a long timemay not exhibit
regular motion, the Multiple Scales technique provides a more realistic results than the numerical solution. A
exact solution of this problem is also discussed and compared with MacMillan problem and observed that the

time period of MacMillan problem is
√
3
√
3 times of the time period of Sitnikov restricted four-body problem.
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