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Abstract The main goal of this study is to look at the motion of a damped two degrees-of-freedom (DOF)
auto-parametric dynamical system. Lagrange’s equations are used to derive the governing equations of
motion (EOM). Up to a good desired order, the approximate solutions are achieved utilizing the method
of multiple scales (MMS). Two cases of resonance, namely; internal and primary external one are examined
simultaneously to explore the solvability conditions of the motion and the corresponding modulation equa-
tions (ME). These equations are reduced to two algebraic equations, through the elimination of the modified
phases, in terms of the detuning parameters and the amplitudes. The kind of stable or unstable fixed point is
estimated. In certain plots, the time histories graphs of the achieved solutions, as well as the adjusted phases
and amplitudes are used to depict the motion of the system at any instant. The conditions of Routh–Hurwitz
are used to study the various stability zones and their analysis. The achieved outcomes are considered to be
novel and original, in which the used strategy is applied on a particular dynamical system. The significance of
the studied system can be observed in its applications in a number of disciplines, such as swaying structures
and rotor dynamics.

Keywords Nonlinear dynamics · Lagrange’s equations · Perturbation techniques · Damped vibrating
systems · Stability

1 Introduction

The scientific studies on the motion of vibrating dynamical systems have been increased during the last two
centuries [1–19] due to its significance and applications in practical life like vibrating buildings, electricmotors,
airplanes, locomotive engines, and missiles. Such problems can be solved whether analytically or numerically
according to the nature of the governing system of motion. The relevant vibrational movement of a heavy
homogenous cylinder on a specified curve without slipping is investigated in [1]. In [2], the authors presented
original research that employs analytical techniques to investigate the nonlinear characteristics displayed by
various nonlinear phenomena. It is shown that, the asymptotic method and the MMS [20] are demonstrated
to be an effective and understandable way to approach mechanics, and are applicable to fields throughout
engineering and physics. In [3] the authors investigated a weakly nonlinear dynamical system with 2DOF.
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They have been observed that there’s a lot of energy transfer between vibrational modes. Moreover, resonance
conditions are identified, in which the picked resonance case are analyzed. The generalization of this problem
has been examined in [4], when the system is forced by an external excitation force in addition to the motion
is considered to be on an elliptic trajectory.

The nonlinear oscillations of a 3DOF rigid body’s pendulum close to resonance is studied in [5], where
its pivot point is restricted to be fixed. Whereas, the motion of the pivot point, of a damped elastic pendulum
linked with rigid body, on various paths are investigated in [6–9]. The MMS is utilized to obtain the analytic
solutions of the studied models. The resonance cases, the requirements of solvability, and theME are achieved.

A simulation model of triple pendulumwith three linked identical rods besides the existence of a horizontal
frictionless barrier is investigated in [10], inwhich the first rod is forced harmonically by an excitation force. The
authors presented numerical simulations of some examples related with the investigated model. The analytic
solutions of a triple pendulum with three different lengths of its rods under the action of a normal excitation
force on the direction of the last rod besides to the influence of harmonic moment at the pendulum’s piovt point
are investigated in [11]. The approach of Routh-Hurwitz [21] for the nonlinear stability is utilized to study
the stability of the investigated model. The numerical solutions of a vibrating rigid body’s pendulum close to
the equilibrium locations are examined in [12, 13] using the Runge–Kutta algorithm [22], while the methods
of small and large parameter [20] are used in [14, 15] to obtain the analytic solutions of a connected rigid
body with pendlum, respectively. Whereas, the location of equilibrium of a vertical triple pendulum exposed
to an asymmetric iterative force is investigated in [16]. The effects of periodic disturbance on a damped three-
link pendulum are investigated in [17]. The results of time integration with those of the theoretical study for
the frequency response are contrasted. Furthermore, a law explains the behavior of resonant frequency shifts
is established. Moreover, the numerical and experimental study of a damped and forced triple pendulum is
examined in [18, 19], respectively. In contrast, in [23, 24], the chaotic motion of a 2DOF weakly nonlinear
elastic pendulum system for a stationary and moving suspension point is investigated to disclose their chaotic
behaviors close to resonance regarding to the used parameters. The MMS has been used in [25] to study the
stability of a nonlinear elastic pendulum, while the work is enhancemented in [26] when the pendulum is
forced by an external harmonic force.

However, due to the great significance of absorber’s applications in engineering industries, the use of
absorbers in the creation of various types of dynamicalmodels has attracted the interest of numerous academics,
such as [27–30]. The authors of [27] looked into the behavior of a 3DOF nonlinear spring pendulum, with
fixed suspension, to see how a longitudinal absorber may stabilize and control the ship’s vibrational motion.
Whereas, the estimation of the same model when the suspension point moving on the ellipse route has been
studied in [28]. The steady-state’s solutions around the specified resonance case are analyzedusing the equations
of frequency response. In [29], the impact of a damped nonlinear elastic pendulum on the behavior of this
problem is regulated. However, the stability a transverse absorber connected with this spring, based on the
examination of three resonance cases is explored in [30]. The rolling motion of a heavy homogenous cylinder
through unknown curve without slipping is investigated in [1, 31]. Equation of variation is solved to find
and minimize a function of total rolling time. The parametric form of the quickest-descent directrix for the
algebraic equation is obtained. On the other hand, the vibrational motion of a rolling cylinder in a circular
curve is examined in [32]. The governing EOM are derived and solved using the MMS. In light of the physical
parameters of the studied model, diagrams of these solutions are presented.

This main aim of this paper is to investigate the motion and the stability of a damped 2DOF auto-parametric
dynamical system. The governing EOM are constructed in terms of generalized coordinates using Lagrange’s
equations. The MMS is applied to generate the analytic solution up to the third-order of approximation. To
investigate the solvability criteria of the motion and the associated ME, two resonance situations, namely the
internal and primary external, are investigated together. By removing themodified phases, theMEare simplified
to two algebraic equations in terms of parameters of detuning and amplitudes. The time histories graphs of
the obtained solutions, as well as the amplitudes and adjusted phases, are given to portray the motion of the
system at any given time. The stability requirements of Routh-Hurwitz are used to investigate and analysis the
various stability zones. Since the employed method is applied to the investigated dynamical system, the results
are considered to be new and original. Applications in a range of disciplines, including swaying structures and
rotor dynamics, demonstrate the importance of the investigated system.
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Fig. 1 Description of the system

2 The model’s formulation

Consider a planar movement of a rolling cylinder with mass m1 and radius r across a circular surface with
mass M and radius R, in which this surface is connected with two damped nonlinear springs of stiffness k1
and k2, see Fig. 1. Let C and ϕ represent the damping coefficient and the angle between the radius R and
the vertical at O3. The model is considered to be influenced by an external force F(t) � F1 cos(�1t) in the
vertical direction, where F1 and �1 are its amplitude and frequency, respectively.

Therefore, the model’s kinetic and potential energies T and V have the forms

T � 1

2
(m1 + M)ẏ21 +

1

2
m1

[
3

2
(R − r )2ϕ̇2 + 2(R − r )ϕ̇ ẏ1 sin ϕ

]
,

V � 1

2
k1y

2
1 +

1

4
k2y

4
1 + (m1 + M) gy1 − m1g[R − (R − r ) cosϕ];

y1 � y − ỹc, ỹc � OO1 � yc + yst . (1)

Here g is the gravitational acceleration, dots are time’s derivatives, y1 is the elongation or contraction
in the height of the studied model, and yc, yst are the natural lengths and static elongation of both springs,
respectively.

The controlling EOM can be acquired using equations of Lagrange [33]

d

dt

(
∂L

∂ ẏ1

)
−

(
∂L

∂y1

)
� F(t) − C ẏ1,

d

dt

(
∂L

∂ϕ̇

)
−

(
∂L

∂ϕ

)
� 0, (2)

where L � T − V is the system’s Lagrangian, (y1, ϕ) and (ẏ1, ϕ̇) are the system’s generalized coordinates
and velocities.

Taking a look at the dimensionless parameter listed below

u � y1
R − r

, m � m1

(m1 + M)
, ω2

1 � k1
(m1 + M)

, ω2
2 � 2g

3(R − r )
,

f1 � F1
(R − r )(m1 + M)

, μ1 � C

2(m1 + M)
, μ2 � k2(R − r )2

2(m1 + M)
, yst � (m1 + M)g

k1
. (3)

Substituting Eqs. (1) and parameters (4) into the second-order Eqs. (2), yields the EOM in its dimensionless
form

ü + ω2
1u + m(ϕ̈ sin ϕ + ϕ̇2 cosϕ) + μ2u

3 + 2μ1u̇ � f1 cos(�1t), (4)
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ϕ̈ + (ω2
2 +

2

3
ü) sin ϕ � 0. (5)

Therefore, the controlling EOM can be seen as a set second-order nonlinear ordinary differential equations
(ODE) Eqs. (4) and (5) regarding to u and ϕ.

3 The approach technique

The major goal of this research’s section is to use the MMS to acquire the solutions of the EOM (4) and (5)
analytically, to categorize the cases of resonance, to obtain solvability requirements, and to generate the ME.
Therefore, the trigonometric functions sin ϕ and cosϕ in these equations can be approximated utilizing Taylor
series till to the first two terms of their expansions. These approximations must be valid in a small area around
the location of static equilibrium. Equations (4) and (5) are then transformed into

ü + ω2
1u + m

[
ϕ̈

(
ϕ − ϕ3

6

)
+ ϕ̇2

(
1 − ϕ2

2

)]
+ μ2u

3 + 2μ1u̇ � f1 cos(�1t), (6)

ϕ̈ +

(
ω2
2 +

2

3
ü

)(
ϕ − ϕ3

6

)
� 0. (7)

The vibrations’ amplitudes are supposed to be of a small parameter’s order 0 < ε << 1. Consequently,
we can characterize the functions u and ϕ as in terms ξ and φ according to

u(τ ) � ε ξ (τ ; ε), ϕ(τ ) � ε φ(τ ; ε). (8)

Based on the procedure of MSM, the functions ξ and φ we can sought in forms [20]

ξ �
2∑

k�0

εkξk+1(τ0, τ1, τ2)+O(ε3),

φ �
2∑

k�0

εkφk+1(τ0, τ1, τ2) + O(ε3),

(9)

where τ0 � τ stands as a quick time, while τ1 � ετ and τ2 � ε2τ are the slow ones. As a result, the below
chain rule can be applied to convert the time derivatives regarding τ to τ0, τ1, and τ2 [20]

d

dτ
� ∂

∂τ0
+ ε

∂

∂τ1
+ ε2

∂

∂τ2
+ O(ε3),

d2

dτ 2
� ∂2

∂τ 20
+ 2ε

∂2

∂τ0∂τ1
+ ε2

(
∂2

∂τ 21
+ 2

∂2

∂τ0∂τ2

)
+ O(ε3), (10)

Based on the smallness of ε, terms like O(ε3) and higher have been ignored.
To follow the desired solutions, the amplitude f1 as well as the damping coefficient μ1 can be defined

follows

f1 � ε3 f̃1, μ1 � ε2μ̃1, (11)

where f̃1 and μ̃1 are quantities of unity’s order.
Substituting (8)–(11) into (7) and (8), to obtain two second-order partial differential equations (PDE).

Equaling the coefficients of similar powers of ε in both sides of the resulted equations to obtain the below sets
according to these powers.

Order of ε:

∂2ξ1

∂τ 20
+ ω2

1ξ1 � 0, (12)

∂2φ1

∂τ 20
+ ω2

2φ1 � 0. (13)
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Order of ε2

∂2ξ2

∂τ 20
+ ω2

1ξ2 � −m

(
∂φ1

∂τ0

)2

− 2
∂2ξ1

∂τ0∂τ1
− mφ1

∂2φ1

∂τ 20
, (14)

∂2φ2

∂τ 20
+ ω2

2φ2 � −2
∂2φ1

∂τ0τ1
− 2

3
φ1

∂2ξ1

∂τ 20
. (15)

Order of ε3

∂2ξ3

∂τ 20
+ ω2

1ξ3 � f̃1 cos�1τ0 − ∂2ξ1

∂τ 21
− 2μ̃1

∂ξ1

∂τ0
− 2

(
∂2ξ1

∂τ0∂τ2
+

∂2ξ2

∂τ0∂τ1

)

− 2m

[
∂φ1

∂τ0

∂φ1

∂τ1
+

∂φ1

∂τ0

∂φ2

∂τ0
+ φ1

∂2φ1

∂τ0∂τ1
− φ2

∂2φ1

∂τ 20
+ φ1

∂2φ2

∂τ 20

]
+ μ2ξ

3
1 , (16)

∂2φ3

∂τ 20
+ ω2

2φ3 � 1

6
ω2
2φ

3
1 − ∂2φ1

∂τ 21
− 2

(
∂2φ1

∂τ0∂τ2
+

∂2φ2

∂τ0∂τ1

)

− 4

3
φ1

∂2ξ1

∂τ0∂τ1
− 2

3

(
φ1

∂2ξ2

∂τ 20
+ φ2

∂2ξ1

∂τ 20

)
. (17)

A closer inspection of the above three sets of PDE demonstrates that the solutions the last two sets depend
on the solutions of the first one, which means that they can be solved consecutively. Then, the general solutions
of (13) and (14) can be written in an exponential form in terms of complex functions A j ( j � 1, 2) hand their
conjugates A j as follows

ξ1 � A1e
iω1τ0 + A1e

−iω1τ0 , (18)

φ1 � A2e
iω2 τ0 + A2e

−i ω2τ0 . (19)

The substitution of these solutions into the second set of Eqs. (14) and (15) produces undesired secular
terms [34]. Elimination of these terms demands that

∂A1

∂τ1
� 0, (20)

∂A2

∂τ1
� 0. (21)

Therefore, we can write the second-order solutions as follows

ξ2 � 2mω2
2A

2
2

(ω2
1 − 4ω2

2)
e2iω2τ0 − mω2

2A2A2

ω2
1

+ CC, (22)

φ2 � 2ω1A1A2

3(ω1 + 2ω2)
ei(ω1+ω2)τ0 +

2ω1A1A2

3(ω1 − 2ω2)
ei(ω1−ω2)τ0 + CC. (23)

The preceding terms’ complex conjugates are represented here by CC.
Other secular terms are produced by substituting the solutions (18), (19), (22), and (23) into Eqs. (17) and

(18). The criteria for removing these phrases are outlined below

2iω1

(
μ̃1A1 +

∂A1

∂τ2

)
+
4mω4

1A1A2A2

3(ω2
1 − 4ω2

2)
+ 3μ2A

2
2A1 � 0, (24)

2iω2
∂A2

∂τ2
+
4ω3

1A1A2A1

9(ω1 + 2ω2)
+

ω2
2A

2
2A2

6(ω2
1 − 4ω2

2)
[3ω2

1 + 4ω2
2(4m − 3)] � 0. (25)

Judging on the previous conditions, one can write the third-order solutions as follows

ξ3 � f̃1ei�1τ0

2(ω2
1 − �2

1)
− 2mω1(ω1 + 2ω2)

3[ω2
1 − (ω1 + 2ω2)2]

A1A
2
2e

iτ0(ω1+2ω2)
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+
2mω1(ω1 − 2ω2)

3[ω2
1 − (ω1 − 2ω2)2]

A1A
2
2e

iτ0(ω1−2ω2) +
1

8ω2
1

μ2A
3
1 e

3iτ0ω1 + CC, (26)

φ3 � − [ω2
1 + 4ω2

2(−1 + 4m)]A3
2

48(ω2
1 − 4ω2

2)
e2iω2τ0 − 4ω3

1A
2
1A2ei(2ω1+ω2)τ0

9(ω1 + 2ω2)[ω2
2 − (2ω1 + ω2)2]

− 4ω3
1A

2
1A2ei(2ω1−ω2)τ0

9(ω1 − 2ω2)[ω2
2 − (2ω1 − ω2)2]

+ CC. (27)

The complex functions A j ( j � 1, 2) can be determined according to the above four conditions of
eliminating secular terms and by using the following initial conditions

ξ (0) � u01, ξ̇ (0) � u02, φ(0) � u03, φ̇(0) � u04, (28)

where u0s (s � 1, 2, 3, 4) represents known values.

4 Resonance requirements and modulation equations (ME)

This section classifies various cases of resonance, investigates two of them, and derives ME in the context
of these cases. When the denominators of the foregoing approximate second or third orders solutions tend to
zero, resonance cases can be distinguished [35]. Therefore, we can classify them as principal primary external
and internal resonances which can be done when �1 ≈ ω1 and ω1 ≈ 0, ω2 ≈ 0, ω1 ≈ ω2, ω1 ≈ ±2ω2,
respectively. It’s interesting to note that the behavior of the researched system will be challenging if one of the
aforementioned resonance cases is realized [36]. As a result, we’ll have to make some adjustments to the used
technique. We’ll investigate both of two resonances simultaneously to remedy this problem, i.e., �1 ≈ ω1 and
ω1 ≈ 2ω2, which mean that �1 and ω1 close to ω1 and 2ω2, respectively.

It is critical to employ the dimensionless quantities σ j ( j � 1, 2) which are known by detuning parameters,
in which they measure the distances between the oscillations and the stern resonances [37]. Then, we’ll be
able to write

�1 � ω1 + σ1, ω1 � 2ω2 + σ2; σ j � εσ̃ j ( j � 1, 2). (29)

Substituting (29) into the sets of second and third-order of ε, and then cancelling terms of the yield secular
ones to obtain the solvability requirements in the forms

∂A1

∂τ1
� 0,

∂A2

∂τ1
� 0,

2iω1

(
μ̃1A1 +

∂A1

∂τ2

)
+
4mω4

1A1A2A2

3(ω2
1 − 4ω2

2)
+ 3μ2A

2
2A1 − f̃1

2
ei σ̃1τ1 � 0,

2iω2
∂A2

∂τ2
+
4ω3

1A1A2A1

9(ω1 + 2ω2)
+

ω2
2A

2
2A2

6(ω2
1 − 4ω2

2)
[3ω2

1 + 4ω2
2(4m − 3)]

+
4ω3

1A
2
1A2eiτ1σ̃2

9(ω1 − 2ω2)
� 0. (30)

These requirements clearly form a system of four nonlinear PDE regarding the functions A j ( j � 1, 2) in
which A j � A j (τ2). As a result, one expresses them in the following polar forms

A j � h̃ j (τ2)

2
eiψ̃ j τ2 ; h j � εh̃ j ( j � 1, 2), (31)

where h̃ j andψ j ( j � 1, 2) refer real functions of amplitudes and phases for the functions ξ and φ respectively.
According to the first two conditions of (30), the functions A j are independent of τ0 and τ1. Then, we can

write

d A j

dτ
� ε2

∂A j

∂τ2
; ( j � 1, 2). (32)
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Fig. 2 Shows the amplitude’s modulation h1 and modified phase θ1 at different values of ω1 and ω2

Using the modified phases listed below [38], the above solvability requirements can be transformed from
PDE to ordinary ones

θ1(τ1, τ2) � τ1σ̃1 − ψ1(τ2);

θ2(τ1, τ2) � τ1σ̃2 + 2[ψ1(τ2) − ψ2(τ2)].
(33)

Inserting (31)–(33) into conditions (30), and then separating the real and imaginary portions to obtain the
next first-order ODE regarding to the amplitudes and adjusted phases h j and θ j ( j � 1, 2)

h1
dθ1

dτ
� h1σ1 +

f1
2ω1

cos θ1 − mω3
1h1h

2
2

6(ω2
1 − 4ω2

2)
− 3μ2h31

8ω1
,

dh1
dτ

� f1
2ω1

sin θ1 − μ1h1,

h2
dθ2
dτ

� h2(σ2 + 2σ1) − 2h2
dθ1
dτ

− ω3
1h

2
1h2

9ω2(ω1 + 2ω2)

− ω2h32[3ω
2
1 + 4ω2(4m − 3)]

24(ω2
1 − 4ω2

2)
− ω3

1h
2
1h2 cos θ2

9ω2(ω1 − 2ω2)
,

dh2
dτ

� ω3
1h

2
1h2 sin θ2

9ω2(ω1 − 2ω2)
. (34)

These equations knownasMEwhich canbe solvednumerically utilizing fourth-orderRunge–Kuttamethod,
whereby these solutions are graphed in Figs. 2 and 3 for various values of ω j ( j � 1, 2) according to the data
listed below

m1 � 2, M � 12, c � 0.01, σ1 � 0.00001,

σ2 � 0.00003, f1 � 0.0000035, �2 � ω1 + σ1.

These figures represent the temporal histories of h j and θ j . However, they are graphed when ω1 �
(1.2, 1.5, 1.7) and ω2 � (1.3, 1.5, 1.8) as shown in potions [(a), (b)] and [(c), (d)], respectively. The curves
increase with time till the first quarter of the investigated time period and they have decay behavior till the end
of this period as drawn in Fig. 2. Curves of Fig. 3 increase with h2(τ ) or decrease with θ2(τ ) till to a specified
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Fig. 3 Sketches h2(τ ) and θ2(τ ) when ω1 and ω2 have distinct values

time and then they have a steady manner. The conclusion that may be written here is h j and θ j have a stable
behavior.

The change of the obtained approximate solutions u(τ ) and ϕ(τ ) has been represented through the graphical
plots of the curves of Figs. 4 and 5, keeping in mind the former values of the used parameters and when
ω j ( j � 1, 2) have various values. It is obvious that the drawn curves have the forms of wave packets and have
decay behaviors.

The phase plane diagrams of the solutions h1 and θ1 of the system of Eq. (34) are plotted in curves of
Figs. 6 and 7 for different values of ω1 and ω2, respectively. Spiral curves are drawn and directed towards one
red point as seen in portions (a), (b), and (c) of these figures; which assert that the solutions of this system are
stable. Alternatively, Figs. 8 and 9 show the variation of h2(θ2) at ω1 � (1.2, 1.5, 1.7) and ω2(� 1.3, 1.5, 1.8),
respectively. Periodic standing waves are plotted in Fig. 8, whereby the vibrational modes of these waves grow
as the value of the frequency ω1 rises, while the oscillations’ number of remains steady. The change of h2 with
θ2 when ω2 has distinct values is drawn as seen in parts Fig. 9, in which they have spiral forms.

5 Oscillations at the case of steady-state

This section’s main purpose is to look at the vibrations at steady-state of the studied system. This case is known
to occur when transitory processes disappear owing to damping [39, 40]. Therefore, we evaluate the left sides
in Eqs. (34) for their zero values, i.e.,

dθ j
dt � 0,

dh j
dt � 0 ( j � 1, 2). Then, the below system of algebraic

equations is simply constructed

h1σ1 +
f1

2ω1
cos θ1 − mω3

1h1h
2
2

6(ω2
1 − 4ω2

2)
− 3μ2h31

8ω1
� 0,

f1
2ω1

sin θ1 − μ1h1 � 0,

h2(σ2 + 2σ1) − ω3
1h

2
1h2

9ω2(ω1 + 2ω2)
− ω2h32[3ω

2
1 + 4ω2(4m − 3)]

24(ω2
1 − 4ω2

2)
− ω3

1h
2
1h2 cos θ2

9ω2(ω1 − 2ω2)
� 0,

ω3
1h

2
1h2 sin θ2

9ω2(ω1 − 2ω2)
� 0. (35)
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Fig. 4 Explores u(τ ) and ϕ(τ ) when ω1(� 1.2, 1.5, 1.7)

Fig. 5 Sketches the curves of u(τ ) and ϕ(τ ) at ω2(� 1.3, 1.5, 1.8)
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Fig. 6 Shows the amplitudes modulation of h1(θ1): (a) at ω1 � 1.7, (b) at ω1 � 1.5, and (c) at ω1 � 1.2

Fig. 7 Describes the amplitudes modulation of h1(θ1): (a) at ω2 � 1.3, (b) at ω2 � 1.5, and (c) at ω2 � 1.8
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Fig. 8 Describes the behavior of h2(θ2) at ω1 � (1.2, 1.5, 1.7)

Fig. 9 Describes the behavior of h2(θ2): (a) at ω2 � 1.3, (b) at ω2 � 1.5, and (c) at ω2 � 1.8

When the modified phases θ1 and θ2 are removed the previous Eq. (35), the following two algebraic
equations for the amplitudes h j and frequency are obtained, which are clarified by the parameters of detuning
σ j .

f 21 � 4ω2
1

⎧⎨
⎩

[
h1σ1 − mω3

1h1h
2
2

6(ω2
1 − 4ω2

2)
− 3μ2h31

8ω1

]2

+ (μ1h1)
2

⎫⎬
⎭,

ω6
1h

4
1h

2
2

81ω2
2(ω1 − 2ω2)2

�
[
h2(σ2 + 2σ1) − ω3

1h
2
1h2

9ω2(ω1 + 2ω2)
− ω2h32[3ω

2
1 + 4ω2(−3 + 4m)]

24(ω2
1 − 4ω2

2)

]2

. (36)
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Fig. 10 Shows no possible fixed points at σ1 � 0.00001 and σ2 � −0.00003

Fig. 11 Describes the unstable four fixed points at σ1 � 0.00001 and σ2 � 0

Fig. 12 Describes the arising fixed points at σ1 � 0.00001 and σ2 � 0.00003.

The above Eqs. (36) are graphed as seen in Figs. 10, 11, 12 when the above data are considered to obtain
the blue curve that describes the first equation in (36) and the red one which describing the second equation
of (36). The points where these curves meet create fixed points. Figure 10 is drawn when σ1 � 0.00001 and
σ2 � −0.00003 and shows that there is no possible fixed points, while Fig. 11 is graphed at σ1 � 0.00001
and σ2 � 0 and contain four unstable fixed points. On the other hand, Fig. 12 is plotted at σ1 � 0.00001 and
σ2 � 0.00003, in which it has four fixed points; two of them are stable and marked by a solid black circle
while the others are unstable and denoted by hollow circle.

Now, we’ll look at how a dynamical system behaves in a zone near to the fixed points for further stability’s
examination. To achieve this purpose, consider the below substitutions in Eq. (34) for amplitudes and phases

h1 � h10 + h11, h2 � h20 + h21,

θ1 � θ10 + θ11, θ2 � θ20 + θ21, (37)
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where h10, h20, θ10 and θ20 are the steady-state’s solutions, while h11, h21, θ11 and θ21 are the perturbations
that are considered to be very tiny. Then, Eq. (34) becomes

(38)

h10
dθ11

dτ
� − f1

2ω1
θ11 sin θ10 + h11[σ1 − mω3

1h
2
20

6(ω2
1 − 4ω2

2)
− 9μ2h210

8ω1
] − mω3

1h10h20h21
3(ω2

1 − 4ω2
2)

,

dh11
dτ

� f1
2ω1

θ11 cos θ10 − μ1h11,

h20
dθ21
dτ

� h21

[
σ2 + 2σ1 − ω3

1h
2
10

9ω2(ω1 + 2ω2)
+
h220ω2[3ω2

1 + 4ω2(4m − 3)]

8(ω2
1 − 4ω2

2)

− ω3
1h

2
10 cos θ20

9ω2(ω1 − 2ω2)

]
− 2h20

dθ11
dτ

− 2ω3
1

9ω2

[
1

(ω1 + 2ω2)
+

cos θ20

(ω1 − 2ω2)

]
h20h10h11,

dh21
dτ

� ω3
1

9ω2(ω1 − 2ω2)
(2h20h10h11 + h210h21) sin θ20,

Remembering that h j1 and θ j1 ( j � 1, 2) are unknown tiny perturbation functions. Therefore, we can
phrase their solutions as a linear combination of kdeλτ , where λ represents the eigenvalue of these perturbations
and kd (d � 1, 2, 3, 4) are constants, which are counted from the roots real potions. In this context, if h j0 and
θ j0 ( j � 1, 2) are stable asymptotically, then the roots real portions of the next characteristic equation must
therefore be negative [41]

λ4 + �1λ
3 + �2λ

2 + �3λ + �4 � 0, (39)

where

�1 � f1 sin θ10

2h10ω1
− ω3

1h
2
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9ω2(ω1 + 2ω2)
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16h10ω2
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Fig. 13 Sketches the frequency responses at σ2 � 0 and ω1 � (1.2, 1.5, 1.7): (a) h1(σ1) (b) h2(σ1)

Fig. 14 Portrays the frequency response at σ2 � 0 and ω2 � (1.3, 1.5, 1.8): (a) h1(σ1) (b) h2(σ1)
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Table 1 Demonstrates the positions of the PFP and the CFP for the response curves at σ2 � 0 and ω1 � (1.2, 1.5, 1.7)for the
curves of Fig. 13

Figure ω1 PFP CFP

Figure 13a ω1 � 1.7 (0.000046, 0.00295) (− 0.002, 0.000999)
ω1 � 1.5 (0.000046, 0.00277) (0.001, 0.00092)
ω1 � 1.2 (0.000046, 0.00251) (0.002, 0.00082)

Figure 13b ω1 � 1.7 (− 0.00498, 1.033*10–8) (− 0.002, 6.3*10–9)

(− 0.002, 5.322*10–9)

(0.00012, 9.85*10–9)

(0.0019, 7.778*10–9)
ω1 � 1.5 (− 0.00349, 1.046*10–8) (0.001, 6.162*10–9)

(− 0.0022, 5.468*10–9)

(0.00012, 8.648*10–9)

(0.00015, 5.507*10–9)
ω1 � 1.2 (− 0.0026, 1.028*10–8) (0.002, 5.888*10–9)

(− 0.00219, 5.315*10–9)

(− 0.00034, 7.243*10–9)

(0.00058, 6.537*10–9)

Table 2 Demonstrates the positions of the PFP and the CFP for the response curves at σ2 � 0and ω2 � (1.3, 1.5, 1.8) for the
curves of Fig. 14

Figure ω2 PFP CFP

Figure 14a ω2 � 1.3 (0.0002, 0.0093) (− 0.003, 0.00158)
ω2 � 1.5 (0.0002, 0.0081) (0.001, 0.0014)
ω2 � 1.8 (0.0002, 0.0051) (0.003, 0.00147)

Figure 14b ω2 � 1.3 (− 0.0036, 1.05*10–8) (− 0.003, 6.673*10–9)

(− 0.0031, 5.438*10–9)

(0.0013, 6.673*10–9)

(0.00013, 5.693*10–9)

(0.0005, 6.8334*10–9)

(0.00198, 7.222*10–9)
ω2 � 1.5 (− 0.0036, 1.048*10–8) (0.001, 66634*10–9)

(− 0.0031, 5.418*10–9)

(0.0013, 6.654*10–9)

(0.00013, 5.4323*10–9)

(0.00056, 9.899*10–9)

(0.00198, 7.203*10–9)
ω2 � 1.8 (− 0.0026, 1.025*10–8) (0.003, 5.887*10–9)

(− 0.0022, 5.391*10–9)

(0.0031, 5.707*10–9)

(0.00013, 5.732*10–9)

(0.00056, 7.227*10–9)

(0.00198, 6.518*10–9)

5.1 (40)

However, the essential prerequisites of the stability for specific solutions at the case of steady-state based on
the Routh–Hurwitz criterion [42, 43] are

�1 > 0,

�3(�1�2 − �3) − �4�
2
1 > 0,

�1�2 − �3 > 0,

�4 > 0. (41)

Resonance response curves in parts (a) and (b) of Figs. 13 and 14 are calculated at σ2 � 0 when ω1(�
1.2, 1.5, 1.7) and ω2(� 1.3, 1.5, 1.8) in addition to the above data of other parameters. Solid curves are used
to indicate about the stability zones, while the unstable ones are depicted through dashed curves.

Based on the plotted curves in portions of Fig. 13, we can see from part (a) that the stability zones and
instability ones are found in the ranges σ1 < −0.002 and −0.002 ≤ σ1, respectively. On the other hand,
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curves of Fig. 13b show that the stability areas are σ1 < 0.001 and σ1 < 0.002, while the unstable ones are
0.001 ≤ σ1 and 0.002 ≤ σ1 when ω1 � 1.5 and ω1 � 1.7.

The influences ofω2 values on the frequency response curves are at σ2 � 0 are shown in portions of Fig. 14,
whereby the zones of stability and instability are located in the domains σ1 < −0.003 and −0.003 ≤ σ1,
respectively, see Fig. 14a. These zones are displaced slightly in portion (b) of Fig. 14 when ω2 � 1.5 and
ω2 � 1.8 to be σ1 < 0.001 and σ1 < 0.003 for the stability areas, 0.001 ≤ σ1 and 0.003 ≤ σ1 for the
instability areas. The locations of critical fixed points (CFP) and peaks fixed points (PFP) of the curves of
portions of Figs. 13 and 14 are given in Tables 1 and 2, respectively.

6 Conclusion

The movement of a damped 2DOF auto-parametric dynamical system has been examined. In terms of gen-
eralized coordinates, Lagrange’s equations have been employed to derive the governing EOM. The new
approximate solutions are obtained applying the MMS up to a higher order of approximation. The solvability
requirements and the ME of the studied system have been obtained. The arising cases of resonance have been
distinguished, with the internal and primary external cases are examined together. The stability and instability
of the fixed points are checked. The time history graphs of the obtained solutions, as well as the amplitudes
and adjusted phases have been analysed to study the system’s behavior at any given time. Applications of the
examined system can be found in swaying structures and rotor dynamics which demonstrate the importance
of the attained results.
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