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Abstract The behavior of mechanical network consisting of discontinuous damped system oscillators elas-
tically coupled with strong irrational nonlinearities, excited at one of its end by the modulated signal, is
investigated. By using the Newton second law, the set of discrete damped equations governing the dynamics
of this network are established. These set of equations have strong irrational nonlinearities, with smooth or
discontinuous characteristics depending just to the inclination angles of strings. By using next the perturbation
method, these set of discrete equations are reduced to the nonlinear cubic Landau–Ginzburg (CGL) equa-
tion governing the small dissipative amplitude modulated signal. As this CGL equation is not integrable, the
dissipative modulated pulse and dark solitons as solutions are approximated via perturbation method, which
is confirmed by using the conserved quantities as well as numerical investigations. Finally the conditions
for modulational instability are found and proved to be sensitive both to inclination angle and dissipative
coefficient.
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1 Introduction

The mathematical modeling of discrete systems behaviors by continuous partial differential (PD) equations
has always attracted enormous attentions in linear and nonlinear sciences [1–4]. When the size of discrete
systems is sufficiently large, they are viewed as continuous media, from where different perturbation methods
are usually applied to reduce their discrete equations to PD equations easy to solve, and each method is chosen
according to the desired solution. To name just a few, the Korteweg de Vries (KdV) [3,4], the Boussinesq [4]
and the sine-Gordon [5–7] equations are usually found for envelope solitons, while the nonlinear Schrödinger
(NLS) [1,2] and theGinzburgLandau (GL) [8] equations are found formodulated solitons. Soliton being awell-
known and intriguing aspect of nonlinear behavior in a continuous systems [9]. Among the above-mentioned
equations, some are integrable and easy to solve, while the others, as the GL equation, are non-integrable
and their solutions need to be approximated. The non-integrability of the last equations is due to the fact that
their parameters are complex, and obtained for dissipative networks. One of the key properties of a dissipative
dynamical system is that the total energy stored in the system decreases with time [10]. Discrete systems are
designed and used for their potential applications in several branches of physics including electronic [2,4,11],
optic [12] and mechanics [13]. In electronic for example, the discrete nonlinear transmission lines (NLTL) are
used as waveguide for the propagation of signal voltages for one place to another but with strong losses due
to the presence of resistors. NLTLs are also used as signal amplifiers or as generators of solitary wave trains
(see [14] and references therein). In optics, the optical fibers have been proved to be adequate for signal light
transmission and solitons generations without considerably losses [12]. In mechanics the chain of string or
pendulum leads to mechanical networks adequate for solitons generation [1].

With regard to non-integrable nonlinear differential equations usually found in nonlinear science, pertur-
bation methods are usually used to approximate their solutions, by starting from the exact solution of a related
solvable equations [15]. A critical feature of the technique is a middle step that breaks the model differential
equations into both solvable and perturbative parts [4]. In perturbation theory, the solution is expressed as a
power series in an arbitrary small parameter ε [15]. The first term being the known solution to the solvable part
of the equation. While successive terms in the series at higher powers of ε usually become smaller. An approx-
imate perturbation solution is obtained by truncating the series, usually by keeping only the first two terms,
that is the solution to the solvable part and that of the first order perturbation correction. The small parameter
ε usually vanishes in the resulting solution, taking into account to initial or/and boundary conditions. This is
why this parameter must not be taken as tuning parameter of the system equation.

Very recently, Adoum Danao Adile et al. [1] proposed an undamped mechanical network (UMN) where
each unit cell has irrational nonlinearity, which leads to the transition from smooth to discontinuous dynamics.
It is important to mention that for the smooth dynamics, the restoring force created by inclined springs is a
continuous function, while for that discontinuous, the restoring force is discontinuous for particular values of
parameters [16]. This nonlinear oscillator being comprised a lumped mass, linked by a pair of inclined elastic
linear springs. As a consequence the nonlinearity obtained was strong and due just to the inclination. Adoum
Danao Adile et al. found that although the network obtained had riches dynamics, the absence of dissipation
leads to solutions with infinite amplitude near resonant frequency which is not suitable for real applications.
In order to prove that this network can find its application in industry and technology, Fabien Kenmogne et
al. [13] proposed then a model of sand sieve, which has at the entrance the driven Van der Pol oscillator,
which is coupled at the output to sand sieve through the damped mechanical network described here, while its
dynamics have being studied in details. However in both previous works, any attention has been focussed on
the propagation of signals and modulational instability (MI) in this UMN which could lead to other potential
applications. These two items will then constitute the main purpose of the present work. Thus, the rest of the
paper is organized as follows:

In Sect. 2 we will describe the model and derive the governing equations. Section 3 will be devoted to
effects of damping on the envelope solitons like signals; then we have derived the cubic Guinzburg equation
describing small amplitude signal propagation, following by the seeking of dissipative envelope solitons like
signals. Finally Sect. 4 is devoted to find the condition under which the modulated plane wave propagating in
the system will become instable to a small perturbation (the MI).

2 Description of the system model and equations of motion

We consider the mechanical network consisting of a discontinuous coupled system oscillator with strong
irrational nonlinearities in which each unit cell is consisting of a lumped identical mass m, linked by a pair
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Fig. 1 Schematic diagram of the mechanical network

of inclined elastic springs of stiffness k, capable of resisting both tensions and compressions and which are
pinned to their rigid supports (T). Although each of the inclined springs provides linear restoring resistance, it
has been proved that the resulting force has a strong irrational nonlinearity due to the geometric configuration
[1,13]. Each unit cell is coupled to the first neighbors through the elastic springs of stiffness ks , while the
lumped mass make frictions on horizontal bar with the friction coefficient μ. By applying the Newton second
law, one can have the following ordinary differential equation:

mün + f (un) + ks(2un − un+1 − un−1) + μ(2u̇n − u̇n+1 − u̇n−1) = 0

, f or n = 1, ..., N , (1)

governing the displacement un(t) of the nth mass. In the above equation the dots are derivatives with respect
to time t . f (un) defined as

f (un) = 2kun − k
√
d2 + h2

(
un + d

√
(un + d)2 + h2

+ un − d
√

(un − d)2 + h2

)

(2)

is the nonlinear restoring force created by inclined springs. This force is a continuous function of
un , leading to smooth dynamics, except when h ≡ 0, which takes the form f (un) = 2kun −
k
√
d2 + h2 (sign(un + d) + sign(un − d)). sign(x) being the signum function. For this last case, f (un) isn’t

a continuous function for un ≈ ±d , leading to the fact that the dynamics is discontinuous.
In order to write the governing equation of the system in dimensionless form, let us first take into account

the angle θ (with tan(θ) = h/d) between the direction of inclined strings and the horizontal direction, and
secondly make the following change of variables and parameters:

Un = un/
√
d2 + h2, τ = tω0, ω2

0 = k/m, εr = ks/k, μs = μω0

k
, (3)

leading to the following set of equations;

Ün + 2Un −
(

Un + cos(θ)
√

(Un + cos(θ))2 + sin2(θ)
+ Un − cos(θ)
√

(Un − cos(θ))2 + sin2(θ)

)

+
(

εr + μs
d

dτ

)
(2Un −Un+1 −Un−1) = 0, f or n = 1, ..., N . (4)

The restoring force (2) of the system can easily be written as

f (Un) = 2Un −
(

Un + cos(θ)
√

(Un + cos(θ))2 + sin2(θ)
+ Un − cos(θ)
√

(Un − cos(θ))2 + sin2(θ)

)

. (5)

Figure 2 plotted for different values of θ shows the discontinuity for θ ≡ 0 and a continuity elsewhere, which
means the irrational character of the restoring force.
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Fig. 2 The nonlinear irrational restoring force

3 Effects of damping on the envelope solitons like signals

3.1 Cubic Guinzburg equation

The set of the above differential equations are very difficult to solve, and their solutions need to be approximated
via the integrable equations easy to solve [4,17,18]. In order to simplify the above set of equations in a form
easily solvable, let us consider that the total number of cell N is large and the distance between two adjacent cells
d weak, i.e the well-known continuum limit would be applied. For this parameter regime, the system allows as
solution the signal with long wavelength [4,19]. ThenUn(t) is supposed to vary slowly from one cell to another
so that the discrete expression of Eq. (4) can be approximated by the a third-order Taylor expansion about
Un±1(t). Let us adopt here the reductive perturbation approach in the semi-discrete approximation [14,20],
according to which the time dependence of the displacement at lattice site n is expressed approximately as

Un(t) = εU1(x, τ )e−χneiφ(n,t) + cc (6)

where c.c. denotes the complex conjugation, χ the dissipation coefficient, and the functions U1(x, τ ) is to be
determined. The phase variable φ and the envelope variables x and τ are defined as

φ(n, t) = kn − ωt, x = ε
(
n − vgt

)
, τ = ε2t. (7)

Substituting the solution (6) into the set of Eqs. (4) and taking into account only the coefficients of the first
harmonic (coefficients proportional to eiφ(n,t)) one obtains:

� At order ε1eiφ(n,t), the following dispersion relation:

	2
m − ω2 + (εr − iωμs)

(
2 − e−χeik − eχe−ik

)
= 0, (8)

where 	m is defined as 	2
m = 2 cos2(θ). Separating this equation into real and imaginary parts yield:

ω2 − 	2
m − 2μsω sin(k) sinh(χ) − 2εr [1 − cos(k) cosh(χ)] = 0, (9)

for the real part, and

χ = ln

(
ωμs + sin(k)

√
ε2r + ω2μ2

s

εr sin(k) + ωμs cos(k)

)

, (10)

for the imaginary part. In Fig. 3, ω and χ are plotted for μs = 0.01, and εr = 1. As one can see the system has
the band pass filter character, and the dissipation coefficient increases with increasing value of k. Otherwise,
the lower gap frequency decreases as θ increases, leading at θ = π/2 to the lower pass filter.

� At order ε2eiφ(n,t), one obtains the group velocity vg = vgr + ivgi , with

vgr = 2
[
μs
(
�1�2 − 4ε2r ω

2
)
cos(k) sinh(χ) + 2ωεr

(
ε2r + μ2

s	
2
m

)
sin(k) cosh(χ)

]

4ε2r ω2 + μ2
sω

4
r

,
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Fig. 4 Group velocity with same parameters as in Fig. 6. a The real part, b The imaginary part

vgi = 2
[
μs
(
�1�2 − 4ε2r ω

2
)
sin(k) cosh(χ) − 2ωεr

(
ε2r + μ2

s	
2
m

)
cos(k) sinh(χ)

]

4ε2r ω2 + μ2
sω

4
r

, (11)

in which
�1 = ω2 − ω2

m, �2 = ε2r − μ2
sω

2, D = 4ε2r ω
2 + μ2

sω
4
r , ωr =

√
ω2 + 	2

m . (12)

� At order ε3eiφ(n,t), one obtains the following partial differential equation:

i
∂U1

∂τ
+ (Pr + i Pi )

∂2U1

∂x2
+ (Qr + i Qi ) H(n,U1)U1 = 0, (13)

with H(n,U1) = e−2χn ‖U1‖2, and
Pr =

[
ω
(
2ε2r + μ2

sω
2
r

) (
v2gr − v2gi + μs sin(k)ξ1 + cos(k)ξ2

)
− 2μsεr�1

(
2vgrvgi+
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μs cos(k)ξ3 + sin(k)ξ4)] /
(
4ε2r ω

2 + μ2
sω

4
r

)
,

Pi = −
[
ω
(
2ε2r + μ2

sω
2
r

) (
2vgrvgi + μ cos(k)ξ3 + sin(k)ξ4

)+ 2μsεr�1

(
v2gr − v2gi

+μs sin(k)ξ1 + cos(k)ξ2)] /
(
4ε2r ω

2 + μ2
sω

4
r

)
,

Qr = 3σ 2ω

(
2ε2r + μ2

sω
2
r

)

4ε2r ω2 + μ2
sω

4
r
, Qi = −3σ 2μsεr

�1

4ε2r ω2 + μ2
sω

4
r

(14)

in which

ξ1 = −ω sinh(χ) + vgi cosh(χ), ξ2 = εr cosh(χ) + μsvgr sinh(χ),

ξ3 = ω cosh(χ) − vgi sinh(χ), ξ4 = εr sinh(χ) + μsvgr cosh(χ). (15)
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By considering that the modulated signal evolves slowly from one site to another, the term e−2χn in Equation
can be supposed independent to variable x . Setting thenψ = U1e−χn , Eq. (13) can be reduced to the following
cubic Ginzburg differential equation:

i
∂ψ

∂τ
+ (Pr + i Pi )

∂2ψ

∂x2
+ (Qr + i Qi ) ‖ψ‖2 ψ = 0, (16)

governing weak amplitude modulated signals in the system.

3.2 Dissipative envelope solitons like signals

3.2.1 Analytical findings

In order to find the solution of Eq. (16) and then analyze the dissipative effect of the network, it is important to
mention that many wave equations consist in generalizations of the integrable equations like the NLS equation
and, sometimes, additional terms may be considered as small perturbations. The basic idea of the perturbation
approach is to look for a solution of a perturbed nonlinear equation in terms of certain natural fast and slow
variables. We assume that Pi = εPai , Qi = εQai , and we look for a solution ψ is of the form:

ψ = ψ0 + εψ1 + ..., (17)

where ψ1, ... are corrections, while the independent variables are transformed into several variables τ j = ε jτ .
Substituting the above expression of ψ into Eq. (16) and collecting the powers of ε we obtain the series of
equations which leads:

� At the lowest order ε0 to the well-known NLS equation:

i
∂ψ0

∂τ0
+ Pr

∂2ψ0

∂x2
+ Qr ‖ψ0‖2 ψ0 = 0, (18)

where the solution can be written as

ψ0 = A0(τ1, ...)sech (η̃1) e
i η̃2 , (19)

with the constraints:

∂η1

∂x
= A0(τ1, ...)

√
Qr

2Pr
,

∂η1

∂τ0
= −Qr A

2
0(τ1, ...),

∂η2

∂x
= A0(τ1, ...)

√
Qr

2Pr
,

∂η2

∂τ0
= 0. (20)

provided that Pr Qr > 0, which corresponds to pulse soliton with stationary phase or

ψ0 = A0(τ1, ...)tanh (η̃1) e
i η̃2 , (21)

with

∂η1

∂x
= A0(τ1, ...)

√

− Qr

2Pr
,

∂η1

∂τ0
= −ve

∂η1

∂x
,

∂η2

∂x
= ve

2Pr
,

∂η2

∂τ0
= −vp

∂η2

∂x
,

2vevp − v2e + 4PQA2
0(τ1, ...) = 0, (22)

corresponding to dark soliton with the constraint Pr Qr < 0 [21].
� At order ε1, one has the following linear inhomogeneous equation in ψ1

L̃rψ1 = −i

(
∂ψ0

∂τ1
+ Pai

∂2ψ0

∂x2
+ Qai ‖ψ0‖2 ψ0

)
, (23)

where L̃r is the linear operator defined by

L̃r = i
∂

∂τ0
+ Pr

∂2

∂x2
+ Qr

(
2 ‖ψ0‖2 + ψ2

0 conj
)
, (24)
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with conjψ = ψ̄ and ψψ̄ = ψ̄ψ = ‖ψ‖2. Denoting by ρi (i = 1, ..., M) the i th solution of the homogeneous
adjoint problem L̃ A

r (ρi ) = 0, where L̃ A
r defined by

L̃ A
r = i

∂

∂τ0
+ Pr

∂2

∂x2
+ Qr ‖ψ0‖2 , (25)

is the adjoint operator to L̃r , we obtain by multiplying Eq. (23) by ρ̄i the following differential equation:

(
L̃rψ1

)
ρ̄i −

(
L̃ A
r ρi

)
ψ̄1 = −i

(
∂ψ0

∂τ1
+ Pai

∂2ψ0

∂x2
+ Qai ‖ψ0‖2 ψ0

)
ρ̄i , (26)

which may be integrated to give the following secularity condition:

−i
∫ +∞

−∞
ρ̄i

(
∂ψ0

∂τ1
+ Pai

∂2ψ0

∂x2
+ Qai ‖ψ0‖2 ψ0

)
dη1 = 0. (27)

Setting ρi = φ0 and by considering first solution given by (19), the above equation can be integrated to give
the following secularity condition:

⎧
⎪⎨

⎪⎩

∂η2
∂τ1

+ Pai
∂2η2
∂x2

= 0,

∂A0
∂τ1

− Pai

[(
∂η2
∂x

)2 + 1
3

(
∂η1
∂x

)2]
A0 + 2

3Qai A3
0 = 0.

(28)

Accounting to constraints Eq. (20), it is obvious that:
⎧
⎨

⎩

∂η2
∂τ1

+ Pai
∂2η2
∂x2

= 0,
∂A0
∂τ1

+ 2
3

(
Qai Pr−Pai Qr

Pr

)
A3
0 = 0.

(29)

From Eq. (20), the first line of the above equation leads to ∂η2/∂τ1 = 0, while its second line leads to the
solution:

A0 (τ1) = Ã0

√
3Pr

3Pr + 4 (Qai Pr − Pai Qr ) Ã2
0τ1

. (30)

By remembering that τ1 = ετ , one has A(τ ) = Ã0
√

ϑb(τ ), with:

ϑb(τ ) = 3Pr
3Pr + 4 (Qi Pr − Pi Qr ) Ã2

0τ
. (31)

while from the set of Eqs.(32), one has:

ψ(x, τ ) = Ã0

√
ϑb(τ )sech

[

Ã0

√
Qr

2Pr
ϑb(τ )

(
x − τ Ã0

√
2Pr Qrϑb(τ )

)]

× exp

(

i x Ã0

√
Qr

2Pr
ϑb(τ )

)

. (32)

By remembering to original variables, the dissipative modulated bright solution (32) of the network equation
can be rewritten as:

U (n, t) = ρ(t)sech [μ(t)(n − tvr (t))] cos[t	i (t)] cos[K (t)n − t	r (t)] exp[t	i (t)]×
(
1 − tan[t	i (t)] tan[K (t)n − t	r (t)] tanh [μ(t)(n − tvr (t))]

1 − sin2[t	i (t)]sech2 [μ(t)(n − tvr (t))]

)
(33)
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with

ρ(t) = U0/

√

1 + (Qi Pr − Pi Qr )

3Pr
U 2
0 t, μ(t) = ρ(t)

2

√
Qr

2Pr
, K (t) = k + μ(t),

vr (t) = vgr + ρ(t)

2

√
2Pr Qr , 	i (t) = μ(t)vgi , 	r (t) = ω + vgrμ(t). (34)

For the dark solution (21), the integration given by Eq. (27) is infinite and needs to be renormalized as:

−i
∫ +∞

−∞
ρ̄i

(

1 − ‖ψ0‖2
A2
0

)[
∂ψ0

∂τ1
+ Pai

∂2ψ0

∂x2
+ Qai ‖ψ0‖2 ψ0

]
dη1 = 0. (35)

Substituting then the solution (21) into the above equation leads by equating the resulting real and imaginary
parts to:

⎧
⎪⎨

⎪⎩

∂η2
∂τ1

+ Pai
∂2η2
∂x2

= 0,

∂A0
∂τ1

− Pai

[(
∂η2
∂x

)2 + 4
5

(
∂η1
∂x

)2]
A0 + 3

5Qai A3
0 = 0.

(36)

In order to simplify our investigations, let us set ve = vp, leading from Eq. (22) to ve = vp =
2A0(τ1, ..)

√−Pr Qr , and from Eq. (36), one has:
⎧
⎨

⎩

∂η2
∂τ1

+ Pai
∂2η2
∂x2

= 0,
∂A0
∂τ1

+
(
3Qai Pr+7Pai Qr

5Pr

)
A3
0 = 0,

(37)

leading to the solution ∂η2
∂τ1

= 0 and accounting to original variables to A0 (τ ) = Ã0
√

ϑd (τ ), with

ϑd (τ ) = 5Pr

5Pr + 2 (3Qi Pr + 7Pi Qr ) Ã2
0τ

. (38)

One can then find the following dissipative modulated dark soliton:

ψ(x, t) = Ã0
√

ϑd (τ )tanh

[

Ã0

√
−Qr

2Pr
ϑd (τ )

(
x − 2τ Ã0

√−Pr Qrϑd (τ )
)]

×

exp

(

i Ã0

√
−Qr

Pr
ϑd (τ )

(
x − 2τ Ã0

√−Pr Qrϑd (τ )
))

. (39)

3.2.2 Validity of results via conserved quantities

When the parameters of Eq. (16) introduced by the dissipation coefficient Pi = Qi = 0, the resulting equation
admits a certain number of conserved quantities among which the norm and the momentum

N =
∫ ∞

−∞
‖ψ‖2dx, M = i

∫ ∞

−∞

(
ψ

∂ψ̄

∂x
− ψ̄

∂ψ

∂x

)
dx (40)

as well as the Hamiltonian

H =
∫ ∞

−∞

(

−P

∥∥∥∥
∂ψ

∂x

∥∥∥∥

2

+ Q

2
‖ψ‖4

)

dx . (41)

The system has constant shape if the norm is invariant as the time evolves. Thus in order to prove that the norm
is the conserved quantity, let us multiply Eq. (16) by ψ̄ and make the difference with the complex conjugation
of the resulting Equation, one has:

∂‖ψ‖2
∂τ

− i Pr
∂

∂x

(
ψ̄

∂ψ

∂x
− ψ

∂ψ̄

∂x

)
+ Pi

(
ψ̄

∂2ψ

∂x2
+ ψ

∂2ψ̄

∂x2

)
+ 2Qi ‖ψ‖4 = 0, (42)
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which for the bright solution can be integrated as

∂

∂τ

∫ ∞

−∞
‖ψ‖2dx + 2

∫ ∞

−∞

[
Pi
2

(
ψ̄

∂2ψ

∂x2
+ ψ

∂2ψ̄

∂x2

)
+ Qi ‖ψ‖4

]
dx = 0. (43)

It then obvious that when Pi = Qi = 0, one has ∂
∂τ

∫∞
−∞ ‖ψ‖2dx = ∂

∂τ
N = 0, and as a consequence, the

norm is time independent and is a conserved quantity.
In order to study the effect of the dissipation of the system equation, let us consider that Pi �= Qi �= 0, By

setting the ansatz

ψ(x, t) = A(t)sech(η(x, t)) exp(iξ(x, t)), (44)

with the constraint ∂(η(x,t))
∂x = μ(t) = A(t)

√
Qr
2Pr

, ∂(ξ(x,t))
∂x = γ (t) = A(t)

√
2Pr Qr
2Pr

, and replacing the variable
of integration x of Eq. (43) by η, one has the following ordinary differential equation:

∂A

∂τ
− Pi

(
1

3

(
∂η

∂x

)2

+
(

∂ξ

∂x

)2
)

A + 2

3
Qi A

3 = 0, (45)

which is identical to Eq. (28) and where its solution can be given by Eq. (30).
For the dark solitary solution, it is important to mention that when one renormalizes Eq. (43) bymultiplying

it by 1 − (‖ψ(x, t)‖/A0(t))2, one obtains after integration the differential equation similar to Eq. (36), by
taking the ansatz ψ(x, t) = A(t) tanh(η(x, t)) exp(iξ(x, t)).

3.2.3 Numerical validation

In this section we present the details and the result of the numerical investigations performed both on cubic
Ginzburg differential equation (16) and on the exact discrete equations given by the set of differential Eq. (1)
. Firstly, in order to verify the validity of the analytical solution (32), we perform here numerical integrations
of the cubic Ginzburg differential equation (16), which is an approximation of the exact equation governing
modulated wave propagation in the network. The fourth- order Runge–Kutta scheme is used with normalized
integration time step �τ = 0.001. The parameters has been chosen as Pr = Qr = 1, Qi = 0.001 and
Pi = −0.001. As initial condition, the dissipative solution (32) is used with the initial time τ0 = 0. Then Fig.
7 shows the propagation and head on collision of two bright solitary signals, with the amplitudes A0 = 0.8
and A0 = 1, initially located at x0 = −20 and x0 = 20, respectively. As time goes on both these initial bright
solitary waves propagate without changes of their initial profiles but with amplitudes which slightly decrease
in propagation. However, these signals survey collusion, confirming that (32) is the dissipative bright soliton.

Next in order to prove that the damped pulse solution (33) is the approximated solution of the set of
ordinary differential equation (4), the numerical investigations are performed here using as above the fourth-
order Runge- Kutta scheme with the normalized integration time step �τ = 0.02 and with parameters:
θ = π/6, k = π/4 leading to ω = 1.4442, μs = 0.002 and εr = 1. In Fig. 8, we have shown the propagation
of the bright modulated signal, that amplitude decreases in propagation due to dissipation.

4 Modulational instability

In this section we study the conditions under which a modulated plane wave propagating in the waveguide
described by the complex Ginzburg Eq. (13) can become unstable against a small perturbation. This equation
has the exact plane wave solution

ψ(x, τ ) = A0 exp i (K0 − 	0τ), K0 = A0

√
Qi

Pi
, 	0 = −

(
Qr − Qi

Pi
Pr

)
A2
0, (46)

with the constraint Pi Qi ≥ 0. Using the procedure outlined in [17,22], the linear stability of this solution can
be investigated by first considering a longitudinal perturbation of the amplitude and by looking for a solution
in the form:

ψ(x, τ ) = [A0 + a(x, τ )] exp i (K0 − 	0τ), (47)
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Fig. 7 Numerical investigation obtained by solving the cubic Ginzburg differential equation (16), showing the propagation and
head collision of two bright solitary waves, obtained for Pr = Qr = 1, Qi = 0.001 and Pi = −0.001. As one can see, both
these two signals survey collision, but their amplitudes decrease in propagation due to dissipation

Fig. 8 Propagation of signal in the network governed by Eq. (4), with parameters: θ = π/6, k = π/4 leading to ω = 1.4442,
μs = 0.002 and εr = 1. As one can see, the signal attenuates in propagation due to dissipation

where a(x, τ ) is a complex function and describes a perturbation which is assumed to be small as compared
to the carrier wave parameter A0. Substituting the solution (47) into Eq. (13) and neglecting nonlinear terms
in a(τ, x) leads to the following evolution equation for a:

i
∂a

∂τ
+ (Pr + i Pi )

(

2i A0

√
Qi

Pi

∂a

∂x
+ ∂2a

∂x2

)

+ 2(Qr + i Qi )A
2
0Re(a) = 0 (48)

where by Re(a), we mean the real part of a. Next, by introducing the Fourier transforms :

â1(t, K ) =
∫ ∞

−∞
a(τ, x) exp(i K x)dx, (49)

one has

i
∂ â1
∂τ

+ (Pr + i Pi )

(

2A0K

√
Qi

Pi
− K 2

)

â1 + 2(Qr + i Qi )A
2
0Re(â1) = 0. (50)
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Fig. 9 a Sign of γ , (red for γ > 0 and black elsewhere), b Sign of Pi Qi (red for Pi Qi > 0 and black elsewhere). The parameters
of the system are: μs = 0.01, εr = 1

Decomposing the perturbation into real and imaginary parts, â1 = u1 + iu2, leads to the following set of
ordinary differential equation in K space ∂t Û = BÛ , where the vector Û and matrix B are defined as

Û =
[
û1
û2

]
, B =

⎡

⎣

(
K 2 − 2A0K

√
Qi
Pi

)
Pi − 2Qi A2

0 Pr
(
K 2 − 2A0K

√
Qi
Pi

)

−Pr
(
K 2 − 2A0K

√
Qi
Pi

)
+ 2Qr A2

0 Pi
(
K 2 − 2A0K

√
Qi
Pi

)

⎤

⎦ . (51)

The eigenvalues of the matrix B, obtained by setting the solution proportional to exp(i	t) are then given by
	 = i�(K ) ± Pr

√
g(K ) with

�(K ) = 2Qi A
2
0 − Pi

(

K − A0

√
Qi

Pi

)2

,

g(k) =
⎛

⎝
(

K − A0

√
Qi

Pi

)2

− (Pr Qi + Qr Pi )

Pr Pi
A2
0

⎞

⎠

2

−
(
Q2

r + Q2
i

)

P2
r

A4
0. (52)

The plane-wave is stable against small modulation if g(K ) > 0 and �(K ) ≥ 0. Otherwise, two complex
numbers 	 = i(�(K ) ± G(K )), with

G(K ) = Pr

⎡

⎢
⎣

(
Q2

r + Q2
i

)

P2
r

A4
0 −

⎛

⎝
(

K − A0

√
Qi

Pi

)2

− (Pr Qi + Qr Pi )

Pr Pi
A2
0

⎞

⎠

2
⎤

⎥
⎦

1/2

(53)

are solutions of Eq. (53) and the perturbation a(X, t) diverges with time leading to an exponential growth of
the amplitude with the growth rate or MI gain described by G(K ). The MI occurs then whether the following
constraint is satisfied

Qr

Pr

⎛

⎝1 + Pr Qi

Pi Qr
−
√

1 + Q2
i

Q2
r

⎞

⎠ A2
0 <

(

K − A0

√
Qi

Pi

)2

<
Qr

Pr

⎛

⎝1 + Pr Qi

Pi Qr
+
√

1 + Q2
i

Q2
r

⎞

⎠ A2
0 (54)

provided that γ = Qr Pr

(

1 + Pr Qi
Pi Qr

+
√

1 + Q2
i

Q2
r

)

> 0 and Pi Qi ≥ 0.
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Fig. 10 Modulational instability (MI) of the plane wave observed for εr = 1 θ = π/6, k = π/6 and μs = 0.001 leading from
the dispersion relation to the frequency of ω = 1.3296 and dissipation coefficient χ = 3.5628 × 10−4. a input signal, b cell
50, c cell 100 and (d) cell 200. The initial amplitude is U0 = 0.5, whereas the modulation rate is M = 1%, and the modulation
frequency is ωm = 0.13
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Fig. 11 Same as in Fig. 10 but with μs = 0.01, leading from the dispersion relation to: ω = 1.3296 and χ = 3.5626 × 10−3
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is the linear operator defined by In order to confirm our analytical findings, the numerical simulations of
the exact discrete Eq. (4) has been performed by using as above the fourth-order Runge-Kutta scheme, with
the time step always kept δτ = 2.10−2. The parameters εr = 1, θ = π/6 and k = π/6 are kept constant while
μs is the tuning parameter. As initial condition, we applied at the entrance (cell 1) the following input signal
voltage:

U1(t) = U0 (1 + Mcos(ωmt)) cos(ωt) (55)

in which Vm designates the amplitude of the unperturbed plane wave with angular frequency ω = 2π f . M and
ωm = 2π fm , respectively, stand for the rate and the angular frequency of the modulation.

The obtained results are shown in Fig. 10 for μs = 0.001 and in Fig. 10 for μs = 0.01. As one can see
for both curves, the modulated signal leads to a train of impulses signals in propagation. However for the case
whose perturbation is more weak ( that is μs = 0.001), the magnitude of the propagating signal increases,
while for the other case μs = 0.01 which is not weak enough, the modulated signal vanishes in propagation.

5 Concluding remarks

We have investigated the damping effects on the propagation of modulated signals of the mechanical network
consisting of discontinuous elastically coupled system oscillators with strong irrational nonlinearities. By
means of the Newton second law, the set of damped discrete equations governing signals generation by the
system have been found. This set of equations have smooth characteristics for weak values of the displacement
Un , or discontinuous characteristicswhen the inclination angle isweak enough. Then, in order to findmodulated
signals as solution of the system equation, the nonlinear cubic complexGuinzburg (NCCG)Equation governing
the small amplitude modulated signals in the network was found from the perturbation method. Moreover, the
time scale perturbation method [4,19] applied on this NCCG equation is used to find the modulated dissipative
pulse and dark solitons as approximated solutions of the network equation. and next we confirmed our results
by using the conserved quantities. Then the numerical investigations performed both on the NCCG Equation
and the exact equation of the network show the decreasing of signals in propagation due to damping. Finally the
conditions to havemodulational instability in the systemwas found and verify through numerical investigations,
from where it appeared that when the dissipation coefficient is weak enough, the small amplitude perturbed
signal decomposed into a train of pulse soliton in propagation, with amplitude larger than the initial signal,
while for large value of the dissipation coefficient, the perturbed modulation signal decomposed into a train
of pulse soliton, but with amplitude which vanishes.
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