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Abstract This study presents a peridynamic (PD) approach to model progressive failure in fiber steered
composites. The force density vectors in thePDequation ofmotion are derived explicitly for in-plane, transverse
normal and transverse shear deformations in terms of the engineering material constants. The PD bonds enable
the interaction of material points within each ply as well as their interaction with other material points in the
adjacent plies. The PD equilibrium equation is solved by employing implicit techniques in an iterative form
to account for damage progression based on the Hashin failure criteria for in-ply bonds and critical energy
density release rate for inter-ply bonds. The capability of this approach is demonstrated by considering a
lamina and two different variable tow angle laminates with a circular cutout under tension. It captures the
correct deformation field as well as the damage initiation site and its progressive growth.

Keywords Peridynamics · Fiber-steered composites · Failure · Progressive · Damage

1 Introduction

Advanced composite materials have played a significant role in the development of cutting-edge lightweight
space technologies for space exploration. As space exploration continues to evolve, the current and the future
missions continually demand the advancement of composite materials and technologies to a yet more sophisti-
cated horizon. Current research on space technologies focusing to advance pre-impregnated composite materi-
als with continuous or short fibers also seeks for their high stiffness, low coefficient of thermal expansion, low
moisture absorption ability, resistance to extreme temperature ranges, and out-gassing ability, in addition to
their being extremely light weight. Conventional straight-fiber laminated composites offer a limited tailoring
option by designing the stacking sequence with constant ply-angles along the thickness direction. With the
introduction of new manufacturing technologies such as advanced fiber placement (AFP), engineers now have
the capability to harness the full potential of nonconventional variable stiffness laminated composites using
in-plane fiber steering.
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Stiffness variation can be achieved by modifying the stacking sequences at each location by steering the
fibers in each ply to produce continuous curvilinear fiber paths, which are also referred to as variable angle tow
(VAT) composites. The design of nonconventional variable stiffness laminated composites has gained much
more interest because of its challenge and promising performance. Its design practicality requires allowable
database which requires extensive testing. However, it is not tractable to build databases that cover all different
possible stacking sequences for VAT composites. In addition, fiber-steered composites might present different
failure mechanisms than conventional composites. Therefore, accurate modeling and simulation tools are
essential for virtual testing and reliable design of VAT composites. Virtual testing requires coupled modeling
and simulations of fiber placement and structural response for progressive failure analysis.

Silling [1] and Silling et al. [2] introduced the peridynamic (PD) theory in order to address damage initiation
and propagation in an isotropic material at multiple sites with arbitrary paths. In the PD theory, the internal
forces are expressed through nonlocal interactions between the material points within a continuous body, and
damage is part of the constitutive model. Damage is introduced through the removal of interactions (bonds)
between the points based on a particular criteria, making the progressive failure analysismore practical. The PD
equations of motion are classified as “Bond-Based (BB),” “Ordinary State-Based (OSB)” and “Non-Ordinary
State-Based (NOSB)” PD. In the BB-PD formulation, the interaction of a pair of material points is independent
of the influence of other points in their domain of interaction. However, the OSB- and NOSB-PD formulation
is dependent on the influence of other points within their individual domains of interaction. In the past decade,
PD has been widely adopted and applied to various engineering applications. An extensive literature survey
on PD is given by Madenci and Oterkus [3].

This study presents a PD approach for modeling variable angle tow composites as an extension of the
approach by Madenci et al. [4–6]. The derivation of the PD equation of motion accounts for the in-plane,
transverse normal and transverse shear deformations. The force density vectors in the PD equation of motion
are derived in terms of the engineering material constants. The capability of this approach for progressive
failure is demonstrated through damage initiation and growth in two different VAT laminates with a hole under
tension.

2 Approach

The laminate can be composed of N plies with varying ply thickness, hn . A material point xn located on the
nth ply has coordinates (xn, yn, zn) with respect to the reference coordinate system, (x, y, z). The material
point, xn , experiences displacement, u(n)(t) at time t . The subscript or superscript n denotes the ply number
with (n � 1, .., N ). The fiber path parameterization in each ply of the laminate is achieved by [7]

θn(xn) � T n
0 + (T n

1 − T n
0 )

2|xn − L/2|
L

(1)

where T n
0 and T n

1 are the fiber orientation angles at the center and along the edges of the n - th ply, respectively.
The origin of the coordinate system, (xn, yn, zn) is located at the lower left corner of the lamina with dimension
of L and W in the x− and y− directions, respectively.

The equilibrium equations for the n - th ply are expressed as

ρnü
(n)
α � σ

(n)
αβ,β + b(n)α (2)

in which ρn is the mass density, and u(n)α , σ
(n)
αβ and b(n)α with α � x, y, z represent the displacement,

stress and body force components, respectively. For an orthotropic lamina in a state of plane stress, the stress
components can be related to the strain components as
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in which the parameters, Q
(n)
i j , are expressed in terms of the fiber orientation angle, θn(x) from the x-

axis, and the material constants E11, E22, E33, v12, v13, v23,G12,G23 and G13, [8]. Substituting for the stress
components in the equilibrium equations along with the strain–displacement (kinematic) relations results in

ρn ü
(n) � L(n) + L̃(n) + L̂(n) + b(n) (4)

where L(n), L̃(n) and L̂(n) represent the internal force vectors arising from in-plane, transverse shear and
transverse normal deformations, respectively. They are defined as

L(n)(x) � D(n)(x)u(n) (5a)

L̃(n)(x) � D̃(n)(x)u(n) (5b)

and

L̂(n)(x) � D̂(n)(x)u(n) (5c)

where the matrices D(n), D̃(n) and D̂(n) are expressed as
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and
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where ∂αβ � ∂2

∂α∂β
with respect to (α, β � x, y, z).

As suggested by Madenci and Oterkus [9], the equilibrium equation, Eq. (4) can be recast in PD form as

ρn ü
(n) �

∫
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(
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)
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(7)

where u(n) and u′(n) are the displacement vectors at points xn and x′
n , respectively. The force density vectors

(t(n), t′(n)) develop due to in-plane deformation between material points, xn and x′
n . The force density vectors

(t̃(n),Qt′
(m)

) and (t̂(n),Ot′(m)
) develop due to transverse shear deformation and transverse normal deformations,

respectively, between material points, xn and x′
m . The horizon of point xn is specified as Hxn representing

its domain of interaction as shown in Fig. 1. The interactions of this point with the others through intra- and
inter-layer bonds are also depicted in Fig. 1. The in-plane interactions occur only within each ply.

As derived by Madenci et al. [6], the force density vectors can be expressed as

t(n) � kn
(
u(n) − u′(n)) (8a)

t̃(n) � k̃n
(
u(n) − u′(m)

)
(8b)
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Fig. 1 Interaction of material point xn with other points x′
n and x′

m located on the same ply and other plies, respectively

and

t̂(n) � k̂n
(
u(n) − u′(m)

)
(8c)

in which kn , k̃n and k̂n are defined as
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The coefficients appearing in these matrices can be expressed in terms of the PD functions,
gp1 p2 p3
2 (ξ, w(|ξ|)) with p1, p2, p3 � 0, 1, 2 and ξ � xn − x′

n or ξ � xn − x′
m as
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The PD functions,gp1 p2 p3
2 (ξ, w(|ξ|)), introduced by Madenci et al. [10–12] enable the nonlocal form of

differentiation as

∂ p1+p2+p3 f (x)

∂x p1
1 ∂x p2

2 ∂x p3
3

�
∫

Hxn

f (x + ξ)gp1 p2 p3
2 (ξ, w(|ξ|))dVx′ (12)

in which pi (i � 0, 1, 2) denotes the order of differentiation with respect to variable xi with i � 1, 2, 3.
The failure (status) parameter μ(xn, x′

n) enables the inclusion of damage initiation and growth in the material
response. If the failure criterion is satisfied, the status variableμ(xn, x′

n) is set to zero. The parameterw(|ξ|) �
δ2/|ξ|2 is non-dimensional and specifies the degree of interaction among the material points. The coefficients
appearing in thePD force density vectors do not require any calibration; thus, surface correction is not necessary.

3 Failure prediction

Peridynamics permits bond breakage when the failure criterion is satisfied; thus, the bond forces vanish.
Breakage of the bonds between the material points is reflected in the PD equation of motion through the
failure (status) parameter. The in-plane bonds are removed due to fiber breakage and matrix cracking, and the
interlayer bonds due to delamination. In this study, failure prediction for fiber breakage and matrix cracking
is based on Hashin-type stress criteria [13] in conjunction with the visibility criteria [14], and delamination
failure is based on the energy release rate criterion as demonstrated by Hu and Madenci [15, 16].

3.1 In-plane damage prediction

In each ply, Hashin criteria [13] identifies matrix cracking and fiber failure by applying the following failure
indices:

3.1.1 Tensile fiber failure

(
etf (r )
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σ11(r )

Xt
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+
(σ12(r )

S
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(
σ11(r )

) ≥ 0 and
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Xt
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>
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S

)2
(13a)

3.1.2 Compressive fiber failure

(
ecf (r )

)2 �
(

σ11(r )

Xc

)2

� 1 for
(
σ11(r )

) ≤ 0 (13b)
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3.1.3 Tensile matrix failure

(
etm(r )

)2 �
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Yt
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(
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)2

� 1 for
(
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3.1.4 Compressive matrix failure

(
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− 1

](
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)

+
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2S

)2
+
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(
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) ≤ 0 (13d)

whereσi j denotes the stress componentswith respect to thematerial coordinate systemalignedwith longitudinal
(fiber) and transverse directions. The parameters X and Y represent the allowable strength in longitudinal and
transverse directions. The subscripts t and c denote the tensile and compressive loading, respectively. The
parameter S denotes the allowable shear strength. The maximum value of the failure index identifies the
failure mode.

F(r ) � max
{
etf (r ), e

c
f (r ), e

t
m(r ), e

c
m(r )

}
with r � 1, .., R (14)

where r � 1, .., R is the total number of PD points. Based on the stress field at each material point, the failure
index with a value of F(r ) ≥ 1 indicates damage in the material. However, it is necessary to identify the PD
bond with max failure index. First, it is necessary to establish the material point, x(k) with the max failure index
as

F(k) � max{F(1), F(2), . . . , F(R)} (15)

Second, it is necessary to identify the material point, x( j) with maximum failure index in the family of
point, x(k)

F( j) � max{F(1), F(2), . . . , F(N(k))} (16)

If the failure index of this bond satisfies Hashin criteria, an incremental cut, c(k)( j), is introduced at the
center of the bond between x(k) and x( j). It is defined as

c(k)( j) � (x(k) + x( j))/2 (17)

The extent and direction of the cut indicated by red dotted line in Fig. 2 is defined by
[

c(k)( j) +
�

2
t(k)( j), c(k)( j) − �

2
t(k)( j)

]

(18)

in which � is the spacing between the points, and t(k)( j) is a unit vector either in the direction or perpendicular
to the fiber depending on the failure mode. The other points of the bonds connected to point x(k) and x( j)
crossing the crack path are no longer visible to each other. Therefore, these bonds are broken according to the
visibility criteria suggested by Belytschko et al. [14] and Madenci et al. [4]. As shown in Fig. 2, broken and
unbroken bonds are distinguished by dashed blue and solid black lines, respectively.

3.2 Delamination prediction

Based on the critical energy release rate, failure of interlayer bonds results in delamination. When the energy
release rate reaches its critical value, the bond is broken. As defined by Silling and Askari [17], the stretch
corresponding to bond ξ(k)( j) � x( j) − x(k) is defined as

s(k)( j) �
∥
∥(x( j) + u( j)) − (x(k) + u(k))

∥
∥− ∥

∥x( j) − x(k)
∥
∥

∥
∥x( j) − x(k)

∥
∥

(19)

Therefore, the incremental stretch, �s(k)( j), can be obtained as

�s(k)( j) �
∥
∥(x( j) + �u( j)) − (x(k) + �u(k))

∥
∥− ∥

∥x( j) − x(k)
∥
∥

∥
∥x( j) − x(k)

∥
∥

(20)
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Fig. 2 Description of visibility for damage progression

where �u(k) and �u( j) represent incremental displacements at points x(k) and x( j), respectively.Under the
assumption of small deformation, the elastic micropotential of the transverse shear and transverse normal
bonds at x(k) are determined, respectively, as

w̃(k)( j) �
Ninc
∑

i�1

t̃i(k)( j) · ξ(k)( j)
∥
∥ξ(k)( j)

∥
∥
�si(k)( j) (21a)

and

ŵ(k)( j) �
Ninc
∑

i�1

t̂i(k)( j) · ξ(k)( j)
∥
∥ξ(k)( j)

∥
∥
�si(k)( j) (21b)

where N inc is the total number of increments, t̃i(k)( j) and t̂
i
(k)( j) are force density vectors at the i - th increment

for transverse shear and transverse normal bonds, respectively, defined in Eq. 8b and 8c. The strain energy
stored at x(k) due to the deformation of the bond between two material points x(k) and x( j) can be expressed as.

W̃(k) � 1

2

w̃(k)( j) + w̃( j)(k)

2
V(k)V( j) for transverse shear bond (22a)

and.

Ŵ(k) � 1

2

ŵ(k)( j) + ŵ( j)(k)

2
V(k)V( j) for transverse normal bond (22b)

where V(k) and V(k) are volumes of material points x(k) and x( j), respectively. The delamination area can be
approximated as A � K (�x)2 where �x is the in-plane spacing between the material points and K is the
number of material points across the delamination area, A. Under the assumption that the state of deformation
does not change significantly across the delamination area A, the energy release rate at each material point can
be approximated as [15, 16]

G(k) � W̃(k) + Ŵ(k)

A
�

Ks
(k)∑

j�1

(
w̃(k)( j) + w̃( j)(k)

2
)
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(
ŵ(k)( j) + ŵ( j)(k)

2
)
V(k)V( j)
2(�x)2

(23)

and Ks
(k) and Kn

(k) denote the number of interlayer shear and normal bonds, respectively, associated with
material point x(k) which is located on either the lower or upper side of the lamina.

Based on the direction of displacement components, the energy release rate available at material point x(k)
can be decomposed into three different mode contributions of interlaminar strain energy release rate

G(k) � GI (k) + GI I (k) + GI I I (k) (24a)
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where

GI (k) �
Ks
(k)∑
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∥ξ(k)( j)

∥
∥

�si(k)( j)V(k)V( j)

2(�x)2
(25b)

G̃ I I (k)( j) �
Ninc
∑

i�1

(
t̃ ix(k)( j) − t̃ ix( j)(k)

2
)

ξx(k)( j)
∥
∥ξ(k)( j)

∥
∥

�si(k)( j)V(k)V( j)

2(�x)2
(25c)

Ĝ I I (k)( j) �
Ninc
∑

i�1

(
t̂ ix(k)( j) − t̂ ix( j)(k)

2
)

ξx(k)( j)
∥
∥ξ(k)( j)

∥
∥

�si(k)( j)V(k)V( j)

2(�x)2
(25d)

G̃ I I I (k)( j) �
Ninc
∑

i�1

(
t̃ iy(k)( j) − t̃ iy( j)(k)

2
)

ξy(k)( j)
∥
∥ξ(k)( j)

∥
∥

�si(k)( j)V(k)V( j)

2(�x)2
(25e)

Ĝ I I I (k)( j) �
Ninc
∑

i�1

(
t̂ iy(k)( j) − t̂ iy( j)(k)

2
)

ξy(k)( j)
∥
∥ξ(k)( j)

∥
∥

�si(k)( j)V(k)V( j)

2(�x)2
(25f)

t̃ ix(k)( j), t̃
i
y(k)( j) and t̃ iz(k)( j) are the components of force density vector of the interlayer shear bond, and

t̂ ix(k)( j), t̂
i
y(k)( j) and t̂

i
z(k)( j) are the components of force density vector of the interlayer normal bond at the i - th

increment and ξx(k)( j), ξy(k)( j) and ξz(k)( j) are components of relative position of the bond, ξ(k)( j). Note that,
Eq. (25) is derived with the fact that ξ(k)( j) � −ξ( j)(k) and �si(k)( j) � �si( j)(k).

As suggested by Benzeggagh and Kenane [18], the critical interlaminar fracture toughness Gc(k) of a
material point x(k) is stated as

Gc(k) � GIc + (GI Ic − GIc)

(
GI I (k) + GI I I (k)

GI (k) + GI I (k) + GI I I (k)

)η

(26)

whereGIc andGI Ic are the measured fracture toughness values forMode I and II delamination initiations. The
exponent η is determined empirically based on curve fitting of the experimental data fromdifferentmixed-mode
ratios. In this study, fracture toughness GI Ic and GI Ic are extracted from references [19, 20], and exponent η
is assumed to be 1.0 because of lack of data. The critical interlaminar fracture toughness Gc(k) of a material
point is distributed among the interlayer bonds of material point x(k). The distribution is assumed to be uniform
among the interlayer bonds as

Gc(k)( j) � G̃c(k)( j) � Ĝc(k)( j) � Gc(k)

Ns
(k) + Nn

(k)
(27)

This equation establishes the fracture criterion for a single interlayer bond. Thus, failure occurs when.

G̃(k)( j)

Gc(k)( j)
� G̃ I (k)( j) + G̃ I I (k)( j) + G̃ I I I (k)( j)

Gc(k)( j)
≥ 1 for transverse shear bonds (28a)
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Fig. 3 The geometry and boundary conditions of a VAT composite with a circular hole

and.

Ĝ(k)( j)

Gc(k)( j)
� Ĝ I (k)( j) + Ĝ I I (k)( j) + Ĝ I I I (k)( j)

Gc(k)( j)
≥ 1 for transverse shear bonds (28b)

3.3 Failure parameter

The failure (status) parameter μ(k)( j) is defined as

μ(k)( j) �
{
1 unbroken or visible bond
0 broken or invisible bond (29)

As suggested by Silling and Askari [17], the local damage ϕ(k) at point x(k) can be measured as the ratio
of the number of broken bonds to the total number of initially intact bonds as

ϕ(k) � 1 −

N(k)∑

j�1
μ(k)( j)

N(k)
(30)

The local damage ϕ(k) ranges from zero to one and is an indicator of possible crack formation within a
body.

4 Numerical results

The capability of this approach is demonstrated by considering a VAT lamina with a circular cutout under
tension. The geometry and loading conditions are shown in Fig. 3. Tensile loading is applied in the form
of displacement increments of �u0 � 0.005 mm until failure. Its elastic properties are specified as E11 �
173 GPa, E22 � 7.2 GPa, G12 � 3.76 GPa, and ν12 � 0.29. It has dimensions of L � 50. mm W � 60. mm
with thickness of h � 1.0 mm. The cutout radius is a � 10. mm.

The tow-steered fiber path in the lamina is defined as < T 1
0 � 0◦|T 1

1 � 40◦ >. Their curvilinear fiber paths
are shown in Fig. 4. The variation of horizontal and vertical displacement components from PD and FEM
simulations is shown in Figs. 5 and 6, respectively. Also, the PD displacement results are compared with those
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Fig. 4 Fiber paths in each layer corresponding to < T0 � 0◦|T1 � 40◦ >

Fig. 5 Horizontal displacement predictions in a VAT laminate with a hole under displacement constraints of u0 � 0.1 mm:
a FEM and b PD

of FEM along horizontal and vertical central lines in Figs. 7 and 8, respectively. These figures reveal that the
PD predictions are in close agreement with the high-fidelity finite element predictions. Figure 9 shows crack
initiation and it growth along the fiber path at failure. The progressive failure is natural, and it is achieved by
removing the PD bonds. As expected, it follows the fiber path.

Further demonstration of this approach is achieved by considering two different VAT laminates with a
circular cutout under tension as shown in Fig. 3. Its elastic properties are specified as E11 � 164.3 GPa,
E22 � 8.977 GPa, G12 � 5.02 GPa, and ν12 � 0.32. The laminates are made of four plies having the same
fiber orientation with ply thickness of h � 0.2 mm. The fiber orientation of the plies in each laminate is
specified as either [< T0 � 0◦|T1 � 40◦ >]4 or [< T0 � 90◦|T1 � 60◦ >]4. The cutout located at the
center has a radius of a � 5 mm. The strength parameters in Hashin criteria are specified as Xt � 2905GPa,
Xc � 1680GPa, Yt � 100GPa, Yc � 247GPa, S � 80GPa, and the critical energy release rate values are
GIc � 0.256N/mm and GI Ic � 0.6499N/mm. Each ply of the laminate is discretized with a grid spacing of
� � 0.2 mm. The computational domain has a total number of 300,000 PD points. The curvilinear fiber paths
defined by < T0 � 0◦|T1 � 40◦ > and < T0 � 90◦|T1 � 60◦ > are shown in Fig. 10.

The horizontal and vertical displacement components in a laminate with layup of < T0 � 0◦|T1 � 40◦ >
and < T0 � 90◦|T1 � 60◦ > are shown in Figs. 11 and 12, respectively. These figures represent the overall
laminate deformations.
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Fig. 6 Vertical displacement predictions in a VAT laminate with a hole under displacement constraints of u0 � 0.1 mm: a FEM
and b PD

Fig. 7 Comparison of FEM and PD displacement predictions along the horizontal central line: a horizontal displacement and
b vertical displacement

Figure 13 shows damage progression in the laminate with layup of < T0 � 0◦|T1 � 40◦ > at two stages.
The damage reflects both in-plane cracking and delamination. At the first stage subjected to the displacement
loading of u0 � 0.16mm, two small cracks propagate perpendicular to the loading direction following the
fiber path. As the loading increases, the cracks propagate along the fiber path to the laminate sides where the
fiber layup is T1 � 40◦.

Figure 14. shows damage progression in the laminate with layup of < T0 � 90◦|T1 � 60◦ > also at two
stages under u0 � 0.02mm loading. Two parallel cracks initiate around the cutout, as shown in Fig. 14a. Note
that in this layup, fiber orientation is close to 90◦ and cracks propagate parallel to the loading due to matrix
failure. Unlike the layup with < T0 � 0◦|T1 � 40◦ >, these cracks do not propagate further as the load
increases. Instead, some other parallel cracks initiate and propagate to some extent. These individual cracks
always follow the fiber path due to the matrix failure.
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Fig. 8 Comparison of FEM and PD displacement predictions along vertical central line: a horizontal displacement and b vertical
displacement

Fig. 9 PD vertical displacement and crack path predictions at failure load of u0 � 0.25 m

Fig. 10 Fiber paths in each layer corresponding to a < T0 � 0◦|T1 � 40◦ >, b < T0 � 90◦|T1 � 60◦ >
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Fig. 11 PD displacement predictions in a VAT laminate of < T0 � 0◦|T1 � 40◦ > under a displacement constraint of u0 �
0.01 mm: a horizontal and b vertical components

Fig. 12 PD displacement predictions in a VAT laminate of < T0 � 90◦|T1 � 60◦ > under a displacement constraint of
u0 � 0.01 mm: a horizontal and b vertical components

Fig. 13 PD damage predictions in a VAT laminate of < T0 � 0◦|T1 � 40◦ > at two stages under a displacement constraint of:
a u0 � 0.16 mm and b u0 � 0.25 mm(final loading)
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Fig. 14 PD damage predictions in a VAT laminate of < T0 � 90◦|T1 � 60◦ > at two stages under a displacement constraint of:
a u0 � 0.02 mm and b u0 � 0.08 mm (final loading)

5 Conclusions

This study presents a peridynamics approach to model and predict progressive failure in VAT composite
without any limitation to specific fiber orientation and material properties. Its capability is demonstrated by
recovering the expected deformation field and damage propagation path. The progressive damage predictions
capture the general characteristics of the experimentally observed damage patterns. The equilibrium equation is
solved by employing implicit techniques for computational efficiency. This approach offers a reliablemodel for
progressive failure and strength prediction of VAT composites with arbitrary layup under complex quasi-static
loading.
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