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Abstract In the present paper, the problem involving the transformation of incident wave energy by floating
elastic structure situated at a finite distance from an arbitrary bottom topography is studied. Here, both sym-
metric and asymmetric bottom profiles, which are arbitrary in nature, are considered . The successive steps
are used to approximate the uneven bottom profile. The method of step approximation along with matched
eigenfunction expansion is employed by which a system of linear algebraic equations is obtained and solved
to determine the hydrodynamic quantities, namely transmission and reflection coefficients, plate deflection,
strain and shear force on the plate. The present results are validated with the known results of literature for the
case of rigid floating structure over the uniform finite depth as a particular case. The energy identity is obtained
through Green integral theorem and is checked in towards the accuracy of present results. The effect of various
structural and system parameters such as elastic plate length, angle of incidence, depth ratios, distance between
the bottom topography and elastic plate on transmission and reflection coefficients, shear force and strain, plate
deflection is investigated through different graphs and tables. This problem will give useful information to
create the desirable tranquility zone near the seashore.

Keywords Boundary value problem · Elastic plate · Arbitrary bottom · Reflection and transmission
coefficient · Plate deflection · Strain and shear force

1 Introduction

The construction of floating flexible platforms is under consideration in several parts of the world. In the last
few decades, the scientists and engineers have shown interest to analyse the transformation of incident wave
energy by floating elastic structure, which can be modelled as a very large floating structure (VLFS), and
these platforms may meet several wave calamities, ranging from sheltered areas to open areas. The study of
VLFS is important because they can provide an alternate solution of the land scarcity, which is due to urban
development increment in population in many countries. So in these countries, if they have long coastlines,
the space of the ocean can be utilized by constructing such platform. The use of VLFS has been proposed by
scientists and engineers for industrial space, habitation, storage facilities and airports in response to the above
challenges. The advantage of using VLFS is that it is created artificially on the water body, and at the same
time the effect of VLFS on tidal current flows and aquatic habitats is minimum. Hence, the study of scattering
problems involving structural response of the floating flexible platforms is of great interest towards the safety
and stability of these floating platforms. Sahoo et al. [35] have examined that the VLFS can be assumed as
elastic structure because of the significance impact of vibration/localized deflection of the long structure due to
the continuous excitation of wave having small amplitude. The motion of the structure is small as compared to
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its length. The theoretical study of the localization phenomenon of gravity waves by a rough bottom in a one-
dimensional channel was studied by Devillard et al. [8]. The mathematical model for reflection and penetration
of ocean waves into shore fast sea ice was developed by Fox et al. [9]. Further, the response of ice floes to ocean
waves in both cases (infinite as well as the finite depth) was examined by Meylan et al. [29]. Moreover, Wang
and Meylan [46] have investigated the response of linear wave on floating thin plate in the presence of variable
depth with the aid of boundary element method. Several methods have been utilized towards the minimization
of structure responses induced by waves during the last two decades. The review of these methods has been
highlighted by Wang et al. [47]. Tkacheva [39] investigated the behaviour of a floating elastic strip-shaped
plate by using the Wiener–Hopf technique. Further, the scattering of surface water waves by a floating semi-
infinite elastic plate in a finite depth of water was considered by Sahoo et al. [35]. Evans and Porter [10]
analysed the oblique wave scattering caused by a narrow crack in ice sheets floating over finite depth of water
using the eigenfunction expansion method. Lamas-Pardo et al. [23] have discussed the recent developments on
VLFS. Mohapatra and Sahoo [30] studied the performance of submerged structure to minimize the responses
of VLFS. Mondal and Banerjea [31] have derived the results towards the wave energy dissipation by inclined
porous plate below the ice cover. Recently, Cheng et al. [4] studied the interaction of irregular waves with
structure having inclined perforated plates with the aid of hybrid finite element-boundary element method and
eigenfunction matching method in the context of time-domain theory. The problem involving propagation of
oblique incident wave passing through breakwater was examined by Chen et al. [3] with the aid of an adaptive
mesh scheme in boundary element method . Chakrabarti [2] analysed the problem of scattering of surface
water waves by the edge of an ice cover and obtained the explicit solution with a singular, Carleman-type
integral equation. Cho and Kim [5] studied the interaction of oblique incident waves with a horizontal flexible
membrane in a finite depth of water and found that a properly designed horizontal flexible membrane can
be an effective wave barrier. The defection of a large floating flexible platform was determined by Hermans
[12] with the aid of an integro-differential equation. Hermans [13] has examined the problem of interaction of
waves with a rigid or flexible dock with zero drafts. Further, the hydroelastic response of a two-dimensional
very large floating platform to an incident plane wave was investigated for three different cases: shallow water
depth and finite as well as infinite depth by Andrianov et al. [1]. The integral equation approach with the aid
of Green’s integral theorem has been utilized by Maiti et al. [26] to solve the problem of wave interaction with
thin vertical plate submerged beneath the ice cover. The wave generation problem for viscous fluid of finite
depth due to an axisymmetric initial surface disturbance was investigated by Kundu et al. [22]. The problem
involving hydrodynamic interaction between two ships advancing in waves was discussed by Yuan et al. [50]
with the aid of rapid method. Further, expansion formulae in wave structure interaction problems were derived
by Manam et al. [27]. The problem involving scattering and radiation of surface water waves by a finite dock
floating over an asymmetric rectangular trench-type was analysed by Choudhary et al. [6] with the aid of
eigenfunction expansion method along with boundary element method. Further, the problem of wave structure
interaction with thick vertical barrier over an arbitrary seabed was analysed for its solution with the help of
coupled eigenfunction expansion method by Choudhary et al. [7]. Moreover, in the case of step-type bottom
topography, oblique flexural gravity-wave interaction in the presence of a compressive force was investigated
by Karmakar et al. [16] based on the linearized water-wave theory. The problem involving oblique surface
gravity wave scattering by a floating flexible porous plate was investigated by Koley et al. [19] with the aid of
integral equation approach. The problem of mitigation of structural responses of a very large floating structure
in the presence of vertical porous barrier was studied by Singla et al. [37]. A new model was presented for the
propagation of monochromatic surface waves over a region of arbitrary bottom topography by O’Hare et al.
[32] where the wave fields on either side of each step were related by a transfer matrix and the propagation
of waves along the shelf between adjacent steps was described by a rotation matrix. Further, the comparisons
between two models for surface-wave propagation over rapidly varying bottom topography, one based on the
extended-mild-slope equation and the other on the successive-application-matrix model, was described by
O’Hare et al. [33]. An indirect eigenfunction marching method (IEMM) was developed by Tsai et al. [41] to
provide step approximations for water-wave problems where they shown that the solutions obtained by the
IEMM converge very well to Roseau’s analytical solutions for both mild and steep curved bottom profiles.
Further, the problem of water-wave scattering by steep slopes was studied by Tsai et al. [42] with the extension
ofMiles’s variational formulation. In the same context, for simulating the propagation of small-amplitudewater
waves over variable bathymetry, Tsai et al. [43] utilized the consistent coupled-mode system (CCMS) and the
eigenfunction matching method (EMM). For the CCMS, a bottom-sloping mode is coupled in the mild-slope
equation with evanescent modes, and for the EMM, the bottom profile is approximated in terms of successive
flat shelves separated by abrupt steps. Moreover, the problem involving interaction of waves with tension leg
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structures over uneven bottoms was studied by Tsai et al. [44]. Wave reflection by a submerged rectangular
breakwater with two scour trenches is explored by Liu et al. [25] with the aid of modified mild-slope equation.
Linear long-wave reflection by a rectangular obstacle with two scour trenches of power function profile is
explored by Xie et al. [48]. An exact analytic solution to the modified mild-slope equation (MMSE) in terms
of Taylor series for waves propagating over an asymmetrical trench with various shapes was developed by Xie
et al. [49]. The problem of propagation of obliquely incident surface water waves involving an asymmetric
rectangular trench in a channel of finite depth was examined for its solution by Kaur et al. [18]. The problem
involving exciting forces for an arrangement of two coaxial vertical cylinders, i.e. a riding porous cylinder
and a submerged bottom-mounted solid rigid cylinder, is investigated by Sarkar et al. [36]. Recently, oblique
wave scattering and trapping by a partial porous breakwater in the presence of seabed undulation are studied
by Tabssum et al. [38]. The problem of scattering of obliquely incident gravity waves by a horizontal floating
flexible porous plate in the water of finite depth having a variable bottom bed was studied by Koley [20] where
the coupled eigenfunction expansion-boundary element method is used for the solution purpose. In the same
direction, the problem involving the performance of a submerged flexible porous membrane placed at a finite
distance away from a partially reflecting seawall was investigated by Koley et al. [21] where the solution of
the problem was handled by dual boundary element method. Furthermore, the effect of an undulated bottom
topography on the radiation of water waves by a floating rectangular buoy was analysed by Trivedi [40].
In the context of Bragg resonance, the problem involving Bragg resonance due to scattering of long gravity
waves by an array of submerged trenches in the presence of the sloping sea bed was discussed by Kar et al.
[15]. Further, the effect of Bragg resonance due to the scattering of surface waves by an array of trenches or
breakwaters irrespective of the presence of the floating semi-infinite plate was studied by Kar et al. [14]. Also,
the Bragg reflections of oblique water waves by periodic surface-piercing structures over periodic bottoms are
investigated by Tseng et al. [45]. In the above studies, the study of flexible plate over uneven bottom is limited.
So in the present work, an effort has been made towards the study of transformation of incident wave energy by
an elastic plate situated at a finite distance from an arbitrary bottom topographywith the aid step approximation
method alongwith eigenfunction expansionmethod. The values of hydrodynamic quantities, namely reflection
and transmission coefficients and deflection of plate are calculated for various values of structural and system
parameters such as length of elastic plate, water depth ratios, angle of incidence, distance between the elastic
plate and bottom topography. The present results have been validated with the known results in the literature
for the case of rigid floating structure. The energy identity is obtained through Green integral theorem and is
checked in towards the accuracy of present results.

2 Mathematical formulation of the problem

The interactionofwaterwavewith an elastic plate,which is placed at afinite distance frombottom topography, is
examined for its solution in three-dimensional space. Here, the bottom topography is considered to be arbitrary
in nature. In this co-ordinate system, y-axis is positive downward and xz− horizontal plane represents the
undisturbed free surface. The floating elastic plate placed at the position y = 0, b ≤ x ≤ c has finite length
(c− b) and negligible thickness. Due to the infinity long floating structure in the z-direction, the characteristic
behaviour of the structure will remain the same along z-axis. Here, y = H(x) represents the arbitrary bottom
profile, which is asymmetric in nature. Here H(x) = h(x), −l ≤ x ≤ l with l < b and H(x) = h1, x ≤ −l
and H(x) = ĥ1, x ≥ l (see Fig. 1). The depth h1 before the profile and depth ĥ1 after the uneven bottom
are not equal. When h1 = ĥ1, i.e. the profile is symmetric. Here, to approximate this profile m − 1 number
of steps are considered in upward direction as well as in downward direction. However, it is not required
to consider the equal number of steps in both directions. Hence, in the interval in −l ≤ x ≤ 0, m − 1
shelves are created, which are given by −ai ≤ x ≤ −ai−1 with depth h(m+1)−i , i = 1, 2, . . . ,m − 1.
Similarly, in the interval 0 ≤ x ≤ l, m − 1 shelves are created, which are given by ai−1 ≤ x ≤ ai with
depth hm+i , i = 1, 2, . . . ,m − 1 where l = am−1. So, in the interval [−l, 0], there are m − 1 steps at
x = −ai , i = 1, 2, . . . ,m − 1, and in the interval [0, l] there are m − 1 steps at x = ai , i = 1, 2, . . . ,m − 1
(see Fig. 1). Hence, the whole fluid domain can be composed of 2m + 2 regions, which are given as R1: {
−∞ ≤ x ≤ −l = −am−1, 0 ≤ y ≤ h1}; region R2 : { −l = −am−1 ≤ x ≤ −am−2, 0 ≤ y ≤ h2};
regions R j ( j = 3, 4, . . .m) are {−am+1− j ≤ x ≤ −am− j , 0 ≤ y ≤ h j , j = 3, 4, . . . ,m}; regions
R j ( j = m+1,m+2, . . . 2m−1) are {a j−(m+1) ≤ x ≤ a j−m, 0 ≤ y ≤ h j , j = m+1,m+2, . . . , 2m−1};
region R2m is {am−1 = l ≤ x ≤ b, 0 ≤ y ≤ h2m = ĥ1}; region R2m+1 is {b ≤ x ≤ c, 0 ≤ y ≤ ĥ1} and the
last region R2m+2 is {c ≤ x ≤ ∞, 0 ≤ y ≤ ĥ1} (see Fig. 1). In Fig. 1,
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Fig. 1 Schematic of the step approximation

⎧
⎪⎨

⎪⎩

hi ≥ hi+1, i = 1, 2, . . .m − 1
hi = hi+1, i = m
hi ≤ hi+1, i = m + 1,m + 2, . . . 2m − 1.

(1)

For an inviscid and incompressible fluid where the fluid motion is considered to be irrotational and simple
harmonic in time t , the incident velocity potential is given by:

�inc(x, y, z, t) = �{φinc(x, y)eι(νz−ωt)}, (2)

where φinc(x, y) = cosh k1,0(y − h1)

cosh k1,0h1
eιk̃1,0 , (3)

where �{.} denotes the real part, ω is the angular frequency, θ is the angle of incidence.
Here, x− component of the incident wave is given by:

k̃1,0 = k1,0 cos θ = +
√

(k1,0)2 − ν2 (4)

and z− component of the incident wave is given by

ν = k1,0 sin θ. (5)

Further, k1,0 is the unique positive root of the transcendental equation in k as given by

K − k1,0 tanh k1,0h1 = 0. (6)

Now, in each region R j , ( j = 1, 2, . . . 2m + 2), the velocity potential can be written as:

� j (x, y, z, t) = �{φ j (x, y)e
−ιωt+ινz}, j = 1, 2, 3, . . . , 2m + 2. (7)

Here, in each fluid region R j , j = 1, 2, . . . , 2m + 2, φ j (x, y) satisfies

∂2φ j

∂x2
+ ∂2φ j

∂y2
− ν2φ j = 0. (8)

In open water region, the linearized free surface condition is given by:
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∂φ j

∂y
+ Kφ j = 0, on y = 0, − l < x < b, and c < x < ∞, (9)

where j = 1, 2, . . . 2m, 2m + 2 and K = ω2/g and g is an acceleration due to gravity.
The boundary condition on the floating elastic plate is given by (ref. Mandal et al. [28]):

[

D

(
∂2

∂x2
− ν2

)2

+ 1 − εK

]
∂φ2m+1

∂y
+ Kφ2m+1 = 0 on y = 0, b < x < c, (10)

where D = E I/ρg is the flexural rigidity of the plate with E is the effective Young’s modulus of the elastic
plate, I = d3/12(1 − ν20 ) with ν0 as Poisson’s ratio, d is the thickness of the plate, ε = ρsd/ρ with ρs is the
density of the elastic plate and ρ is the density of the fluid. Moreover, the condition (10) will give rise to the
free surface condition (9) when D = 0, ε = 0.

Since, the elastic plate is freely floating, hence at the edges of the plate, the shear force and bendingmoment
will vanish which is given by:

(
∂2

∂x2
− ν0ν

2
)

∂φ2m+1

∂y
→ 0, and

∂

∂x

(
∂2

∂x2
− (2 − ν0)ν

2
)

∂φ2m+1

∂y
→ 0 at x = b, (11)

(
∂2

∂x2
− ν0ν

2
)

∂φ2m+1

∂y
→ 0, and

∂

∂x

(
∂2

∂x2
− (2 − ν0)ν

2
)

∂φ2m+1

∂y
→ 0 at x = c. (12)

In region R1; φ1 satisfies

∂φ1

∂y
= 0 on y = h1, −∞ < x ≤ −l = −am−1, (13)

∂φ1

∂x
= 0 at x = −am−1, h2 ≤ y ≤ h1. (14)

In each region R j where j = 2, 3, . . . ,m, φ j satisfies

∂φ j

∂y
= 0 on y = h j , −am+1− j ≤ x ≤ −am− j , (15)

∂φ j

∂x
= 0 on x = −am− j , h j+1 ≤ y ≤ h j . (16)

In each region R j where j = m + 1,m + 2, . . . , 2m − 1, 2m, φ j satisfies

∂φ j

∂y
= 0 on y = h j , a j−(m+1) ≤ x ≤ a j−m, (17)

∂φ j

∂x
= 0, on x = a j−(m+1), h j−1 ≤ y ≤ h j wi th am−1 = l, am = b, ĥ1 = h2m . (18)

In region R2m+1, φ2m+1 satisfies

∂φ2m+1

∂y
= 0 on y = ĥ1, b < x ≤ c. (19)

In region R2m+2, φ2m+2 satisfies

∂φ2m+2

∂y
= 0 on y = ĥ1, c < x < ∞. (20)

In regions R1 & R2m+2, the scattered velocity potential φ1(x, y) and φ2m+2(x, y), respectively, satisfies
the far-field conditions:

φ1(x, y) →
(
eιk̃1,0(x+l) + Re−ιk̃1,0(x+l)

) cosh k1,0(y − h1)

cosh k1,0h1
as x → −∞, (21)
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and φ2m+2(x, y) → T eιk̃2m,0(x−l) cosh k2m,0(y − ĥ1)

cosh k2m,0ĥ1
as x → ∞, (22)

where

k̃2m,0 = +
√

(k2m,0)2 − ν2 (23)

and k = k2m,0 is the unique positive root of the transcendental equation

k2m,0 tanh k2m,0ĥ1 = K . (24)

Here, T and R are the unknown complex constants associated with the amplitudes of transmitted and reflected
waves, respectively.

3 Method of solution

To solve the associated mixed boundary value problem involving Eqs. (8)–(22), matched eigenfunction expan-
sion method is applied. In each region R j , the velocity potential φ j , ( j = 1, 2, . . . 2m + 2) is given by
Havelock’s expansion [11] formulas as

φ1(x, y) =
(
eιk̃1,0(x+l) + R e−ιk̃1,0(x+l)

)
ψ1,0(y) +

∞∑

n=1

Ane
k̃1,n(x+l)ψ1,n(y),

−∞ < x ≤= −am−1 = −l, 0 < y < h1, (25)

φ j (x, y) =
∞∑

n=0

(
Bj,ne

k̃ j,n(x+am+1− j ) + C j,ne
−k̃ j,n(x+am− j )

)
ψ j,n(y),

j = 2, 3, . . . ,m and − am+1− j ≤ x ≤ −am− j , 0 < y < h j , (26)

φ j (x, y) =
∞∑

n=0

(
Bj,ne

k̃ j,n(x−a j−(m+1)) + C j,ne
−k̃ j,n(x−a( j−m))

)
ψ j,n(y),

j = m + 1,m + 2 . . . , 2m − 1, 2m and a j−(m+1) ≤ x ≤ a j−m, 0 < y < h j , (27)

φ2m+1(x, y) =
∑

n=−2,−1

(
B2m+1,n e p̃n(x−b) + C2m+1,n e− p̃n(x−c)

)
g2m+1,n(y)

+
∞∑

n=0

(
B2m+1,n e p̃n(x−b) + C2m+1,n e− p̃n(x−c)

)
g2m+1,n(y),

b ≤ x ≤ c, 0 < y < ĥ1, (28)

φ2m+2(x, y) = T eιk̃2m,0(x−c)ψ2m,0(y) +
∞∑

n=1

Dn e−k̃2m,n(x−c)ψ2m,n(y),

c ≤ x < ∞, 0 < y < ĥ1, (29)

ψ j,n(y) = cos k j,n(y − h j )

cos k j,nh j
, j = 0, 1, 2, 3, . . . , 2m and n = 1, 2, . . . , (30)

g2m+1,n(y) = cos pn(y − ĥ1)

cos pnĥ1
, n = −2,−1, 0, 1, 2, 3, . . . . (31)

with relation

k̃ j,0 = ιk̃ j,0 j = 2, 3, . . . 2m

and

p̃0 = ι p̃0
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Also,

k̃ j,0 = +
√

(k j,0)2 − ν2, k̃ j,n = +
√

(k j,n)2 + ν2, (32)

where k j,0 are the positive real roots of the transcendental equation

k j,0 tanh k j,0h j = K , j = 1, 2, . . . 2m, (33)

and k j,n are the real roots of the transcendental equation

k j,n tan k j,nh j = −K , j = 1, 2, . . . 2m, n = 1, 2, . . . (34)

Also, p̃0 = +√
(p0)2 − ν2 where p0 is the positive real root of the following transcendental equation in p in

plate covered region:

(Dp4 + 1 − εK )p tanh pĥ1 = K , (35)

and p̃n = +√
(pn)2 + ν2 where pn for n = −2,−1 are complex conjugate roots having positive real parts

and pn for n = 1, 2, . . . , are the real roots of the dispersion relation over the plate covered region

(Dp4 + 1 − εK )p tan pĥ1 = −K . (36)

In above expansions (25)–(29), T, R, An, Bj,0, Bj,n, C j,0, C j,n, Dn, j = 2, 3, . . . , 2m+1, n = 1, 2, 3 . . .
and Bn,2m+1, Cn,2m+1, n = −2,−1 are unknown complex constants to be determined.

Define hmin
j = min(h j , h j + 1); amd hmax

j = max(h j , h j + 1); j = 1, 2, . . . 2m. Here, h2m = h2m+1 =
h2m+2.

The matching conditions, i.e. continuity of pressure and velocity along each interface,
⎧
⎪⎨

⎪⎩

0 < y < hmin
j ; x = −am− j , j = 1, 2, . . . ,m

0 < y < hmin
j ; x = a j−m, j = m + 1,m + 2, . . . , 2m

0 < y < ĥ1; x = c

(37)

are given by

φ j = φ j+1, (38)
∂φ j

∂x
= ∂φ j+1

∂x
. (39)

Further, the orthogonality of eigenfunctions is used to obtain the following equations. For j = 1, 2, 3, . . .m
and n = 0, 1, 2, . . . , N

∫ hmin
j

0
φ j (−am− j , y)ψ j,n(y) dy =

∫ hmin
j

0
φ j+1(−am− j , y)ψ j,n(y) dy,

∫ hmax
j

0
φ j x (−am− j , y)ψ j+1,n(y) dy =

∫ hmin
j

0
φ( j+1)x (−am− j , y)ψ j+1,n(y) dy,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(40)

For j = m + 1,m + 2, . . . 2m − 1, 2m, 2m + 2 and n = 0, 1, 2, . . . , N

∫ hmin
j

0
φ j (a j−m, y)ψ j+1,n(y) dy =

∫ hmin
j

0
φ j+1(a j−m, y)ψ j+1,n(y) dy,

∫ hmax
j

0
φ j x (a j−m, y)ψ j,n(y) dy =

∫ hmin
j

0
φ( j+1)x (a j−m, y)ψ j,n(y) dy,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(41)

Here, am = b, am+1 = c and ψ2m+1,n(y) = ψ2m+2,n(y) = ψ2m,n(y) are considered.
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Substituting Eq. (28) in the free edge conditions given by Eqs. (11) and (12) gives rise to the following set of
four equations

p0
(
( p̃0)

2 + ν0ν
2)

(
Bj,0 + c0, j e

−iι p̃0(b−c)
)
tanh p0ĥ1 +

∞∑

n=−2,−1,n=1

pn
(
( p̃n)

2 − ν0ν
2)

(
Bj,n + C j,ne

− p̃n(b−c)
)
tan pnĥ1 = 0, (42)

i p̃0 p0
(
( p̃0)

2 + (2 − ν0)ν
2)

(
Bj,0 − C j,0e

−ι p̃0(b−c)
)
tanh p0ĥ1 +

∞∑

n=−2,−1,n=1

p̃n pn
(
( p̃n)

2 − (2 − ν0)ν
2)

(
Bj,n − C j,ne

− p̃n(b−c)
)
tan pnĥ1 = 0, (43)

p0
(
( p̃0)

2 + ν0ν
2)

(
Bj,0e

i p̃0(c−b) + C j,0

)
tanh p0ĥ1 +

∞∑

n=−2,−1,n=1

pn
(
( p̃n)

2 − ν0ν
2)

(
Bj,ne

p̃n(c−b) + C j,n

)
tan pnĥ1 = 0, (44)

i p̃0 p0
(
( p̃0)

2 + (2 − ν0)ν
2)

(
Bj,0e

ι p̃0(c−b) − C j,0

)
tanh p0ĥ1 +

∞∑

n=−2,−1,n=1

p̃n pn
(
( p̃n)

2 − (2 − ν0)ν
2)

(
Bj,ne

p̃n(c−b) − C j,n

)
tan pnĥ1 = 0. (45)

In these Eqs. (40)–(45), the series is truncated up to N (say). Further Eqs. (25)–(29) produce a system of
(4m+2)N+(4m+6) linear algebraic equationswith (4m+2)N+(4m+6) unknowns, which need to be solved
to get the unknowns R, An, Bj,0, Bj,n, C j,0, C j,n, Dn, T, B2m+1,−2,C2m+1,−2, B2m+1,−1,C2m+1,−1 where
j = 2, 3, . . . , 2m + 1 and n = 1, 2, . . . , N .

Once, the system of equations is solved, we can get φ2m+1, and hence, we can determine the important
quantities such as deflection, strain and shear force as given by the following relations.

Plate deflection: The deflection of elastic plate at y = 0, b < x < c is given by (see Singla et al. [37]

η2m+1 = −ιω

g
φ2m+1

∣
∣
∣
∣
y=0

. (46)

Strain and Shear force: On the plate surface, the non-dimensional surface strain St and shear force S f are given
by (see Singla et al. [37])

St = ε

2ω

∣
∣
∣
∣
∂3φ2m+1

∂x2∂y

∣
∣
∣
∣
y=0

, (47)

S f = D

ĥ1ω

∣
∣
∣
∣
∂4φ2m+1

∂x3∂y

∣
∣
∣
∣
y=0

. (48)

4 Results and discussion

In this section, the hydrodynamic quantities, namely reflection coefficient (|R|), transmission coefficient (|T |),
plate deflection �(η2m+1), strain (St ) and shear force (S f ), experienced by the elastic plate are determined for
various values of system parameters. Here, all the structural and system parameters are non-dimensionalized
by using length scale h1. The non-dimensional parameters are given by flexural rigidity D/h14 , thickness of
the plate ε/h1, wavelength of incident wave λ = 2π/k0, â j = a j/h1, j = 1, 2, . . .m − 1, b̂ = b/h1, ĉ =
c/h1, K1 = Kh1 and Hj = h j/h1, j = 1, 2, . . . 2m are used for numerical computations.

The values of D/h14 = 10, ε/h1 = 0.01, l̂ = âm−1 = 1.0, b̂ = 2.0, ĉ = 3.0, H1 = 1.0, H2m = 0.7,
Hm = Hm+1 = 1.2 (since Hm ≤ H2m) and θ = π/4 are fixed in this study unless otherwise stated. The other
depth ratios Hj , ( j = 2, 3, . . . ,m − 1,m + 2,m + 3, . . . 2m − 1) are calculated using different formulas
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Fig. 2 Asymmetric parabolic hump bottom profile

Table 1 Numerical values of |R| for different values of N with fixed value of m = 220

K1 |R|(N = 1) |R|(N = 5) |R|(N = 10) |R|(N = 15) |R|(N = 20) |R|(N = 25)

0.2 0.08236 0.08236 0.07697 0.07880 0.07865 0.07875
0.4 0.17956 0.17956 0.16988 0.17324 0.17325 0.17333
0.6 0.27929 0.27929 0.26672 0.27204 0.27194 0.27199
0.8 0.35461 0.35461 0.34079 0.34739 0.34748 0.34740
1.0 0.40508 0.40508 0.39122 0.39829 0.39857 0.39839
1.2 0.43889 0.43889 0.42585 0.43262 0.43288 0.43271
1.4 0.46369 0.46369 0.45193 0.45760 0.45777 0.45769
1.6 0.49099 0.49099 0.48040 0.48485 0.48461 0.48477
1.8 0.54535 0.54535 0.53585 0.53905 0.53879 0.53911
2.0 0.64256 0.64256 0.63807 0.64114 0.64013 0.64074

depending upon the type of irregular topography. Several computational results are performed to analyse the
effect of various system parameters, but in the subsequent section, few results are shown to avoid the similar
behaviour of figures.

4.1 Convergence study for m and N

The convergence on m (number of successive steps either in downward direction or in upward direction) and
N (number of evanescent modes) is examined for symmetric parabolic hump type bottom profile (see Fig. 2)
given by the following equation:

H(x) =

⎧
⎪⎨

⎪⎩

h1, x < −l,

h(x) = hc
(
1 − x2

α2

)
, −l ≤ x < l,

ĥ1, l ≤ x,

(49)

where α = a√
h1
hc

−1
. After approximating the parabolic hump bottom profile using steps, we get hc = hm .

For convergence of N , we fix m = 220 and the values of |R| are determined against K1 for various values
of N = 1, 5, 10, 15, 20 and 25 (see Table 1). The table shows that the same values of |R| are obtained up to
three decimal places for N = 15, 20 & 25 for fixed values of K1. Hence, N = 15 is considered throughout
the study.

For convergence of m, the number of evanescent modes N is fixed as 15 and |R| & |T | are calculated for
different values of m = 40, 130, 220, 280 and 300 (see Table 2). Table 2 shows that same values of |R| and
|T | are obtained up to three decimal places for m = 220, 280 & 300 for fixed values of K1. Hence, for all
numerical calculations related to parabolic bottom,m = 220 and N = 15 are considered throughout this study
unless otherwise stated.
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Fig. 4 Comparison: |R| and |T | versus K1 when we fixed Hj = 1, j = 1, 2, . . . , 2m.

4.2 Validation

(a) Rigid dock over flat bottom topography

To validate the present results with Linton [24] for a rigid dock over flat bottom (ref. Fig. 3), the depth ratios
Hj = 1 ( j = 1, 2, 3, . . . , 2m), b̂ = 1.0, ĉ = 2.0, D/h41 = 1010 and θ = π/4 are considered in the given
problem. The results are well matched (Fig. 4 and Table 3) with the results by Linton [24] who used the
modified residue calculus technique for this particular case. Here also we have validated the present proposed
method with the results of Kaur et al. [17] in the case of rigid dock over flat bottom as a particular case of
convex parabolic bottom topography who utilized the method of step approximation to solve the problem.

(b) Elastic plate over flat bottom topography

Further, to validate the present results with Herman [13] for a elastic thin structure over flat bottom, the depth
ratios Hj = 1 ( j = 1, 2, 3, . . . , 2m), L = b̂ − ĉ = 30 (length of elastic plate), D/h41 = 10−3 and θ = 0o are
considered in the present problem. Figure 5 shows that results are in good agreement with the results produced
by Herman [13] where the Green function approach was utilized to obtain the solution.

(c)Wave scattering over arbitrary bottom topography

Here, the proposed method is applied to solve the scattering of water waves over the undulated bottom profile
in the absence of elastic plate. We consider a particular case of arbitrary bottom profile as discussed in Porter
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Fig. 5 |R| and |T | versus λ/L for elastic plate over flat bottom topography
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Fig. 6 |R| versus k1,0h1 for undulated bottom profile in case of l/(hm − h1) = 8 and hm/h1 = 2/5.

and Porter [34] and Tsai et al. [44], which is given by

H(x) =

⎧
⎪⎨

⎪⎩

h1, x ≤ −l

h(x) = hm − (hm − h1)
(
1 − 3

( l−x
l

)2 + 2
( l−x

l

))
, −l ≤ x ≤ 0,

hm, 0 ≤ x,

(50)

Here, l is the length of the undulated bottom. We have taken m = 60 to approximate the bottom profile.
Figure 6 shows that the values for |R| are well matched with the results obtained by Porter and Porter [34]

and results obtained by Tsai et al. [44] in the absence of elastic plate.

4.3 Energy balance relation

The numerical values of |R| and |T | obtained by the present method are found to validate (see the last column
of Table 2) the energy balance relation as given by

|R|2 + γ |T |2 = 1, (51)

where γ =
(

p0 p̃0

k1,0(k̃1,0)

)
2p0ĥ1 + sinh 2p0ĥ1
2k1,0h1 + sinh 2k1,0h1

(
cosh2 k1,0h1

cosh2 p0ĥ1

)

.

This validation indicates that the numerical results obtained here are accurate.
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Table 2 |R| and |T | versus K1 for N = 20 and different values of m

K1 m |R| |T | |R|2 + γ |T |2 = 1

0.3 40 0.06899 0.99231 0.999907
130 0.08123 0.99402 0.999950
220 0.08652 0.99624 0.99988
280 0.08568 0.99605 0.999990
300 0.08640 0.99592 0.999850

0.5 40 0.21899 0.99231 0.999907
130 0.23658 0.99680 0.999907
220 0.24632 0.98351 0.99965
280 0.24582 0.99351 0.999907
300 0.24496 0.99271 0.999907

1.0 40 0.35615 0.89635 0.999868
130 0.37963 0.92564 0.999867
220 0.39857 0.91884 1.00132
280 0.39856 0.91764 0.999867
300 0.39796 0.91833 1.00312

Table 3 Comparison of the numerical values of |R| and |T | for different K1.

Present results Linton(2001) for θ = π/4

K1 |R| |T | |R| |T |
0.2 0.5780 0.8160 0.5781 0.8160
0.4 0.7505 0.6608 0.7506 0.6608
0.6 0.8478 0.5303 0.8479 0.5302
0.8 0.9069 0.4213 0.9070 0.4211
1.0 0.9436 0.3310 0.9437 0.3307
1.2 0.9664 0.2570 0.9665 0.2566
1.4 0.9803 0.1972 0.9805 0.1966
1.6 0.9887 0.1495 0.9889 0.1489
1.8 0.9936 0.1122 0.9938 0.1115
2.0 0.9965 0.0833 0.9966 0.0826

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Fig. 7 |R| and |T | versus k1,0h1 for flat bottom and parabolic bottom topography

4.4 Effect of various system parameters

We have plotted |R| and |T | against k1,0h1 in Fig. 7 for θ = π/4 to observe the effect of arbitrary bottom (in
particular, symmetric parabolic hump here) as compared to flat bottom (Hj = 1, j = 0, 1, 2, . . . 2m + 1) in
the presence of floating elastic plate. It is observed that more energy is reflected back due to the presence of
parabolic hump, resulting in less energy to be transmitted towards lee side of floating elastic structure. As a
consequence, floating structure as well as sea shore is protected, which accomplish the aim of this study.
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Fig. 8 |R| and |T | versus k1,0h1 for various values of length of elastic plate ĉ − b̂ = 1.0, 2.0, 3.0 and fixed value of θ = 20o
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Fig. 9 |R| and |T | versus k1,0h1 for various values of gap b̂ − l̂ = 0.5, 0.7, 0.9 between the hump and elastic plate and fixed
value of θ = 30o

The effect of length of elastic plate (ĉ− b̂) on |R| and |T | versus k1,0h1 is investigated in Fig. 8. Here, the
values of ĉ− b̂ = 1.0, 2.0, 3.0 are taken to analyse the effect. From this figure, it is viewed that for long waves
corresponding to small wave numbers k1,0h1, the flow is uniform along the horizontal direction by which there
is a small amount of wave reflection by the horizontal plate for long waves. This is due to the reason that
the plate appears to be transparent to the incident waves implying almost zero reflection for long waves. That
means |R| tends to zero and |T | approaches one as k1,0h1 vanishes, which means that a major part of the wave
energy for long waves is transmitted into the plate covered region. On the other hand, for shorter waves, i.e.
larger values of k1,0h1, |R| become almost one, which happens due to the fact that shorter waves confined
near the free surface and almost reflected back by the floating structure. This phenomenon is also observed
by Sahoo et al. [35]. Further, it is clear that as the value of plate length increases, the value of |R| increases,
whereas |T | decreases for the same. This is due to the fact that longer the length of elastic plate produces more
reflection hence less transmission.

|R| and |T | versus k1,0h1 for various values of the gap between bottom topography and elastic plate
(b̂− l̂ = 0.5, 0.7, 0.9) are plotted in Fig. 9. It is observed that as the gap between plate and hump type bottom
topography increases, the behaviour of |R| and |T | versus k1,0h1 is same as mentioned in Fig. 8.

The effect of water depth Hm = Hm+1 on |R| and |T | as a function of incident wave number k1,0h1 is
examined in Fig. 10. It is noticed that for lower values of depth (i.e. higher the hump height) Hm = Hm+1 = 0.5
as compared to Hm = Hm+1 = 0.6, 0.7 produces more reflection, consequently, less transmission for the same
which is obvious due to the behaviour of the physical problem.

The effect of angle of incidence (θ ) on |R| and |T | as a function of incident wave number k1,0h1 is shown in
Fig. 11. Here the values of θ = 10o, 20o, 40o, 55o and 70o are considered. It is observed that for lower values of
angle of incidence, less reflection occurs as compared to higher values of angles of incidence. Moreover, more
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Fig. 10 |R| and |T | versus k1,0h1 for various values of depth Hm = Hm+1 = 0.5, 0.6, 0.7 of water and fixed value of θ = 20o
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Fig. 11 Effect of angle of incidence (θ) on |R| and |T | versus k1,0h1

energy is reflected back as the angle of incidence is increased; consequently, less energy will be transmitted
to the lee side of the structure.

The variation in |R| and |T | as a function of k1,0h1 for various values of flexural rigidity (D/h41 =
10, 102, 104) is plotted in Fig. 12. From this figure, it is observed that as the value of D/h41 increases |R|
increases whereas |T | decreases for the same. This is due to the reason that for higher values of flexural
rigidity, elastic plate becomes more rigid; hence, most of the waves which concentrate near the free surface
are reflected back, and in the process, less incident wave energy is transmitted below the plate.

In Fig. 13, the plate deflection (�(η2m+1)) as a function of x/h1 is plotted for various values of flexural
rigidity (D/h41 = 10, 102, 103). From the figure, it is observed that the plate deflection is less for higher values
of the flexural rigidity due to the fact that higher the flexural rigidity implying more rigidity of the plate which
does not deform very much.

In Fig. 14, the plate deflection (�(η2m+1)) as a function of x/h1 is plotted for various values of water
depth Hm = Hm+1. From the figure, it is observed that the plate deflection is less for lower values of depth
(i.e. higher the hump height) Hm = Hm+1 = 0.5 as compared to Hm = Hm+1 = 0.6, 0.7, which is due to the
fact that higher the value of hump height produces more reflection and deflection of the plate decreases for the
same.

In Fig. 15, the effect of angle of incidence (θ ) on the plate deflection (�(η2m+1)) is depicted. Here, the
values of θ = 30o, 50o and 70o are taken to analyse the effect. From this figure, it is clear that with respect to
the angle of incidence, the deflection of the plate decreases is due to the fact that for higher values of angle of
incidence, more energy is reflected back and hence less transmission to lee side; consequently, less deflection
is experienced by the elastic plate.
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Fig. 12 Effect of flexural rigidity D/h41 on |R| and |T | versus k1,0h1
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Fig. 13 Variation of dimensionless plate deflection�(η2m+1) for various values of D/h41 and fixed value of k1,0h1 = 1.0, θ = 40o
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Fig. 14 Variation of dimensionless plate deflection �(η2m+1) for various values of Hm = Hm+1 and fixed value of k1,0h1 =
1.0, θ = 40o

Figure 16 shows the variation of strain (St ) along the plate length for different values of rigidity of plate. It
is observed that the strain is zero at the edges of the elastic plate which is in agreement with the assumption of
free edge conditions of the floating structure. Further, it is observed that strain decreases as the flexural rigidity
of the plate increases. Also, it is noticed that near the edges of the plate, strain increases very rapidly because
the local effect of the evanescent modes is dominating near the edges.
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Fig. 15 Variation of dimensionless plate deflection �(η2m+1) for various values of θ and fixed value of k1,0h1 = 1.0
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Fig. 16 Effect of flexural rigidity on strain (St ) for fixed value of k1,0h1 = 0.2, θ = 0o
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Fig. 17 Effect of flexural rigidity on shear force (S f ) for fixed value of k1,0h1 = 0.2, θ = 0o

The effect of plate rigidity on shear force (S f ) is shown in Fig. 17. It is noticed that at the edges of the
floating plate shear force is zero as assumed in the present studywhich reflects the accuracy of the computational
results. Also, this figure shows that as the rigidity of the plate increases, the less shear force is experienced by
the elastic plate.

5 Conclusion

In this paper, the problem involving the transformation of incident wave energy by floating elastic structure,
which is situated at a finite distance from an arbitrary bottom topography, is investigated. The method of step
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approximation along with matched eigenfunction expansion is utilized to solve the mixed boundary value
problem. The present results have been validated with (i) Kaur et al. [17] and Linton [24] for the case of rigid
floating structure over uniform flat bottom (ii) Hermans [13] in case of elastic plate over uniform flat bottom
and (iii) Porter and Porter [34] and Tsai et al. [44] in case of undulated bottom. The effects of (i) length of plate,
(ii) angle of incidence, (iii) water depth and (iv) distance between bottom topography and the elastic plate on
reflection and transmission coefficients are analysed through various graphs. It has been observed that longer
the length of elastic plate produces more reflection hence less transmission. Also, it is noticed that the lower
values of depth (i.e. higher the hump height) help to produce more reflection; consequently, less transmission
for the same is due to the behaviour of the physical problem. Moreover, more energy is reflected back as the
angle of incidence is increased; consequently, less energy will be transmitted to the lee side of the structure.
Also, for the higher values of flexural rigidity, plate becomes more rigid and it reflects more energy back and
consequently less transmission to beach side. Furthermore, the effect of (i) flexural rigidity of elastic plate, (ii)
hump height, (iii) and angle of incidence on plate deflection is analysed through graphs. The results show that
for higher values of plate rigidity, plate becomes more rigid; hence, the deflection of plate decreases. Also,
higher the value of hump height produces more reflection and hence less deflection of the plate is observed.
Also, the effect of flexural rigidity on strain and shear force is analysed. It has been observed that strain
decreases as the flexural rigidity of the plate increases. Moreover, near the edges of the plate, strain increases
very rapidly due to the local effect of the evanescent modes near the edges. The energy balance relation is
verified, which helps for ensuring the correctness of the numerical results of unknowns, namely reflection and
transmission coefficients. This problem will give useful information to create the desirable tranquility zone
near the seashore.
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