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Abstract Mohr–Coulomb shear strength parameters, namely cohesion strength and internal friction angle,
are the key determinants of intact rock strength. Triaxial tests are generally performed at different stress
levels to determine these shear parameters. However, as an alternative to this expensive and time-consuming
method, data-oriented computational approach is available to employ and provides a new technical means for
geomaterial strength parameters prediction. In this paper, random forest, alternating model tree, and support
vector machine techniques are utilized to predict Mohr–Coulomb shear strength parameters by using the
published database of the uniaxial compressive strength, uniaxial tensile strength, and different stress conditions
in which failure occurs. In this regard, 80% of data (176 samples) are used to train models, while 20% (45
samples) is for testing the developed models. For internal friction angle, coefficient of determination (R2),
mean absolute error (MAE), and root mean squared error (RMSE) are R2 >0.90, MAE<1, and RMSE<1.6°
in the training and testing phases for established models. Based on the results, R2 >0.98, MAE<1.1, and
RMSE<1.5 MPa are obtained for developed models of cohesion strength prediction in the training and testing
phases, which demonstrate the efficiency of proposed approaches in predicting shear strength parameters of
sandstone rock. The sensitivity analyses indicate that confining stress has the most significant influence in
increasing the prediction accuracy. This work provides a general and robust data-centric intelligent framework
for predicting micro-/macro-parameters of geomaterial, which improves shear strength design in the field.

Keywords Shear strength · Cohesion · Friction angle · Surrogate models · Data-oriented techniques ·
Sensitivity analysis

1 Introduction

The strength of intact rock mainly depends upon the shear strength parameters. Therefore, determinations
of the shear strength properties of the rock are of primary interest in the geomechanics and geoengineering
investigation. The common procedure to determine the shear strength parameters of rock is triaxial tests.
While the experimental studies need notable expenditure and time to have a well-equipped laboratory with
series of experiments, the predictive models are valuable to advance understanding strength parameters of
rock under various conditions. Moreover, since complex instruments such as a triaxial test apparatus are used,
high technological skills are often needed. Therefore, it is time to establish reliable approaches that are able
to predict the geomechanical properties of rocks.

Several scholars have made contributions in the field of predicting shear strength parameters in rocks.
Sivakugan et al. [1],Karaman et al. [2], Shen and Jimenez [3], andMoon andYang [4] investigated the feasibility
of compressive and tensile strength data (UCS and UTS values) to determine shear strength parameters of
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rock using mathematical regressions. Shen et al. [5] determined Mohr–Coulomb shear strength parameters
from generalized Hoek–Brown criterion. Zhang et al. [6] studied the statistical correlation between shear
strength parameters of rock masses using Hoek–Brown (H–B) failure criterion and triaxial test result of intact
rocks. As indicated [6–8], the utilization of incorrect C − ϕ correlation coefficient values may result in either
underestimation or overestimation of failure probability in risk analysis of geomechanics engineering. Wei
et al. [9] estimated the equivalent Mohr–Coulomb parameters based on the Hoek–Brown criterion. They also
investigated its applicability in slope analysis.

Recently, soft computing techniques have been used to predict shear strength parameters of rock.Armaghani
et al. [10] estimated shear strength parameters (interlocking and friction angle) of shale rock using rock index
tests through particle swarm optimization–artificial neural network (PSO–ANN) integrated model. Rock index
tests include dry density, point load index, Brazilian tensile strength, ultrasonic velocity, and Schmidt hammer
test. They found that the proposed PSO–ANNmodel could accurately predict shear strength parameters of shale
rock. Shen and Jimenez [3] employed genetic programming to estimate the Mohr–Coulomb shear strength
parameters of sandstone rock using two strength indices (UCS and UTS) under triaxial stress conditions.
Confining stress (σ3) is taken into account to consider the nonlinearity of the failure envelopes and enhance the
effectiveness of estimates. Based on laboratory tests on shale rock specimens [10, 11] studied rock interlocking
through two hybrid ANN-based models by considering genetic algorithm (GA) and fuzzy inference system.
They indicated that developed hybrid models are reliable. Moreover, the ANFIS predictive model performed
slightly better than the GA-ANN method in terms of interlocking estimation. Shao et al. [12] predicted the
internal friction angle of shale rocks using two hybrids neural net-based models that integrate ANN with
GA and imperialist competitive algorithm (ICA). They considered p-wave velocity, Schmidt hammer, and
point load as a system input. Based on performance indices, they presented ICA–ANN as a new method for
estimating the internal friction angle of shale rock samples. Although the NN-based method is widely used in
this topic, in recent years, there has been a growing interest in the application of data-centric machine learning
(ML) paradigms in geomechanics and geoengineering investigations [13–24].

The present study is the first attempt at indirect prediction ofMohr–Coulomb shear strength parameters such
as internal friction angle and cohesion strength of sandstone rock employing random forest (RF), alternating
model tree (AT), and support vector machine (SVM) with two kernels [radial basis function (RBF) and
Pearson VII kernel function (PUK)] methods under triaxial conditions using the uniaxial compressive strength
(UCS) and uniaxial tensile strength (UTS). Quantification of potentiality and functionality of proposed ML
algorithms are provided in terms of statistical performance indicators. The sensitivity analyses are also carried
out to determine the importance of each input parameter in order to predict the Mohr–Coulomb shear strength
parameters. The rest of the paper is organized as follows. Section 2 reviews the background knowledge of ML
algorithms. Section 3 provides the study data. Section 4 presents the performance measure indices. Section 5
delivers the obtained results and discussion. Section 6 presents sensitivity analysis. Finally, conclusions are
represented in Sect. 7.

2 Data-oriented computational methods

2.1 Random forest (RF)

Random forest (RF) is an ensemble tree-based regression method. The RF algorithm consists of regression
trees trained using various bootstrap samples (bagging) of the training database. Each tree functions regression
on its own, and the final output decision of RF is the average of the outputs of individual regression tree
regressors. In the case of bagging, the training dataset contains about two-third of the data from the actual
training dataset (InBag). The rest out-of-bag (OOB) training data (one-third out of the bootstrap sampling data)
from each tree developed are utilized to assess estimation error and variable significance. The RF regression
model is built using two main parameters: the number of trees and the selected features that split the nodes
[25]. The flow chart of the RF algorithm is presented in Fig. 1.

2.2 Alternating model tree (AT)

Decision tree techniques are commonly used approaches for classification and regression problems.Alternating
model tree (AT) is a new algorithm based on ensemble learning method whose strategy is to iteratively correct
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Fig. 1 Flow chart of RF algorithm

the predictions of an additive model by using the residual errors it makes on the training data as target [26].
The layout of the AT is a single tree. AT performs regression with two different nodes, namely splitter and
prediction nodes. The splitter node splits numeric attributes at the median value. An estimator node that
produces a model response using a linear regression method. The AT model is composed of k base models of
the form of Fk(�x) � ∑k

j�1 f j (�x) that are fitted in a forward stage-wise additive regressionmanner tominimize

a squared errors measure, i.e.,
∑n

i�1 (Fk(�xi ) − yi )
2 through n training samples (�xi , yi ). The target variable

is the residual of the fit at the k − 1 stage for every iteration k. The approach uses a shrinkage parameter λ,
which is a multiplicative factor in the range (0, 1] that is applied to the predictions of the base model before
they are included in the additive model. It dampens the values towards the mean prediction and aids in model
regularization.

2.3 Support vector machine (SVM)

Support vector machine (SVM) is based on statistical learning theory [27]. The SVM implements the structural
risk minimization principle. Let (x, y) be a training dataset, where x ∈ Rn stands for an input vector with
n components and y represents the corresponding output. In the regression model of SVM, the goal is to
determine a function f (x)whose deviation from each target yi is at most ε for all training data. The estimating
function can be represented by the following equation:

f (x) � ω.ϕ(x) + b (1)

where ω is the weight vector, b is the bias term, and ϕ(x) denotes a set of nonlinear transformations. The
coefficients ω and b are calculated by minimizing the following regularized risk function:

1

2
||ω||2+C

n∑

i�1

(
ξi , ξ

∗
i

)

Subject to :

⎧
⎨

⎩

ω.ϕ(xi ) + b − yi ≤ ε + ξ∗
i

yi − ω.ϕ(xi ) − b ≤ ε + ξi
ξi , ξ

∗
i ≥ 0, i � 1, 2, .., n

(2)
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Table 1 Statistics analysis of the datasets

UCS (MPa) UTS (MPa) σ3 (MPa) Friction angle (◦) Cohesion (MPa)

Mean 83.835 5.644 29.342 44.169 20.222
Standard deviation 45.319 4.237 20.356 4.889 9.439
Minimum 41.47 1.75 1.47 33.6 8.14
Maximum 196.97 16.15 100 56.02 49.62

where C is a regulation parameter. ξi and ξ∗
i are positive slack variables. The primal Lagrangian form is used

to solve this constrained optimization problem [27, 28], and finally written as follows:

f (x) �
n∑

i�1

(
βi − β∗

i

)
.K

(
xi , x j

)
+ b (3)

where βi and β∗
i are the Lagrange multipliers and K

(
xi , x j

)
is the kernel function. It is necessary to choose

suitable covariance or kernel function since it directly affects predictive efficiency. In the study, two different
(radial basis kernel and Pearson VII kernel function (PUK)) commonly used kernel functions are selected for
SVM development.

KRBF(xi , x j ) � e−γ ||xi−x j ||2 (4)

KPUK
(
xi , x j

) �
(

1/

[

1 +

(

2
√

||xi − x j ||2
√
2(1/ω) − 1/ l

)2
]ω)

(5)

where γ , l, and ω are the kernels parameters (also known as hyper-parameters). ||xi − x j || is the Euclidean
distance between points xi and x j . Besides, the data standardization is calculated through the following
equation:

zi � xi − μ

σ
(6)

where xi , μ, and σ are the original data, mean, and standard deviation of the data, respectively.

3 Data used for the study

The comprehensive database utilized for developing proposed ML approaches is the same used by Shen and
Jimenez [3] for genetic programming analysis derived from the 32 groups of sandstone triaxial test data
available in RocData presented by Rocscience [29] company. Groups with some possibly implausible triaxial
data and less than three points are excluded from the regression analysis. Therefore, 23 groupswith 221 datasets
are used for ML analysis.

Data division is the first step in constructing a model layout for prediction research. The data were divided
randomly. The randomized data are divided into training (80%) and testing (20%) datasets. Training dataset is
utilized for developing and learning the ML techniques, while testing dataset is used for testing the techniques
based on performance criteria which are described in the next section.

Testing data are within the range of specified training dataset of shear strength parameters during the
development of models. Out of 221 datasets, 176 datasets are used for the training and the remaining 45
datasets are used for testing the generalization capability of the models. In the dataset, the input variables
are UCS, UTS, and σ3. Therefore, the effect of the σ3, in which the shear failure occurs is also considered
in models. The output variables are cohesion strength and internal friction angle. The statistical analysis of
the input and output parameters for sandstone rock is given in Table 1 and Fig. 2. In Fig. 2, the diagonal
components represent the histograms and density functions of variables. The lower panels show scatter plots
for each pair of variables. Each group of sandstone triaxial test data is represented with a different colour. The
upper panels in the matrix indicate the correlation coefficients for all data.
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Fig. 2 Scatterplot matrix of datasets

4 Performance evaluation measures

In this study, three well-known performance indicators including the coefficient of determination (R2), root
mean square error (RMSE), and mean absolute error (MAE) are employed to evaluate the performance of
predictive models of RF, AT, and SVM.

R2 is used as a measure of the goodness of fit of a statistical model. A higher value of R2 indicates a better
fit for the model. The RMSE is utilized as a measure of the sample standard deviation of the difference between
predicted and observed shear strength parameters values, and MAE is employed to measure the closeness of
the prediction to the eventual shear strength parameters values. The smaller values of RMSE andMAE indicate
better prediction with zero values for these two criteria implying a perfect prediction. The formulation of these
indices is expressed by the following equations:

R2 �
[∑n

i�1

(
y∗
i − y∗)(yi − y)

]2

∑n
i�1

(
y∗
i − y∗)2 ∑n

i�1(yi − y)2
(7)

MAE �
n∑

i�1

∣
∣y∗

i − yi
∣
∣/n (8)

RMSE �
√
√
√
√

n∑

i�1

(
y∗
i − yi

)2
/n (9)

where y∗
i , yi , y

∗, and y indicate the predicted, calculated, mean value of predicted and calculated shear strength
parameters values, respectively. Also, n is the number of data.
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Table 2 Main optimized parameters of developed models

Model Friction angle Cohesion

RF Number of trees � 130, features � 2 Number of trees � 100, features � 2
AT Iteration � 34 Iteration � 23
SVM-RBF C � 11, γ � 7.8, ε � 0.001 C � 22, γ � 2.9, ε � 0.001
SVM-PUK C � 25, ω � 0.25, σ � 0.5, ε � 0.001 C � 9, ω � 0.2, σ � 1.5, ε � 0.001

Table 3 The evaluation indicators of R2, MAE, and RMSE statistics of RF, AT, and SVM models for the prediction of friction
angle and cohesion

Model Friction angle Cohesion

Train Test Train Test

R2
MAE RMSE R2

MAE RMSE R2
MAE RMSE R2

MAE RMSE

RF 0.976 0.523 0.81 0.944 0.878 1.203 0.997 0.385 0.548 0.993 0.679 0.942
AT 0.984 0.446 0.627 0.940 0.78 1.128 0.995 0.469 0.624 0.987 0.972 1.324
SVM-RBF 0.908 0.605 1.514 0.924 0.82 1.262 0.983 0.465 1.169 0.983 1.084 1.468
SVM-PUK 0.974 0.164 0.798 0.931 0.999 1.311 0.997 0.145 0.5 0.984 1.088 1.419

5 Results and discussion

In this study, shear strength parameters of sandstone rock are estimated using three data mining techniques.
The accuracy of the proposed RF, AT, and SVM models is calculated using the evaluation indices described
above. R2, MAE, and RMSE are used to investigate the performance of the established models by dividing
the data into training data and testing data subsets. The optimum values of the hyperparameters of RF, AT,
and SVM models are tuned by grid search and trial and error processes. For the RF model, two parameters,
namely number of trees and features; for the AT model, the number of iterations; for the SVM-RBF model,
three parameters, namely C, γ , and ε; for the SVM-PUK model, four parameters, namely C, ω, σ , and ε, are
tuned. These obtained optimum hyperparameters that developed models generalize well are presented in Table
2.

For the three different techniques used, the R2, MAE, and RMSE statistics are calculated based on the
training and testing datasets. The statistical results of different predictive models used in this study are sum-
marized in Table 3. According to these statistical performance evaluation indices, the performance of the
proposed models is comparable. As is seen for friction angle prediction, the RMSE value for the AT model
is the lowest than that of the other models in both the training and testing sets. In the AT model for friction
angle prediction, values of RMSE and MAE are determined to be 0.627 and 0.446, respectively, based on the
training dataset and 1.128 and 0.78, respectively, based on the testing dataset. AlthoughMAE of the AT model
is higher than that of the SVM-PUK model in the training stage, it is the lowest than that of the other models
in the training and testing phases. In addition, the R2 value in the AT model is the highest than that of the
other models in the training dataset (R2 � 0.984). However, this value (R2 � 0.94) is marginally lower than
that of the RF model (R2 � 0.944) and higher than that of the SVM (RBF and PUK) model in the testing
dataset. This indicates that the AT model performance is better than the other models for the given data of
friction angle. Although the SVM-PUK model presents better performance than the SVM-RBF model in the
training dataset, the SVM-RBF model shows slightly better performance (smaller MAE and RMSE) than the
SVM-PUK model in the testing dataset of friction angle.

As is evident for cohesion prediction, the lowest MAE and RMSE and highest R2 values among developed
models are for SVM-PUKmodel in the training dataset. These values are MAE� 0.145, RMSE� 0.5, and R2

� 0.997. With a slight difference with the SVM-PUK model, the RF model shows then better performance in
the training dataset (MAE � 0.385, RMSE � 0.548, and R2 � 0.997). However, the RF model demonstrates
better performance indices with the lowest MAE � 0.679, RMSE � 0.942, and highest R2 � 0.993 than
those of the other models in the testing dataset. The SVM-RBF model shows similar performance to that of
the SVM-PUK model with the values of the evaluation indices being close to those obtained based on the
SVM-PUK model in the testing dataset of cohesion.

The calculated shear strength parameters values and their estimated values obtained from the proposed RF,
AT, and SVM models for the train and test datasets are plotted in Figs. 3 and 4, respectively. It is clear from
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Fig. 3 Comparison of calculated and predicted friction angle using RF, AT, and SVM models in the training dataset: a friction
angle and b cohesion

these graphs that the estimated shear strength values obtained from the proposed models are in good agreement
with the calculated values indicating that the models employed accurately predict shear strength parameters.
According to Figs. 3 and 4, the performance of the AT model is generally better compared with the RF and
SVM (with RBF and PUK) models for the friction angle dataset. However, the RF model generally shows
better performance for the cohesion dataset.

In addition, the predicted values of shear strength parameters obtained from the RF, AT, and SVM models
along with their corresponding calculated values of shear strength parameters are illustrated in the form of
scatter plots in Figs. 5 and 6. Predicted values using developed models are aligned around the 45° line.
According to these results, the AT and RF models show promising performances in predicting the given shear
strength parameters variations based on the training and testing used datasets. Consistency and agreement
between calculated and predicted data show the high capability of these methods in estimating shear strength
parameters.

A Taylor diagram [30] is a graphical representation of comparing various model outcomes to measured
data. The standard deviation, RMSE, and R between different models and measurements are depicted in this
diagram. This diagram is plotted for friction angle and cohesion in Figs. 7 and 8, respectively. The location of
each model in the diagram indicates how closely the predicted pattern matches with measurements. According
to these figures, due to the distance of developed models points to the measured point, developed models are
promising methods for estimating shear strength properties.

Mohr–Coulomb shear strength parameters are important in geomechanics engineering applications indi-
cating the resistance of intact rocks with respect to applied stresses on them. Therefore, predicting the cohesion



2490 H. Fathipour-Azar

Fig. 4 Comparison of calculated and predicted friction angle using RF, AT, and SVM models in the testing dataset: a friction
angle and b cohesion

Fig. 5 Scatter plot of friction angle values by various developed predictive models for training and testing datasets
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Fig. 6 Scatter plot of friction angle values by various developed predictive models for training and testing datasets

Fig. 7 Comparisons of measured and predicted friction angle by developed models

Fig. 8 Comparisons of measured and predicted cohesion by developed models
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Fig. 9 Influence of removing input variables on the accuracy of different models in the prediction of friction angle parameter

and friction angle as important shear strength parameters is necessary for rock engineering applications such
as slope stabilities, tunnelling, and underground cavities. The crucial role of the shear strength of rock in
such applications has driven scientists to propose reliable and cost-effective techniques for determining this
parameter. Using ML methods with minimal error and high performance plays an important role in providing
alternative tools to traditional experiments for estimating desired output. Consequently, comparing the per-
formance of different models gives an insight into the identification of better models for predicting purposes.
Other studies have confirmed the applicability and performance of NN-based models [10–12]. This study
proposed and compared the accuracy of three data-centric ML techniques, namely RF, AT, and SVM models,
in estimating shear strength parameters values. The performance of the models indicates that generally the
AT model shows the potential in predicting friction angle, while the RF model shows a promising approach
for estimating the cohesion of sandstone rocks. The obtained results demonstrate the high capability of these
methods in predicting shear strength parameters.

6 Sensitivity analysis

Sensitivity analysis is performed to assess the effect of each input parameter on the developed models. In terms
of the RMSE and R2, each surrogate model indicates the extent to which the eliminated variable would impact
the model accuracy.

Figures 9 and 10 depict the influence of input variables on the friction angle and cohesion predictions,
respectively. As can be seen in Fig. 9, σ3 has the most significant influence in increasing the prediction
accuracy. In other words, eliminating σ3 caused a sharp increase in RMSE values and decrease in R2 values
in all established models for friction angle and cohesion parameters. Therefore, the σ3 is the most important
variable for predicting the shear strength parameters of sandstone rock. The importance of different variables
can be displayed as σ3 >UCS>UTS for the cohesion parameter. However, UCS andUTS demonstrate differing
influences on the friction angle parameter using established models.

7 Conclusions

The present study explores employing data-orientedML-based solutions, namelyRF,AT, and SVMalgorithms,
to estimate the shear strength parameters of sandstone rocks using UCS, UTS, and confining stress. The
developed surrogate models show good performance in predicting shear strength parameters, with R2 >0.90,
MAE<1, and RMSE<1.6◦ in the training and testing phases for friction angle and R2 >0.98, MAE<1.1, and
RMSE<1.5 MPa in the training and testing phases for cohesion prediction. In general, the AT model shows
the potential in predicting friction angle, while the RF model shows a promising approach for estimating the
cohesion of sandstone rocks. However, there is no certainty that one model will universally outperform other
models. Overall, the results prove the viability of estimating shear strength parameters using the proposed
techniques. Therefore, establishing faster surrogate models based on a data-driven approach will lead to a
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Fig. 10 Influence of removing input variables on the accuracy of different models in the prediction of cohesion parameter

reduction in the cost, effort, and time required for measuring shear strength parameters. Finally, the results of
sensitivity analysis show that the σ3 is the most important influencing input parameter in the estimation of the
shear strength parameters for this dataset
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