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Abstract The present work addresses the question of the quantitative prediction of the biaxial response
of polymer–clay nanocomposites experiencing strain-induced crystallization. Polyethylene terephthalate is
taken as material model to represent the continuous amorphous phase of nanocomposites. A continuum-based
micromechanical model is developed to predict the combined effect of strain-induced phase transformation
and nanocomposite structural characteristics on the overall elastic-viscoplastic response. Comparisons with
available experimental data are presented to illustrate the capabilities of the model in relation to various
loading parameters in terms of loading path, loading rate and loading temperature. The model is used to
provide a better understanding of the relationship between nanocomposite structural characteristics, phase
transformation, intrinsic properties and loading parameters.

Keywords Polymer–clay nanocomposites ·Phase transformation ·Multiaxial loading ·Rate and temperature
effects · Micromechanical model

1 Introduction

The adding of clay in a polymer has become a traditional way for producing lightweight nanocomposites. In the
latter, the homogeneous dispersion of individual nano-sized clay layers into thematrixmaterial (so-called exfo-
liated state) constitutes the most favorable situation to optimize the macroscopic properties [1–3]. Compared
to their counterpart microcomposites, they present superior chemical/thermal resistance, gas barrier properties
and thermo-mechanical properties. Among them, clay-polyethylene terephthalate (PET) nanocomposite sys-
tems have several engineering application domains such as food/beverage packaging, gas/liquid containers and
flame-retardant systems. The structure–property relationship in PET-clay nanocomposites was investigated in
several studies [4–12]. It is now admitted that the continuum-based modeling is helpful for the establish-
ment of the relationship between (nano)structure and mechanical properties of polymer/clay nanocomposites.
The reliability of model predictions depends on the utilized method, along with the underlying assumptions,
allowing to capture the desired property or the set of properties (i.e., elastic constants, yield and post-yield fea-
tures). Numerical simulations on 3D/2Dmaterial elements were realized in some studies to examine the elastic
constants of polymer–clay nanocomposites in connection to the intercalated morphology [13–19]. Analytical
models were also proposed to constitutively relate nanocomposite morphology and macroscopic properties
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[20–33]. In micromechanical constitutive models based on the Eshelby inclusion theory, the constitutive repre-
sentation consists in discrete spheroids (the clay stacks being represented by an equivalent effective inclusions)
randomly dispersed in a continuous polymer matrix. In the latter models, the polymer matrix is assumed to be
a rate-independent elastic medium and, at the best, may present plasticity. Nonetheless, a physical consistent
constitutive representation should take into account the crystallization process that PET experiences during
the mechanical loading. This phase transformation affects the overall mechanical properties and is strongly
dependent on the loading parameters in terms of loading level, multiaxial loading, loading rate and loading
temperature [34, 35]. The consequence of the clay incorporation on the phase transformation was revealed
in very few experimental reports available in the literature [7], but the separate and synergistic effects of
structural and loading parameters are difficult to assess experimentally. In order to ensure a reliable design
of PET-clay systems, the constitutive model can provide help but should integrate the connection between
actual (nano)structure features, loading parameters (temperature, strain rate and loading mode) and phase
transformation.

The main purpose of this paper is to develop a modeling for PET-clay nanocomposites based upon the
continuum-based micromechanical framework to predict the effect of strain-induced phase transformation and
clay nanoparticle characteristics (content, aspect ratio and exfoliated/intercalated state) on the overall elastic-
viscoplastic response in relation to the external loading parameters in terms of loading path, loading rate and
loading temperature. The model predictability is verified under biaxial loading paths for different temperatures
and strain rates.

The outline of this contribution is as follows. Section 2 presents the micromechanics-based constitutive
equations. In Sect. 3, the theoretical predictions are compared with available experimental data to verify the
capabilities of the present model. Concluding remarks are given in Sect. 4.

2 Micromechanics-based model

2.1 Constitutive equations

The initial two-phase composite becomes a three-phase composite from the onset of phase transformation. The
material system is treated as an Eshelby-type inclusion problem in which the representative volume element
consists in randomly oriented discrete elastic isotropic spheroids (i.e., the clay particles and the crystals to
which we confer the subscripts clay and cry) randomly dispersed in a continuous elasto-viscoplastic isotropic
medium (i.e., the amorphous phase to which we confer the subscript am). The three phases are assumed to be
perfectly bonded at interfaces.

20 30 40 50 60 70 80 90 100
Temperature [°C]

2

3

4

5

6

7

8

9

Lo
g
E
[M

Pa
]

PET
1% nanoClay
2% nanoClay
3% nanoClay
4% nanoClay
5% nanoClay

                  (a)                                                                                              (b)        

0 5 10 15 20 25 30 35 40
Crystallinity [%]

0

5

10

15

20

25

30

N
or
m
al
iz
ed

m
od

ul
us

PET
1% nanoClay
2% nanoClay
3% nanoClay
4% nanoClay
5% nanoClay

Fig. 1 Stiffness of neat PET and PET-clay systems a as a function of temperature and b as a function of crystallinity



Micromechanical modeling biaxial behavior 2991

The Hooke’s law constitutively relates the macroscopic stress tensor σ to the elastic macroscopic strain
tensor εe as follows1:

σ � C : εe (1)

The macroscopic elastic stiffness tensor C of the multiphase composite is given by [36]:

C � Cam.
{

I − (Yclay + Ycry
)
.
[(

Sclay.Yclay + Scry.Ycry
)
+ I
]−1
}

(2)

where I is the identity tensor, Sclay and Scry are the Eshelby tensors and, Yclay and Ycry are two fourth-order
tensors expressed as:

Yclay � −φclay

[
Sclay +

(
Cclay − Cam

)−1
.Cam

]−1
and Ycry � −φcry

[
Scry +

(
Ccry − Cam

)−1
.Cam

]−1
(3)

where φclay is the volume fraction of clay and φcry is the volume fraction of the newly-formed crystals.
The fourth-order isotropic elastic stiffness tensors, Cam, Cclay and Ccry, are expressed, in Cartesian com-

ponents, as follows:

(Cam)i jkl � Eam

2(1 + νam)

[(
δikδ jl + δilδ jk

)
+

2νam
1 − 2νam

δi jδkl

]
(4)

(
Cclay

)
i jkl � Eclay

2
(
1 + νclay

)
[(

δikδ jl + δilδ jk
)
+

2νclay
1 − 2νclay

δi jδkl

]
(5)

(
Ccry

)
i jkl � Ecry

2
(
1 + νcry

)
[(

δikδ jl + δilδ jk
)
+

2νcry
1 − 2νcry

δi jδkl

]
(6)

in which Eam, Eclay and Ecry are the Young’s moduli and, νam, νclay and νcry are the Poisson’s ratios. The
term δi j denotes theKronecker-delta symbol. Note that individual clay platelets exhibit isotropy but intercalated
clay stacks present transversal isotropy. The intercalated cluster of clay is replaced by an equivalent particle
modeled by an effective (homogeneous) elastic anisotropic spheroid as described in “Appendix A”. By this
way, the clay structural parameters are integrated, i.e., number of clay layers N, interlayer spacing d001 and
clay layer dimensions (thickness dS and length LS).

The temperature dependence of the amorphous phase is taken into account according to the following
function [37]:

Eam(θ) � 1

2

(
Eg + Er

)− 1

2

(
Eg − Er

)
tanh

(
5

�θ

(
θ − θg

))
+ Xg

(
θ − θg

)
(7)

where Eg is the amorphous modulus in the glassy region, Er is the amorphous modulus in the rubbery region,
�θ is the interval of the temperature range across which the glass transition occurs and Xg is the slope outside
the glass transition region. The variation with temperature θ of the amorphous Poisson’s ratio νam around θg
is given by the following function:

νam(θ) � νg +
(
νr − νg

)
exp

(
θ − (2(θg + �θ − θ

))2
θg + �θ

)
for θ < θg (8)

νam(θ) � νr for θ ≥ θg (9)

where νg is the amorphous Poisson’s ratio in the glassy region and νr is the amorphous Poisson’s ratio in the
rubbery region.

The macroscopic plastic yielding of the nanocomposite is developed from the continuum plasticity theory.
The macroscopic yield surface F is expressed as a function of the macroscopic stress σ and the macroscopic
equivalent plastic strain ep as follows [36]:

F � (1 − φclay − φcry
)2

σ :
(
PT.B.P

)
: σ − 2

3

[
σy + h

(
ep
)q]2 ≤ 0 (10)

1 The double dot “:” signifies the tensor contraction between a fourth-order tensor and a second-order tensor, while the single
dot “.” denotes the tensor multiplication between two fourth-order tensors.
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in which the von Mises yield criterion with isotropic plastic hardening governs the amorphous plastic
yielding where σy is the initial yield strength of the amorphous phase and, h and q are the hardening parameters
of the amorphous phase. The terms P and B are two fourth-order tensors, respectively, written as follows:

P � [I + (Sclay − I
)
.
(
Yclay + Ycry

)]−1 and Bi jkl � B(1)
I K δi jδkl + B(2)

I J

(
δikδ jl + δilδ jk

)
(11)

where B(1)
I K and B(2)

I J are given in “Appendix B”. In Eq. (10), PT is the transpose of P.
Regarding the associative plastic flow rule, the macroscopic plastic strain rate ε̇

p
is obtained from the

differentiation of the macroscopic yield function F with respect to the macroscopic stress σ :

ε̇
p � λ̇

∂F

∂σ
� 2
(
1 − φclay − φcry

)2
λ̇
(
PT.B.P

)
: σ (12)

where λ̇ is the plasticmultiplier computed from the plastic consistency condition: λ̇
〈
Ḟ
〉
� 0, the yield condition

being formulated in a Kuhn-Tucker form by: λ̇ ≥ 0,
〈
F
〉 ≤ 0, λ̇

〈
F
〉 � 0.

The macroscopic equivalent plastic strain rate ė
p
is given by:

ė
p �

√
2

3
ε̇
p
:
(
PT.B.P

)−1 : ε̇
p � 2

(
1 − φclay − φcry

)2
λ̇

√
2

3
σ :
(
PT.B.P

)
: σ (13)

2.2 Phase transformation

The clay-polymer interactionsmay provoke the perturbation of the crystallinity. In addition to the nanocompos-
ite structural characteristics, the micromechanical model includes the progressive phase transformation under
applied macroscopic deformation. The progressive evolution of crystallization is expressed by an Avrami-type
relationship [38, 39]:

φcry � φ∞_cryκ and κ̇ � ε̇

ε̇re f
αavKav(− ln(1 − κ))

αav−1
αav (1 − κ) (14)

in which φ∞_cry is the maximum crystal degree, κ is the total degree of transformation, ε̇ is the applied
strain rate, ε̇re f is the reference strain rate, αav is the Avrami exponent and Kav is the phase transformation
rate function defined as follows:

Kav � 1.47 × 10−3
(

4πNu

3φ∞_cry

)1/3

exp

(
−
(

θ − 141

47.33

)2
)

(15)

in which Nu is the number density of nuclei in the amorphous phase.
The intrinsic viscosity of the amorphous phase is introduced by means of the Duvaut-Lions viscoplastic

approach (see “Appendix C”). By this way, the rate-dependency of both the crystallization and the amorphous
plastic flow may affect the macroscopic stress.

2.3 Biaxiality effect on intercalation-exfoliation states

Biaxial loading was used in the literature to enhance the exfoliation extent in clay nanocomposites [5, 7].
In our modeling approach, the progressive exfoliation from the original aggregated clay to the completely
delaminated one is considered with the following equation:

N � δN0 + 1 (16)

in which N0 is the average number of silicate layers per clay stack before mechanical loading and δ is an
exfoliation degree parameter expressed as a two-parameter Weibull statistical distribution:

δ � 1 − exp

(
−
(‖σ‖

β

)α)
(17)

in which α and β are two material parameters and ‖σ‖ is the equivalent value of the macroscopic stress
tensor σ for which the components are given under a general biaxial stretching by:

σ 11 > 0, σ 22 � Rσ 11 and σ i j � 0 for all other components (18)

where R � σ 22
/
σ 11 is the stress biaxial ratio.
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Table 1 Model constants

Parameter Significance Value Reference

Amorphous phase Eg Glassy modulus 2.1 GPa [40]
Er Rubbery modulus 18 MPa [41]
θg Glass transition temperature 77 °C [42]
Xg Transition slope −0.04 MPa/°C
�θ Temperature shift 10 °C
νg Glassy Poisson’s ratio 0.35 [42]
νr Rubbery Poisson’s ratio 0.49 [41]
σy Initial yield strength 3 MPa
h Hardening 4.5 MPa
q Hardening 0.95
η Viscosity 0.01

Crystalline phase Ecry Modulus 118 GPa [43]
νcry Poisson’s ratio 0.3 [43]
αcry Crystal aspect ratio 2 [44]
ε̇re f Reference strain-rate 2.1/s
αav Avrami exponent 3
Nu Number density of nuclei 108

Clay Eclay Modulus 180 GPa [45]
νclay Poisson’s ratio 0.23 [45]

Intercal./exfol. trans α Weibull parameter −0.5
β Weibull parameter 80 MPa

3 Results

The model parameters are provided in Table 1. The amorphous elastic constants both in the glassy and rubbery
states were taken from available data of the literature [40–42]. The crystal elastic constants were taken from the
work of Matsuo and Sawatari [43] while the crystal shape factor was obtained from an experimental stiffening
curve taken from thework of Cosson et al. [44] on previously crystallized neat PET. Unless otherwise explicitly
indicated the clay nanoplatelets were regarded as completely exfoliated with dimensions and elastic constants
taken from the molecular dynamics results of Manevitch and Rutledge [45].

3.1 Clay and crystallization reinforcing effect

The model is first used to point out the separate and synergistic effects of clay particles and crystals on the
nanocomposite stiffening. Figure 1 presents the impact of the clay loading on the structure-stiffness relationship
with temperature variation in amorphous PET (Fig. 1a) or with increase in amount of newly-formed crystals
(Fig. 1b). A global view at these plots shows that the increase in clay concentration has a homothetic effect on
the modulus variation with temperature in the case of the amorphous PET. Interestingly, the increase in clay
concentration amplifies the reinforcing effect in a crystallized PET.

3.2 Comparison with experiments

Inwhat follows, the capabilities of themicromechanics-basedmodel to capture the overall mechanical behavior
of PET-based nanocomposites are examined by comparing model simulations to available experimental data
[7, 46]. Note that the crystallization in the course of straining was not measured in the work of Shen et al.
[7], only the maximum amount was provided. The maximum crystal degree taken from Shen et al. [7] being
temperature and rate-dependent, the reduced strain rate aθ ε̇ is here introduced to plot master curves. Figure 2a
shows that when the maximum crystal degree is plotted as a function of the reduced strain rate aθ ε̇, a straight
line fit perfectly describes the experimental data of both neat PET and its nanocomposite.

3.2.1 Neat PET

The material constants for the neat PET were the outcome of a standard optimization procedure that provides
the best fit of the uniaxial crystallization data of Salem [41] and the equal biaxial stress–strain data of Shen
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(a) (b)

Fig. 2 Maximum crystal degree as a function of a reduced strain rate aθ ε̇ (1: neat PET and 2: PET-clay system at 6% wt. clay),
b average tactoid thickness (1: 95 °C and 1/s, 2: 102 °C and 1/s); Solid lines: model; Symbols: experimental data of Shen et al.
[7]
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Fig. 3 Model results for neat PET under EB loading at different loading conditions (1: 95 °C and 1/s, 2: 102 °C and 2/s, 3: 102 °C
and 1/s): a stress–strain response, b strain-induced crystallization; Solid lines: model; Symbols: experimental data of Shen et al.
[7]

et al. [7]. Figure 3 presents the model results in comparison with Shen et al. [7] data for different strain rates
and temperatures. The different features of the stress–strain response are satisfactory captured by the model,
including the initial linear elasticity, the yield strength and the post-yield behavior. As expected, the maximum
crystal amount is perfectly caught by the model.

3.2.2 PET-clay nanocomposite

Figure 4 presents the equal biaxial (EB) response of a PET-based nanocomposite system for different strain
rates and temperatures. The model reproduces adequately the important effect of the loading parameters on
the mechanical response. Especially, the delay in the onset of strain stiffening due to the temperature increase
or the strain rate decrease. Again, the maximum crystal amount is satisfactory reproduced by the model. The
PET-clay system having a lower crystallinity than the neat PET, the model is then found able to capture the
crystallization reduction due to a confinement effect related to the restriction in mobility of the polymer chains
trapped between the clay layers. The model is therefore able to connect both the clay structural characteristics
and the phase transformation with the macroscopic behavior.
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Fig. 4 Model results for a PET-clay system (6% wt. clay) under EB loading at different loading conditions (1: 95 °C and 1/s,
2: 102 °C and 2/s, 3: 102 °C and 1/s): a stress–strain response, b strain-induced crystallization; Solid lines: model; Symbols:
experimental data of Shen et al. [7]

Fig. 5 Model results for neat PET and PET-clay systems (1: 2.5% wt. clay, 2: 1% wt. clay, 3: neat PET) under CW loading at
100 °C and 1/s: a stress–strain response, b strain-induced crystallization; Solid lines: model; Symbols: experimental data of Figiel
et al. [46]

Figure 5 presents model predictions under constant width (CW) condition in comparison of experimental
data of Figiel et al. [46] for neat PET and two of its nanocomposites.

The clay content effect on the plastic flow response is adequately reproduced by the model, especially
the reinforcing effect on the strain hardening ability. It can be also observed that the incubation strain, below
which no phase transformation is detected, decreases when the clay loading increases. The model can be used
to predict the stress-crystallinity evolution in response to a temperature change. Illustrative examples of the EB
material response are presented in Figs. 6 and 7 for the neat PET and its nanocomposite, respectively, for two
successive temperatures: 102 °C and 95 °C. The simulation consists to an isothermal straining at 102 °C up to
a pre-determined strain level, then a progressive cooling is performed at a constant rate until a temperature of
95 °C. The isothermal stress response and phase transformation at 102 °C and 95 °C are also presented in the
figure.

As a final point of discussion, the model ability to relate structural state, overall response and loading
parameters is shown. Figure 8 shows the model prediction under EB stretching at two stretching tempera-
tures considering intercalated morphology, exfoliated morphology and strain-induced intercalated-exfoliated
morphology transformation.
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Fig. 6 Model results for neat PET considering two temperature levels under EB loading at 1/s (1: 102 °C, 2: 95 °C, 3: 102 °C
and then 95 °C)
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Fig. 7 Model results for a PET-clay system (6% wt. clay) considering two temperature levels under EB loading at 1/s (1: 102 °C,
2: 95 °C, 3: 102 °C and then 95 °C)
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Fig. 8 Model results for a PET-clay system (6%wt. clay) underEB loading considering differentmorphology states (1: intercalated
morphology, 2: exfoliated morphology, 3: strain-induced intercalated-exfoliated morphology transformation): a 95 °C and 1/s,
b 102 °C and 1/s



Micromechanical modeling biaxial behavior 2997

2

3

1

2

1

(a) (b)

Fig. 9 Model results for a PET-clay system (6%wt. clay) on theEB loading effect on a the average thickness of the intercalated clay
stack (1: 95 °C and 1/s, 2: 102 °C and 1/s), b the stiffening considering different morphology states (1: intercalated morphology,
2: exfoliated morphology, 3: strain-induced intercalated-exfoliated morphology transformation)

As expected intercalated and exfoliated states lead to lower andupper boundmodel predictions, respectively,
between which the experimental data of Shen et al. [7] fall. The degree of exfoliation may be increased by
the biaxial stretching caused by the delamination of the intercalated layers [5, 7]. The model results may be
then better favorably compared to the experimental data when an evolution from intercalation to exfoliation
states caused by the EB loading is introduced. The EB stretching improves the exfoliation as the average
tactoid thickness diminishes in the course of the loading. The split of the large tactoids into thinner and
smaller tactoids is significantly influenced by the stretching temperature as illustrated in Fig. 9a, the better
delamination of tactoids at the lowest stretching temperature leading to the hardening ability enhancement
due to the new exfoliated state. The correlation between crystallinity rate and exfoliated clay is observed in
Fig. 2b. The decrease in the tactoid thickness with the EB stretching produces an increase in crystal degree
due to the decrease in confinement effect on the crystallization of the polymer chains. The combined effect
of strain-induced nanocomposite structural evolution and strain-induced phase transformation leads to the
enhanced stiffening as illustrated in Fig. 9b.

4 Concluding remarks

In this paper, the strain-induced crystallization was incorporated into an elastic-viscoplastic micromechanical
constitutive representation of the PET-clay nanocomposite. Themodel-experiments comparisons demonstrated
the capability of the model to describe the biaxial elastic-viscoplastic response of neat PET and its nanocom-
posites under different loading conditions in terms of strain rate and temperature. The model provides a useful
tool to tailor and optimize the microstructure-property relationship of strain-induced crystallizable PET-clay
nanocomposites. Separate and synergistic effects of nanocomposite structural characteristics, phase transfor-
mation and loading parameters on the overall response were highlighted thanks to the model.
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Appendix A

The intercalated cluster of clay is replaced by an equivalent homogeneous nanoparticle having transversely
isotropic properties. Each intercalated clay stack is seen as a laminated composite sub-structure, consisting of
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Fig. 10 Intercalated clay stack

several clay platelets separated by polymer, for which the elastic tensor is estimated using the laminate theory
[30]. The elastic stiffness tensor Cclay is given from the six elastic constants written as:

E11 � E33 � φS/P ES +
(
1 − φS/P

)
EG

E22 � ESEG

φS/P EG +
(
1 − φS/P

)
ES − φS/P

(
1 − φS/P

)
η1EGES

ν12 � ν23 � φS/PνS +
(
1 − φS/P

)
νG

ν13 � νSφS/P ES
(
1 − ν2G

)
+ νG

(
1 − φS/P

)
EG
(
1 − ν2S

)

φS/P ES
(
1 − ν2G

)
+ νG

(
1 − φS/P

)
EG
(
1 − ν2S

)

G12 � G23 � GSGG

φS/PGG +
(
1 − φS/P

)
GS − φS/P

(
1 − φS/P

)
η2GGGS

G13 � E11

2(1 + ν13)
(A1)

The two parameters η1 and η2 are given by:

η1 � ν2SEG
/
ES + ν2GES

/
EG − 2νSνG

φS/P ES +
(
1 − φS/P

)
EG

η2 � ν2SGG
/
GS + ν2GGS

/
GG − 2νSνG

φS/PGS +
(
1 − φS/P

)
GG

(A2)

where E is the Young’s modulus, G is the shear modulus and ν is the Poisson’s ratio. The subscripts S and G
refer to the silicate and the gallery (confined polymer matrix in the intersilicate layers whose elastic constants
are taken equal to those of the amorphous PET), respectively. The term φS/P is the volume fraction of silicate
in the intercalated clay stack:

φS/P � NdS
t

(A3)

where t is the thickness of the intercalated clay stack:

t � (N − 1)d001 + dS (A4)

The quantities N, d001 and dS are the clay structural parameters schematically defined in Fig. 10. They
denote, respectively, the average number of silicate layers per clay stack, the average silicate interlayer spacing
and the thickness of the silicate layer, respectively. When the intercalated morphology is invoked in the main
body of the paper, the employed average structural parameters are N � 8, LS � 200 nm, dS � 1 nm and d001
� 2 nm.
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The volume fraction of intercalated clay stacks can be expressed as:

φclay � ρm

ρSφS/P
WS (A5)

whereWS is the silicate weight fraction, ρS is the silicate density and ρm is the density of the polymer matrix:

ρm � φamρam + φcryρcry (A6)

The PET, crystal and clay densities were taken equal to 1.335 g/cm3, 1.445 g/cm3 and 2.3 g/cm3, respec-
tively.

The aspect ratio of the intercalated clay stack αclay is given by:

αclay � (N − 1)d001 + dS
LS

(A7)

where LS is the clay layer length.
The crystal volume fraction φcry is calculated from the crystal weight fractionW cry as follows:

φcry � Wcry

Wcry +
(

ρcry
φamρam+φclayρclay

)(
1 − Wcry

) (A8)

Appendix B

The parameters B(1)
I K and B(2)

I J are given by:

B(1)
I K � −1

3
+

2

4725(1 − νam)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
3
(
35ν2am − 70νam + 36

)
�I K

+7
(
50ν2am − 59νam + 8

)
(�I + �K )

−2
(
175ν2am − 343νam + 103

)

⎤
⎦( φclay

DI I DKK
+

φcry
EI I EK K

)

+21(25νam − 2)(1 − 2νam)

⎛
⎜⎝

φclay
(GI I + GKK )

DI I DKK

+φcry
(HI I + HKK )

EI I EK K

⎞
⎟⎠

+21(25νam − 23)(1 − 2νam)

⎛
⎜⎝

φclay
(GI I�K + GKK�I )

DI I DKK

+φcry
(HI I�K + HKK�I )

EI I EK K

⎞
⎟⎠

+1575(1 − 2νam)2
(
φclay

GI I GKK
DI I DKK

+ φcry
HI I HKK
EI I EK K

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

B(2)
I J � 1

2
+

1

1575(1 − νam)2

(
φclay

DI J DI J
+

φcry

EI J EI J

)
⎡
⎢⎢⎢⎣

(
70ν2am − 140νam + 72

)
�I J

−(175ν2am − 266νam + 75
) (�I + �J )

2
+
(
350ν2am − 476νam + 164

)

⎤
⎥⎥⎥⎦

where �I , �I J , DI J , EI J , GI J and HI J are defined by:

�1 � 3
[
1 − α4g

(
α2
)]

1 − α4 ,

�2 � �3 � 1

2
(3 − �1),
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�11 � 5
[
2 + α4 − 3α4g

(
α2
)]

2
(
1 − α4

)2 ,

�12 � �21 � �13 � �31 � 15α4
[−3 +

(
1 + 2α4

)
g
(
α2
)]

4
(
1 − α4

)2 ,

�22 � �23 � �32 � �33 � 1

8
(15 − 3�11 − 4�12) (B2)

with

g(α) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cosh−1 α

α
√

α2 − 1
if α > 1

cos−1 α

α
√
1 − α2

if α < 1

(B3)

DI J � 2(VI J + N PI J )

EI J � 2(VI J + N II J ) (B4)

and
⎧⎨
⎩

GI1
GI2
GI3

⎫⎬
⎭ �

⎡
⎣
U11 + 2V11 +WP11 U21 + MP21 U31 + MP31

U12 + MP12 U22 + 2V22 +WP22 U32 + MP32
U13 + MP13 U23 + MP23 U33 + 2V33 +WP33

⎤
⎦

−1⎧⎨
⎩

UI1 + MPI1
UI2 + MPI2
UI3 + MPI3

⎫⎬
⎭

⎧
⎨
⎩

HI1
HI2
HI3

⎫
⎬
⎭ �

⎡
⎣
U11 + 2V11 +W I11 U21 + MI21 U31 + MI31

U12 + MI12 U22 + 2V22 +W I22 U32 + MI32
U13 + MI13 U23 + MI23 U33 + 2V33 +W I33

⎤
⎦

−1⎧⎨
⎩

UI1 + MII1
UI2 + MII2
UI3 + MII3

⎫
⎬
⎭

(B5)

with

U11 �
(
4νam +

2

α2 − 1

)
f (α) + 4νam +

4

3
(
α2 − 1

) ,

U12 � U13 �
(
4νam − 2α2 + 1

α2 − 1

)
f (α) + 4νam − 2α2

α2 − 1
,

U21 � U31 �
(

−2νam − 2α2 + 1

α2 − 1

)
f (α) − 2α2

α2 − 1
,

U22 � U23 � U32 � U33 �
(

−2νam +
4α2 − 1

4
(
α2 − 1

)
)
f (α) +

α2

2
(
α2 − 1

) , (B6)

V11 �
(

−4νam +
4α2 − 2

α2 − 1

)
f (α) − 4νam +

12α2 − 8

3
(
α2 − 1

) ,

V12 � V21 � V13 � V31 �
(

−νam − α2 + 2

α2 − 1

)
f (α) − 2νam − 2

α2 − 1
,

V22 � V23 � V32 � V33 �
(
2νam − 4α2 − 7

4
(
α2 − 1

)
)
f (α) +

α2

2
(
α2 − 1

) , (B7)

MPI J � λamμclay − λclayμam(
μclay − μam

)[
2
(
μclay − μam

)
+ 3
(
λclay − λam

)] ,

N PI J � μam

2
(
μclay − μam

) ,

MII J �
λam

(
1 − �

(i)
I K δkk

)
− 2μam�

(i)
I J

2
(
μcry − μam

) ,
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N II J � μam

2
(
μcry − μam

) ,

WPI I � MPI I + 2N PI I ,

W II I � MII I + 2N II I . (B8)

in which λ and μ are the Lame’s constants and
⎧⎨
⎩

�I1
�I2
�I3

⎫⎬
⎭ �

⎡
⎣

γ λcry − λam λcry − λam
λcry − λam γ λcry − λam
λcry − λam λcry − λam γ

⎤
⎦

−1⎧⎨
⎩

λcry − λam
λcry − λam
λcry − λam

⎫⎬
⎭ (B9)

with γ � λcry − λam + 2
(
μcry − μam

)
.

Appendix C

The Duvaut-Lions approach was employed to transform plasticity to viscoplasticity [47, 48]:

ε̇vp � 1

η
C−1
am :

(
σ − σ

)
(C1)

ėvp � 1

η

(
evp − e

p
)

(C2)

where η is a viscosity parameter, σ and σ are the total average viscoplastic stress tensor and the overall inviscid
plastic stress tensor, respectively, and, evp and e

p
are the viscoplastic strain tensor and the inviscid plastic strain

tensor, respectively. The inviscid solution, in terms of the actual stress tensor σ n+1 and the internal variable
e
p
n+1, is updated at each increment allowing the calculation of the new stress σ n+1 and the viscoplastic strain

evp
n+1 by integrating the two previous equations using a backward Euler algorithm:

σ n+1 � (σ n + Cam : �εn+1) +
�tn+1

η
σ n+1

1 + �tn+1
η

(C3)

evp
n+1 � evp

n + �tn+1
η

e
p
n+1

1 + �tn+1
η

(C4)

where �tn+1 is the time step. When �tn+1
/
η → ∞ the inviscid solution is recovered and when �tn+1

/
η → 0

the elastic solution is achieved.
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