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Abstract The paper focuses on deriving themacroscale viscoelastic constitutive laws using asymptotic expan-
sion method. Both the differential and integral form of the linear viscoelastic constitutive relation of the phases
is used in deriving the effective incremental potential and effective constitutive relation, respectively. The
integral form is handled by considering the correspondence principle and the Laplace–Carson (LC) transform.
A closed-form expression for the effective viscoelastic properties in LC domain is obtained by means of the
asymptotic homogenization method (AHM). In addition, AHM coupled with finite element simulation of a
representative volume element with periodic boundary conditions is used (AHM + FE). The last step in both
approaches is the numerical inversion to the time domain. Solution in time domain is obtained with numer-
ical Laplace inversion algorithms. In case of the differential form, using variational approach, the effective
incremental potential in time domain is directly obtained using mean-field method. Different homogenization
approaches are exemplified for evaluation of the effective relaxation behavior of composite (viscoelastic matrix
reinforced by unidirectional elastic fibers), and they are compared. In the approaches based on LC transform,
effective modulus and Poisson’s ratio agree well with each other for any property contrast and fiber volume
fraction. However, in case of relatively low property contrast, mean field overpredicts as compared to LC
approaches in the fiber direction, whereas at relatively higher property contrast, it is vice versa. The difference
increases at higher volume fractions due to synergistic effect of the error due to geometrical assumptions
involved in the localization tensor and interaction effects of the fiber inclusions. A good agreement in all
directions is observed among the three schemes at intermediate volume fractions and property contrast. This
study serves as benchmark for further theoretical improvements and experimental investigations.
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1 Introduction

Viscoelastic homogenization of fiber-reinforced polymer composites is vital in development of virtual process
chain of hybrid composites [1, 2]. Computational analysis of viscoelastic composite parts considering the
details such as shape of reinforcement and its distribution would require very fine mesh considering all the
heterogeneities of the microstructure, thus leading to a high computational costs and time. This issue is over-
come for periodic composite materials by asymptotic expansion method. An asymptotic series approximation
is applied to the field quantities such as displacement, strain and stress, assuming the existence of distinct
scales associated with the composite macroscale behavior. After separation of the local field quantities, these
are solved usually for periodic microstructure geometry with assistance of a full-field method such as finite
element method (FEM) and fast Fourier transform [3]. Several contributions in asymptotic homogenization
method (AHM) have been devoted to the development of its theoretical basis (see, e.g., [4–6]). Other method
such as mean-field homogenization (MFH) using Eshelby’s solution [7] can be used to estimate the overall
material properties for periodic composites without solving for all the field variables.

Analytical homogenization of a linear viscoelastic composite with isotropic phases and simple microstruc-
tures is widely addressed with the methodology of the correspondence principle [8, 9]. The correspondence
principle utilizes an integral form of the constitutive equations of each phase. The Laplace–Carson (LC) trans-
formation [10–12] converts the time-domain viscoelastic model of the phases to a linear elastic type in the
Laplace–Carson domain, thereby facilitating for a direct use of analytical solution of elastic homogenization
problem of the periodic composites or it can be coupled with full-field solution. An inversion of the LC trans-
form is then performed to obtain the effective behavior in the time domain. Alternatively, homogenization in
time domain evolved in the past two decades uses differential form of the constitutive equation for solving
the viscoelastic homogenization problem [13–27]. The incremental variational principle-based MFH frame-
work (IVMFH) is chosen in this study for homogenizing the viscoelastic problems as proposed by Lahellec
and Suquet [13, 14, 24]. In this method, the local field statistical information is implicitly considered in the
homogenization scheme via the second-order moments.

The aim of this work is to derive the effective viscoelastic behavior of composite materials by means of LC
transforms and time-domain IVMFH approach in a uniform framework of asymptotic expansion. The major
novelty in this manuscript lies in the comparison and contrast among these approaches. The difference in
the solutions for different volume fraction and property contrast is highlighted. It is represented for effective
modulus and Poisson’s ratio as a function of the direction and time for relaxation tests considering generalized
Maxwell behavior of the viscoelastic phases. In the current article, a two-scale homogenization framework for
periodic composites consisting of generalized standard materials is defined using the asymptotic expansion
method. Microstructure of unidirectional (UD) infinitely long fiber-reinforced polymer (LFRP) composites
with a periodic hexagonal arrangement of fibers is considered.

The article is organized as follows: Both the integral and differential form of the constitutive relation of the
linear viscoelasticity is introduced in Sect. 2. The asymptotic expansion method is then elaborated in Sect. 3
for defining the two-scale homogenization problem. The differential form of the constitutive relation of the
viscoelastic composite is homogenized in time domain using an incremental potential. Variational method is
used to obtain the effective incremental potential for the composite based on the Eshelby’s solution as described
in Sect. 4. The integral form of the constitutive relation is homogenized using correspondence principle. Since
the considered microstructure consists of aligned fibers in a hexagonal pattern, a closed-form expression of the
effective viscoelastic properties in the Laplace–Carson domain can be obtained by means of the asymptotic
homogenization method (AHM). This approach is introduced as a reference for the comparisons. In addition,
we present a third estimate of the effective relaxation stiffness which combines the referenced approach and
finite elements simulations (AHM + FE). Finally, a numerical method for the inversion to the time domain
is performed. The above is elaborated in Sect. 5. Effective modulus and Poisson’s ratio obtained from all the
three methods are compared as a function of direction and time for relaxation test in UD LFRP composites.
Sections 7 and 8 highlight the results and conclusions, respectively. The stepwise procedure for implementing
the IVMFH scheme is described in Appendix for completeness.
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Fig. 1 Generalized Maxwell element for modeling linear viscoelastic behavior. The elastic stiffness tensor is indicated as Cα ,
and the viscosity tensor is Vα for αth Maxwell element

1.1 Nomenclature

A symbolic tensor notation is used throughout the text. The scalars quantities are denoted by light-face-type
Latin andGreek characters, e.g., a, b, ϕ,ψ . The first-order tensors are denoted by bold lowercase and uppercase
Latin characters, e.g., x, y, u,U. The second-order tensors are denoted by bold uppercase and lowercase Greek
characters, e.g., I, Σ , E, σ , ε. The fourth-order tensors are denoted by blackboard bold uppercase Latin
characters, e.g., C, V. A linear map of a fourth-order tensor on a second-order tensor is denoted as C[ε]. The
scalar product between second-order tensors is denoted as for, e.g., σ ·ε � σ ijεij. The Frobenius norm of the
second-order tensor is denoted as for, e.g., ε . The second- and fourth-order symmetric identity tensors are
denoted by I and I

s, respectively. The fourth-order orthogonal projection tensors are denoted and defined as
P1 � 1

3 (I ⊗ I) and P2 � I
s − P1 corresponding to the spherical and deviator. The elastic stiffness tensor and

viscosity tensor, represented as C and V, respectively, are positive definite fourth-order tensor with minor and
major symmetries. The fourth-order symmetric elastic stiffness tensorCα for α-Maxwell branch can be defined
using the projection tensors as Cα � gα(3KP1 + 2GP2), where K and G are the instantaneous bulk and shear
modulus, respectively. The spatial average of the field quantities over a domain is indicated by angular brackets
for e.g., 〈ε〉. All the time-dependent quantities at the current time step and previous time step are represented
by t and tn, respectively.

2 Problem definition

2.1 Constitutive behavior of linear viscoelastic phases in the composite

The constitutive behavior of linear viscoelasticmaterials in a small strain framework ismodeled by twodifferent
approaches: hereditary approach (integral form) [10] and internal variables approach (differential form) [28].
The hereditary approach of obtaining constitutive equations in linear viscoelasticity is based on the Boltzmann
superposition principle which is given as

σ (t) �
t∫

0

R
(
t − t ′

)[
ε̇
(
t ′
)]
dt ′ (1)

where σ (t) is the stress tensor as a function of time, ε̇(t) is the strain rate, R(t) is a fourth-order tensor which
represents the relaxation of stiffness. The thermodynamic constraints on the nature of relaxation function are
described in [29], and generalized Maxwell model as shown in Fig. 1 fulfills them.

The stiffness relaxation tensor is composed of bulk and shear term for isotropic materials. In this study, it
is assumed that only the shear modulus participates in relaxation of the stiffness. Therefore, relaxation of the
shear modulus for a generalized Maxwell model can be equivalently modeled by Prony’s series, and it is given
as

G(t) � Go

(
1 −

N∑
α�1

gα

(
1 − exp

(
− t

τα

)))
(2)
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where gα � Gα

Go
is the Prony weights and τα is the relaxation time. The instantaneous shear modulus is

indicated by Go, and the shear modulus in α-Maxwell branch is Gα . The relaxation time can be calculated
as τα � ηα/Gα . The shear viscosity ηα is the scalar part of the viscosity tensor Vα � 3(+∞)P1 + 2ηα

P2
in α-Maxwell branch (Fig. 1). The current stress is then determined by the superposition of history of stress
variables in each branch of Maxwell model.

Alternatively, in the internal variable approach, the stress history is recorded through the inelastic strains. In
this setting, the constitutive mechanical behavior of the material can be framed under the generalized standard
material framework. Thereby, a convex free energy function ψ and a dissipation function ϕ can be defined for
evaluation of stress and internal variables.

ψ
(
ε, ε′

v
) �

N∑
α�1

ψα
(
ε, ε′

v
) �

N∑
α�1

1

2

(
ε − ε′α

v

) · Cα
[
ε − ε′α

v

]

ϕ
(
ε̇′

v
) �

N∑
α�1

ϕα
(
ε̇′
v

) �
N∑

α�1

1

2

(
2ηα ε̇′α

v · ε̇′α
v

)

∂ψ

∂ε′
v

(
ε, ε′

v
)
+

∂ϕ

∂ ε̇′
v

(
ε̇′

v
) � 0

σ � ∂ψ

∂ε

(
ε, ε′

v
)

(3)

where ε is the total strain. The total thermodynamic potentialsψ andϕ are sumof the thermodynamic potentials
ψα and ϕα defined for αth Maxwell branch. This is due to the parallel arrangement of the Maxwell branches
in the generalized model. The internal strain tensor is symmetric and traceless as indicated by ε′α

v due to the
assumptions made on the relaxation behavior. The Biot’s equations as given in Eq. (3)3 are used for calculating
the evolution of ε′α

v in each Maxwell’s branch and subsequently determine the current state of stress in the
homogenous phase using Eq. (3)4.

3 Two-scale asymptotic expansion of a linear viscoelastic composite problem

Consider amacroscopic heterogeneous bodyX of volumeV with boundaries ∂X consisting of linear viscoelastic
phases (indicated as γ ) which is periodically distributed in the geometrical space. The geometrical body of
the periodic microstructure is defined in domain Y of volume VY with boundary ∂Y and consists of cylindrical
fibers oriented along x1-axis and reinforced in the matrix domain (Fig. 2). It is assumed that interface of
the fiber and matrix is under perfect contact conditions i.e., traction and displacement are continuous. The
characteristic length of the heterogeneous body and the periodic body is indicated by L and l, respectively.
A geometrical characteristic parameter is indicated by ε � l/L. The position vector of the macroscopic body
(global variable) and the periodic microstructure (local variable) is indicated by x and y, respectively. These
vectors are related by y � x/ε. The following rule of calculus holds for scale separation

∂(·)
∂x

� ∂(·)
∂x

+
1

∈
∂(·)
∂ y

(4)

The properties of the phases, the free energy function and the dissipation potential depend on y ∈Y as the
phases are defined in the Y -domain, which results in

R → R( y, t)

ψ → ψ
(
y, ε, ε′

v
)

ϕ → ϕ
(
y, ε, ε′

v
) (5)

The phase averaging operator on the Y -domain yields the macroscopic quantity which is indicated as,
for, e.g., �(x) ≡ 〈ϕ(x, y)〉Y � 1

VY

∫
V

ϕ(x, y)dVY . The mathematical statement of viscoelastic heterogeneous
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Fig. 2 Schematic of the two-scale homogenization problem

problem ignoring inertial terms of the balance of linear momentum with the prescribed boundary conditions
is given as

div σ∈(x, t) + f � 0 for x ∈ X, t ∈ [0, T ]
ε∈(x, t) � ∇su∈
u∈(x, t) � U(x, t) on ∂X
σ∈n � T (x, t) on ∂X

Initial Conditions

U(x, 0) � 0
T (x, 0) � 0

(6)

where n is the outward unit normal vector normal to the surface ∂X, ∇s is the symmetrized gradient operator
and T and U are the tractions and displacement boundary conditions defined on ∂X of the macroscale body.
The integral form of the constitutive relation for linear viscoelasticity to solve the problem is given as

σ∈(x, t) �
t∫

0

R
(
y, t − t ′

)[
ε̇∈(t ′)]dt ′ (7)

The differential form of the constitutive relation is

σ∈(x∈, t
) � ∂ψ∈

∂ε∈
(
y, ε∈, ε′∈

v

)
∂ψ∈

∂ε′∈
v

(
y, ε∈, ε′∈

v

)
+

∂ϕ∈

∂ ε̇′∈
v

(
y, ε̇′∈

v

)
� 0

(8)

Applying the asymptotic expansion on all the field variables and by Korn–Poincare inequality, microscopic
balance equations are obtained which are satisfied together with macroscopic balance of linear momentum
[30]. Considering ε−1 terms and if the field variables have to remain bounded in the limit as ε→0, one could
obtain the microscopic balance equations as:

∈−1: div σ 0(x, y, t) � 0 for y ∈ Y, t ∈ [0, T ]

u0(x, t) � U(x, t)
(9)

Applying phase averaging operator on ε.0 terms leads to the macroscopic balance of linear momentum
together with the boundary conditions, which is given as

∈0: div �(x, t) + f � 0 for x ∈ �, t ∈ [0, T ]

E(x, t) � ∇s
xU(x, t)

�n � T (x, t)

(10)
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where
〈
σ 0(x, y, t)

〉
Y � �(x, t) is the macroscopic stress and

〈
ε0(x, y, t)

〉
Y � E(x, t) is the macroscopic

strain. The integral form of the constitutive relation in the local domain for linear viscoelasticity is given as

σ 0(x, y, t) �
t∫

0

R
(
y, t − t ′

)[
ε̇0
(
x, y, t ′

)]
dt ′ (11)

The differentiable form of the constitutive relation using internal variables in the local Y -domain is given
as

σ 0(x, y, t) � ∂ψ0

∂ε0

(
y, ε0, ε′0

v

)

∂ψ0

∂ε′0
v

(
y, ε0, ε′0

v

)
+

∂ϕ0

∂ ε̇′0
v

(
y, ε̇′0

v

)
� 0

(12)

The macroscopic stress using integral and differentiable form of the constitutive relations is then given as

�(x, t) �
〈 t∫

0

R
(
y, t − t′

)[
ε̇0
(
x, y, t′

)]
dt′
〉

Y

�
t∫

0

R̄
(
t − t′

)[
Ė
(
x, t′
)]
dt′

�(x, t) �
〈

∂ψ0
(
y, ε0, ε′0

v

)

∂ε0

〉

Y

� ∂ψ̄

∂E

(13)

where R̄(t) is the effective stiffness relaxation tensor.
The objective is to obtain:

• Effective relaxation of the stiffness tensor for the integral form using LC transform.
• Effective Helmholtz free energy function in time domain using a variational method for the incremental
form of the differential relations. In this conjunction, mean-field methods based on Eshelby’s solution will
be used.

In the next sections, the superscript “0” is ignored for all the local field quantities. The position vector x
∈X in all the local field quantities is omitted as they are being solved for a fixed position in the macroscopic
domain.

4 Effective incremental potential by variational method (IVMFH)

4.1 Incremental potential of the local problem

Each γ -phase in the local Y -domain is indicated with an indicator function I γ ( y, Y ) given as

I γ ( y, Y ) �
{
1 y ∈ Y
0 otherwise

and occupies a volume fraction cγ . The thermodynamic potentials for each phase in the microstructure are
then given as

ψ
(
y, ε, ε′

v
) �

N∑
α�1

ψα I γ ( y, Y )︸ ︷︷ ︸
ψγα

ϕ
(
y, ε̇′

v

) �
N∑

α�1

ϕα I γ ( y, Y )︸ ︷︷ ︸
ϕγα

(14)

where the thermodynamic potentials ψγα and ϕγα correspond to α-Maxwell branch in γ -phase. Equation (12)
is discretized using the implicit Euler scheme in the time domain for a desired time duration of [0, T ] with
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a time step of t � t – tn. The local problem with field variables σ (y, t), ε(y, t) and ε′
v( y, t) is solved by

assuming that the field variables at tn are known. The incremental potential ψ̂ for each phase is then defined
as

ψ̂
(
y, ε, ε′

v
) �

N∑
α�1

(
ψα
(
ε, ε′

v
)
+ tϕα

(
ε′
v − ε′

v n

t

))
I γ ( y, Y )

︸ ︷︷ ︸
ψ̂γα

(15)

where the incremental potential ψ̂γα corresponds to α-Maxwell branch in γ -phase. Minimizing Eq. (15) with
respect to the internal variable of the phase would lead to its evolution equation. The variational problem is
defined by a condensed incremental potential ψ.

ψ( y, ε) � inf
ε′
v

ψ̂
(
y, ε, ε′

v

)
(16)

The effective condensed incremental potential ψ can be obtained by phase averaging over the Y -domain
[13], which is then given as

ψ(E) �
〈
inf
ε

ψ( y, ε)
〉
Y

� inf〈ε〉�E
〈ψ(ε)〉 (17)

The effective stress at t can be computed from the effective incremental potential [13], which is given as

� � ∂ψ

∂E
(18)

4.2 Variational method for homogenization of the local problem

The effective condensed incremental potential of the linear viscoelastic homogenization problem is obtained
by variational method [31]. The idea is to add and subtract to ψ̂ with a piecewise uniform reference potential
ψo of similar form. The reference potential of the phase is chosen as

ψo
(
y, ε, ε′

v
) �

N∑
α�1

ψα
o

(
ε, ε′

v
)
I γ ( y, Y )︸ ︷︷ ︸

ψ
γα
o

�
N∑

α�1

1

2

((
ε − ε′α

v

) · Cα
[
ε − ε′α

v

]
+
2ηα

o

t

(
ε′α

v − ε′α
ov n

) · (ε′α
v − ε′α

ov n

))
I γ ( y, Y )

(19)

where ηα
o and ε′α

ov n are the artificial viscosity and effective internal variable, respectively. In this conceptualized
problem, these parameters are not known and it is always determined at the current time t as described in the
following. The difference or error function ψ̂ − ψo can be estimated by the variational principles.

The effective condensed incremental potential [13] in terms of ψo is given as

ψ(E) � inf
E

(〈
inf
ε′
v

(ψo + ψ)

〉)
≈ inf

E

(〈
inf
ε′
v

ψo

〉
+

〈
stat
ε′
v

ψ

〉)
(20)

Assuming a linear relation between the artificial and actual viscosity ηα
o � θαηα , a close estimate of ψ

can be obtained by considering the stationarity condition [24, 32, 33], which yields

stat
ε′v

ψ
(
ε′

v
) � stat

ε′v

N∑
α�1

1

2

(
2ηα

t

(
ε′α

v − ε′α
v n

) · (ε′α
v − ε′α

v n

)− 2ηα
o

t

(
ε′α

v − ε′α
ov n

) · (ε′α
v − ε′α

ov n

))
I γ ( y, Y )

(21)

The solution of Eq. (21) for αth Maxwell branch in γ -phase is

ε′α
v ( y) � ε′α

v n( y) − θαε′α
ov n

1 − θα
(22)
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Substituting Eq. (22) in Eq. (20) yields

ψ(E) ≈ inf
E

(〈
inf
ε′v

ψo

〉)
+

n∑
γ�1

cγ

〈
N∑

α�1

(
ηαθα

t(θα − 1)

(
ε′α

v n − ε′α
ov n

) · (ε′α
v n − ε′α

ov n

))〉γ
(23)

Equation (23) is optimized with respect to θα and ε′α
ov n to calculate the pair of unknowns for α-Maxwell

branch in γ -phase, which is given as [24]

θα � 1 −
√√√√
〈(
ε′α

v n − ε′α
ov n

) · (ε′
v n − ε′α

ov n

)〉γ
〈(
ε′α

v − ε′α
ov n

) · (ε′α
v − ε′α

ov n

)〉γ

ε′α
ov n � 1

θα

〈
ε′α

v n

〉γ −
(
1 − 1

θα

)〈
ε′α

v

〉γ
(24)

The effective internal variable ε′α
ov n in Eq. (19) is independent of y. It considers the local fluctuations of

the internal strain in the phases via its second moment, which in turn is again uniform. The field solution of the
current internal strain ε′α

v ( y) for α-Maxwell branch in γ -phase is obtained by solving the infimum problem
of ψo in Eq. (23) using Eq. (19).

ε′α
v ( y) �

(
2ηαθα

t
P2 + C

α

)−1[
P2C

α[ε( y)] +
2ηαθα

t
ε′α

ov n

]
(25)

Substituting Eq. (25) in ψ
γα
o of Eq. (19) and after mathematical simplifications (see [34]), the expression

for γ -phase yields as

ψ
γ
o

� inf
ε′

v

ψ
γ
o � 1

2
ε · Cγ

o [ε] + β
γ
o · ε + hγ

o (26)

Equation (26) has the form of a thermoelastic energy function. In other words, it leads to a virtual thermoe-
lastic homogenization problem for which already the solution is known. The virtual thermoelastic constantCγ

o
refers to elastic stiffness, βγ

o refers to thermal stress and hγ
o is a scalar constant which are uniform in γ -phase

and are given

C
γ
o �

N∑
α�1

C
α − C

α
P2

(
2ηαθα

t
P2 + C

α

)−1

P2C
α

β
γ
o �

N∑
α�1

−C
α

(
2ηαθα

t
P2 + C

α

)−1 2ηαθα

t

[
ε′α

ov n

]

hγ
o �

N∑
α�1

ηαθα

t
ε′α

ov n ·
(
2ηαθα

t
P2 + C

α

)−1

C
α
[
ε′α

ov n

]

(27)

Thus, the thermoelastic constants for γ -phase in a virtual linear thermoelastic problem are defined. The
terms involved in the right-hand side of Eq. (27) correspond to α-Maxwell branch of γ -phase. The effective
energy of the virtual thermoelastic composite problem after minimizing ψ

γ
o

with the macroscopic strain is
given as

ψo � inf
E

⎛
⎝∑

γ

cγ
〈
ψ

γ
o

(ε)
〉γ
Y

⎞
⎠ (28)

The effective stress at t is then given as

� � ∂ψ(E)

∂E
� ∂ψo(E)

∂E
(29)

The stress in the actual viscoelastic composite problem is concurrent with the virtual linear thermoelastic
problem as observed from Eq. (29). This is because the contribution of the second term in Eq. (23) is nullified
with utility of the stationarity conditions of θα, ε′α

ov n and ε′α
v . In this study, the virtual thermoelastic homog-

enization problem is solved using Hashin–Shtrikman lower-bound solution (HSLB). Implementation of this
scheme is described in Appendix A.1.
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5 Expression for effective properties of LFRP composites in LC space

5.1 Asymptotic homogenization method (AHM)

The effective stiffness tensor C for two-phase UD LFRP composite with hexagonal arrangement of fibers is
obtained in [35–37] for an elastic framework. In [38, 39], the authors have further extended the methodology
to the viscoelastic case by means of the correspondence principle and the Laplace–Carson transform. They
transform the integral form of the viscoelastic homogenization problem as indicated in Eq. (11) into an elastic
homogenization problem and calculate the effective coefficients R(t) for LFRP composites with isotropic
components.

So, based on this methodology, the effective relaxation properties in the Laplace–Carson space (s) denoted
by R(s)(indicated as R(s) in Voigt notation) are given as follows:

R(s) �

⎛
⎜⎜⎜⎜⎜⎜⎝

n(s) l(s) l(s)
k(s) + m′(s) k(s) − m′(s)

k
′
(s) + m′(s)

m(s)
SYM p(s)

p(s)

⎞
⎟⎟⎟⎟⎟⎟⎠

(30)

where

k(s) � 〈k(s)〉 − V2(k1(s) − k2(s))
2Kα(a, s)/m1(s),

l(s) � 〈l(s)〉 − V2(k1(s) − k2(s))(l1(s) − l2(s))Kα(a, s)/m1(s),

n(s) � 〈n(s)〉 − V2(l1(s) − l2(s))
2Kα(a, s)/m1(s),

p(s) � p1(s) − 2V2 p1(s)Pα(s),

m(s) � m′(s) � m1(s) − V2(m1(s) − m2(s))M
′
α(s)

(31)

In Eq. (31), indexes 1 and 2 indicate properties of matrix (m) and fibers (f), respectively. The term k is the
plane-strain bulk modulus, m is the rigidity modulus for shearing in any transverse direction, n is the modulus
for longitudinal uniaxial straining, l is the associated cross-modulus, and p is the rigidity modulus for shearing
in the longitudinal direction. The functions Kα(a, s), Pα(a, s) and M ′

α(s) which involve the order of accuracy
α are given in [39]. Here, m(s) � m′(s) for hexagonal array cell where the symmetry is hexagonal with five
independent effective constants. m′(s) is different of m(s) only for square array which is not valid for the
present study. In this case, the symmetry corresponds to tetragonal symmetry with six independent effective
constants.

In the above expression, a � 3 to obtain the effective relaxation stiffness for a hexagonal distribution of
fibers. The corresponding lattice sums for a hexagonal array are S6 � 5.8630316, S12 � 6.00096399, T5 �
5.6568027, T11 � 6.0301854, S4 � S8 � T7 � 0. The infinite system of Eqs. (30–31) is used such that it is
truncated for obtaining an n×n order system. It is interesting to note that the effective properties aremonotonic
functions of order n of the solution of the system. In general, the numerical results converge well to the exact
solutions when an adequate order in the solution of the system is chosen as n increases. The truncation order
for solving the system increases as the parameters and the fiber volume fraction are high. In the numerical
examples, the solutions are given for n � 1, because this order of n achieves the required accuracy for the used
parameters. An analysis of different truncation order of the system is carried out in [37].

5.2 Computational approach (AHM + FE)

As shown in Sect. 5.1 , local problems obtained during the asymptotic homogenization process present an
analytical solution in LC space for the hexagonal arrangement of fibers. Thus, the information available at the
microscale is encoded into the so-called effective coefficients (see Eq. (30)). However, the analytical solution
of such problems is limited to few composite structures. This limitation is overcome by coupling the local
problemwith the numerical approaches based on FEM for computing the effective properties of the composite.
In this section, the methodology described in [40, 41] is used for this purpose.
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Assuming a y-constant expression for the relaxation modulus R in each phase of the periodic cell, Y is
given in LC space as

R( y, s) �
{
R
f(s), if y ∈ Y1,

R
m(s), if y ∈ Y2.

(32)

Thus, the local problems can be rewritten as,

divyR
f(s)
[
ε(y)(χ f( y, s)

)] � 0 in Y1 × [0,+∞),

divyR
m(s)
[
ε(y)(χm( y, s)

)] � 0 in Y2 × [0 , +∞),

χ f( y, s) � χm( y, s) on �Y × [0 , +∞),(
R
f(s)
[
ε(y)(χ f( y, s)

)])
n(y) −

(
R
m(s)
[
ε(y)(χm( y, s)

)])
n(y)

� (Rf(s) − R
m(s)
)
n(y) on�Y × [0 , +∞).

Initial condition in Y × {0},
χ( y, s) � 0.

(33)

The stress jump conditions arising in the local problems led to the interface loads (see Eq. (33)5). The latter
occur as a consequence of the discontinuities of the relaxation coefficients between the matrix and the fibers,
and they represent the driving force to obtain nontrivial solutions of the six elastic-type local problems [42,
43].

At this point, it is possible to solve numerically the set of problems given in Eq. (33) in the Laplace–Carson
space and then to compute the effective viscoelastic properties by using the expression,

R(s) �
〈
R(s) + R(s)

[
ε(y)(χ( y, s))

]〉
y

(34)

For this purpose, commercially available FEM software COMSOL Multiphysics® and LiveLink™ for
MATLAB® scripting is used for implementation.

5.3 Inversion procedure

The inversion of the effective coefficients given in Eqs. (31) and (34) to the original time domain is performed
by employing theMATLAB’s function INVLAP [44, 45] and referred here to as Valsa’s method. The algorithm
can transform functions of complex variable sα , where α is a real exponent. It also transforms functions which
contain rational, irrational and transcendent expressions, and can solve fractional problems. As a drawback, it
presents problems close to zero; however, the particular case at t � 0 s is obtained from the elastic problem
(instant elastic response).

It is worth mentioning that the original version of the INVLAP’s script is conceived for the inversion of
Laplace transform and focuses on to invert a symbolic expression in a time interval. Here, the code is adapted
to perform the inversion of the Laplace–Carson transform. Furthermore, we are able to integrate it with all the
stages of the procedure allowing to invert a discrete space of solution points (see [40, 41]).

The corresponding steps are summarized as follows:

(a) Discretize the time interval t � [t1, t2, ..., tN ].
(b) For each ti , obtain the components s j :� α j/ti and Bj � β j/ti for j � 1, ..., (ns + nd + 1), where ns

and nd are implicit parameters and α and β are defined in Valsa’s method.
(c) Calculate R

(
s j
)
for j � 1, ..., (ns + nd + 1).

(d) Determine the effective coefficients in the time domain

R(t) �
ns+nd+1∑

j�1

Re
[
BjR
(
p j
)
/p j

]
for i � 1, ..., N ,
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Table 1 Properties of the UPPH matrix [47] (with assumed viscoelastic properties) and elastic glass fibers

Property Matrix Fiber

Elastic Modulus (E) in GPa 3.4 73
Poisons ratio (ν) 0.385 0.25
Assumed Maxwell model parameters N gα τα (s) –

1 0.2 0.1
2 0.5 1
3 0.3 10

where “Re” indicates the real part of a complex variable.
The methodology is fully illustrated in the flowchart given in Fig. 2 of [41]. It is worth noticing that the

parameter α j for j � 2, ..., (ns + nd + 1) is defined as a complex number within the Valsa’s method [44, 45].
Therefore, the FEM-based numerical approach must be able to handled complex stiffness. Additionally, we
have preserved the implicit parameters values suggested by the authors, that is, a � 6, ns � 20, nd � 19,
and the results showed a suitable stability and accuracy.

The contributions of each of the numerical computing platforms are discussed as follows,

5.3.1 LiveLink™ for MATLAB®

This tool allows us to integrate COMSOL Multiphysics® with MATLAB® scripting. The main codes are
stored in a MATLAB script.

5.3.2 MATLAB®

MATLAB plays the central role in the scheme. Specifically, the whole process is embedded into a MATLAB
script and the flow of the

algorithm is controlled from this platform. For instance, we launch COMSOLMultiphysics®, perform the
calculations and retrieve the results by using instructions from the MATLAB script.

5.3.3 COMSOL Multiphysics®

The main task of this platform is to solve, for every value s j , the set of elastic local problems given in Eq. (33)
in Laplace–Carson domain, by means of finite element three-dimensional simulations, and to calculate the
effective relaxation modulus R(s) using Eq. (34). Notice that the corresponding parameters and the properties
of the materials are updated at each iteration.

In relation to the COMSOL model, we use the Structural Mechanics Module which offers tools and
functionalities adapted to the analysis of the mechanical behavior of solid structures. Here, we define the
geometry of the periodic cell, introduce the parameters and implement the six elastic-type local problems of
Eq. (33). In addition, for each problem, the periodic boundary conditions on the outer boundary, the continuity
of the local displacement Eq. (33)3 and the stress jump Eq. (33)4–5 are enforced. The uniqueness of the solution
of the local problem is guaranteed by fixing the value of χ( y, s) at one point of the reference periodic cell
[42, 46]. Moreover, quadratic Lagrange elements are used on the finite element mesh and the resulting sparse
linear system is solved using the direct solver MUMPS.

6 Material parameters

A three-term generalized Maxwell model is used to depict the viscoelastic behavior of the matrix phase.
The instantaneous elastic properties for a novel polymer matrix material, unsaturated polyester–polyurethane
hybrid (UPPH) [47, 48], are indicated in Table 1. The assumed Prony coefficients and the relaxation time for
the shear modulus in generalized Maxwell model are indicated in Table 1. The effective stiffness relaxation
tensor R(t) of UD LFRP composite is obtained using IVMFH, AHM and AHM + FE. Six independent unit
macroscopic strain loads which are constant with the time are applied. Themacroscopic stress data are obtained
for every current time step and each load case, and these components are assembled to obtain R(t).
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Fig. 3 Comparison of normalized run time between time-domain IVMFH and AHM + FE

7 Results and discussion

7.1 Run-time comparison between AHM + FE and IVMFH

The average run time per number of the time steps is defined as normalized run time, and it is compared for
different homogenization methods. It ranges between 0.1 and 0.4 s for IVMFH, whereas it ranges between 300
and 600 s for AHM + FE. Normalized run time for AHM + FE depends on volume fraction of the fibers after
an optimal choice of mesh, whereas for IVMFH it depends on the load case, contrast in material properties and
volume fraction of fibers. The convergence criteria in IVMFHare set such that the relative error between the two
iterations for the unknown set of variables X (see A.1) is less than 1e-8. The convergence is attained typically
in an average of 5–10 iterations with maximum iterations observed for the case of shear loading perpendicular
to the fiber plane and hence the maximum normalized run time. The iterative algorithm in IVMFH always
converged to a solution. It is worthmentioning that AHMbeing an approach based on closed-form expressions,
it provides the effective properties instantly for simple UD FRPmicrostructures and is therefore not considered
in the run-time comparisons.

Figure 3 shows the comparison of the normalized run time required to compute the effective properties
for given load case for a simulation time of 20 s with a time step size of 0.05 s. The error bar in the plot
indicates deviations in normalized run time for various volume fractions of fibers. The normalized run time is
plotted for different shear modulus contrasts, μ � 24.4 and μ � 10. It can be observed that IVMFH provides
effective field quantities relatively faster as compared to AHM + FE for simple UD FRP microstructure. The
reason stems from the time taken for solving the linear homogenization problems. At each time step, a linear
thermoelastic and elastic homogenization problem is being solved by IVMFH and AHM + FE, respectively.
Figure 4 shows the time comparison for solving a typical elastic homogenization problem. It can be clearly
observed that AHM + FE consumes more time relative to elastic MFH schemes. This limitation in AHM + FE
arises because the forward-back passage between the time domain and the Laplace–Carson domain. In fact, in
order to invert the effective coefficients, we needed to calculate ns + nd + 1 � 40 points in the Laplace–Carson
space to determine one point in the time domain (see subsection Inversion Procedure). Since the IVMFH
operates incrementally with current and past internal variable, this would be advantageous for computational
purposes such as development of virtual process chain in composite processing [1].

7.2 Directional and time-dependent effective modulus and poisson’s ratio

In case of the linear elasticity, the directional dependent elastic modulus and Poisson’s ratio can be graphically
plotted [49]. These graphical plots assist in the direct visual assessment on the nature of the anisotropic behavior
of composite and facilitate visual comparisonswith the differentMFHmodels andAHMsolutions as a function
of the load direction and a normal to it. Additionally, these also assist in justifying the homogenization scheme
by corresponding with the experimental data made on composite samples with fibers oriented relative to the
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Fig. 4 Comparison of run time between MFH and AHM + FE for an elastic homogenization problem

direction of load [50]. This is extended here to additionally depict the effective behavior of the composite as
a function of time. The expression is rewritten as

R(d, t) �
(

(d ⊗ d) ·
(
R(t)
)−1

[d ⊗ d]
)−1

ν(d, n, t) � −R(d, t)

(
(d ⊗ d) ·

(
R(t)
)−1

[n ⊗ n]
) (35)

where R is the effective modulus of the composite in the loading direction d and ν is the effective Poisson’s
ratio along the normal direction n such that n·d � 0. It is to be noted that the modulus is indicative of relaxation
effect only in the direction of load. However, in the plane perpendicular to the loading direction,creep effects
of Poisson’s ratio is observed which is by virtue of the definition and the assumption involved. This may not
be equal to the ratio of strains for e.g. when a creep test is performed on a viscoelastic material.

The relaxation in effective modulus of composite is shown in the polar contour plots as a function of the
loading direction and the time. In similar line, evolution of the Poisson’s ratio is plotted as a function of normal
direction and time for loading direction along the basis vectors. The polar contour plots indicate the evolution
of the effective modulus and Poisson’s ratio along the radial axis, whereas the direction vector is indicated by
theta-axis computed in y1, y2 and y3 plane. The time is indicated in contour. The outer periphery of the modulus
contour plot depicts the instantaneous modulus, whereas the long-term modulus at t � 20 s is indicated at
the inner boundary of the plot. The upper half of the region from [0, π] of the polar contour plot indicates
the results obtained from the IVMFH. The lower half region of the contour plot indicates results based on
AHM. The first quarter region of the lower half from [π , 1.5π] indicates the results obtained using AHM+ FE,
whereas the second quarter from [1.5π , 2π] indicates the results from AHM. The error percentage reported
in the study for IVMFH solution is evaluated relative to AHM-based solution.

Figure 5 shows the contour plot of the relaxation of the effective modulus R(t) of UD LFRP for glass fibers
(shear modulus contrast μ � 24.4). The mean-field solutions obtained using the variational method coupled to
HSLB scheme are compared with solutions obtained using AHM and AHM + FE. A good agreement among
the three different homogenization scheme is observed for the relaxation in the modulus in all the planes.

In case of the effective Poisson’s ratio ν(t), it is observed from Fig. 5d–f that along the fiber direction,
the ν(t) always decreases with time, whereas on other directions it creeps with time. At certain critical n as
observed from y2- and y3-stretch, ν does not vary with time. A good agreement among the three different
homogenization scheme is observed for ν.

7.3 Effect of contrast in shear modulus and fiber volume fraction

The elastic property contrast and the volume fraction of fibers vary in the polymer composite depending upon
its application. In view of this fact and the assumptions used in this study, the contrast in shear modulus and the
volume fraction of fibers are varied to understand the comparisons of the mean-field solution with asymptotic
homogenization approach. Figures 6–9 show the effect of the contrast in shearmodulus (μ) and volume fraction
(cf) on the solution of the effective behavior of the composite. The contrast in the shear modulus is varied to
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μ � 10 and 40 with a constant volume fraction of 0.1 and 0.3. The AHM-based solutions compare well in all
the cases. However at cf � 0.1, a noticeable error of about + 7% and -13% at instantaneous R(t) is observed
between IVMFH and AHM-based solution, particularly in the fiber direction for μ � 10 and 40, respectively,
as observed in Figs. 6c and 7c. The cause of this deviations is attributed to the assumption that the fiber is
modeled as a needle-shaped inclusion in the polarization tensor (see HSLB scheme in Appendix). At higher
volume fractions, the deviations caused due to interaction among the fiber reinforcements synergistically cause
an increase in the error percent. Hence, in case of cf � 0.3, the deviation increases to + 11% and -15% for μ

� 10 and 40, respectively (Figs. 8c and 9c). Additionally, deviation at instantaneous R(t) perpendicular to the
fiber plane is observed to be + 6.5% and 9% for μ � 10 and 40, respectively (Figs. 8a and 9a).

Similarly, at cf � 0.1, deviations in instantaneous ν(t) on the plane normal to y1-stretch are observed
and it is about + 5% and -7% for μ � 10 and 40, respectively (Figs. 6d and 7d). Additionally, deviation in
instantaneous ν(t) on plane normal to y3-stretch is observed to be + 7% for μ � 40 (Fig. 7f). At cf � 0.3,
deviations in ν(t) on plane normal to y1-stretch increase and it is about + 17% and + 24% for μ � 10 and
40, respectively (Figs. 8d and 9d). Additionally, significant deviation in instantaneous on plane normal to
y3-stretch is observed to be + 13% at μ � 10 (Fig. 8f).

UDFRP composites are found to be useful in several commercial applications, and the cf can go up to 0.75
depending upon the application [51]. The components of R(t) are obtained as a function of cf to understand
the deviations arising due to volume fraction of fibers. In this study, the properties given in Table 1 are used.
The components of the R(t) (at t � 20 s) in the direction of the fiber R11 and in the fiber plane R33 are
plotted for all the three methods (AHM, AHM + FE and IVMFH). Additional solution from FE-based time-
domain homogenization is added in the plot which acts as reference solution. The methodology of FE-based
homogenization has been adopted following Ref. [27]. Figure 10 shows that the difference between AHM
and AHM + FE increases with the volume fraction. However, the magnitude of the difference remains to be
less than 5% for R11 and R33. Also, the difference in the stiffness along the fiber direction is less than 5%
in case of IVMFH and AHM. However, for R33 the difference increases exponentially with volume fraction
of fibers. This gap could be possibly explained due to superimposed effects of underlying assumptions of
needle-shaped inclusion in defining the polarization tensor and strong interaction effects between the fibers
at higher volume fractions. The comparison of all the solutions with reference to FE-based homogenization
indicated that AHM/AHM + FE yielded accurate solution within acceptable deviations. Further, it is noticed
that the application of IVMH is observed to be useful in designing of composites with cf� 0.25—0.3 for the
selected property contrast.

8 Summary and conclusions

An asymptotic expansion is applied for defining the two-scale viscoelastic homogenization problem to homog-
enize UD LFRP composite with hexagonal arrangement of elastic fibers in a linear viscoelastic matrix. The
effective viscoelastic properties of the composite are obtained in both integral and differential form. The
effective constitutive behavior of the viscoelastic composite in the differential form is obtained directly in the
time domain using IVMFH. On the other hand, schemes AHM and AHM + FE handled the integral form by
performing the computations in the LC space and then applying a numerical inversion algorithm to retrieve
the solutions in the time domain. The solutions obtained from three different approaches are plotted in terms
of effective modulus and effective Poisson’s ratio for relaxation test, thereby indicating the efficacy of the
methods. AHM and AHM + FE agree well with each other for any property contrast and fiber volume fraction.
However, in case of relatively low property contrast IVMFH overpredicts effective relaxation behavior as
compared to AHM-based solutions in the fiber direction due to the assumption of needle-shaped geometry of
fiber. Similarly, the effective Poisson’s ratio is also overpredicted in the fiber plane by IVMFH as compared
to AHM-based solution. However, at relatively higher property contrast, IVMFH underpredicts compared to
AHM-based solution. The error percentage increases at higher volume fraction due to superimposed effect
of interaction among the inclusions along with the geometrical assumptions. However, IVMFH provides the
effective behavior relatively faster compared with AHM + FE. It is found to be applicable for composites
used in real application with cf � 0.25–0.3 for, e.g., composites found in automotive applications. It operates
incrementally and also can provide fluctuation of the local field quantities, therebymaking it relatively advanta-
geous, suitable for extending this scheme for real complex microstructures and implementing in computational
framework for polymer composite process chain simulations.
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Fig. 10 Components of relaxed stiffness tensor at t � 20 s as a function of volume fraction obtained through AHM, AHM + FE,
IVMFH and FE
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Appendix

Implementation of IVMFH approach

Figure 11 shows the flowchart of the incremental approach to compute the effective response of the composite
as described in Sect. 4.2. The core aspect of the algorithm lies in finding the unknown pair of quantities(
θγα , ε

γα
ov n
)
for all N—Maxwell branches using Eq. (24). These are assembled in a column vector X for

γ -phase. This vector of unknowns is given as an input to a function specified in the form F(X) � 0 (Fig. 11),
which is given as

F

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θγα�1

...

θγα�N

ε′γα�1
ov n

...

ε′γα�N
ov n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(X)

�
⎛
⎝1 −

√
〈ε′v n·ε′v n〉γα −2·ε′γα

ov n·〈ε′v n〉γα+ε′γα
ov n·ε′γα

ov n
〈ε′v·ε′v〉γα −2·ε′γα

ov n·〈ε′v〉γα+ε′γα
ov n·ε′γα

ov n
− θγα

1
θγα

〈
ε′

v n
〉γα +

(
1 − 1

θγα

)〈
ε′

v
〉γα − ε′γα

ov n

⎞
⎠ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(0)

(A.1)
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Fig. 11 Flowchart for implementation of the incremental variational-based MFH to compute Σ at current time step t

The function is assembled with the pair of unknowns for all N-Maxwell branches using expanded form of
Eq. (24). The flowchart also indicates the dependencies of the quantities involved in the computations. The
steps for determining the effective response of the composite are summarized as follows:

The first and second moments of the internal strain (
〈
ε′

v
〉γ and

〈
ε′
v · ε′

v

〉γ , respectively) at past time tn are
known for γ -phase. Here, the initial conditions are assumed that

〈
ε′

v
〉γ � 0 and

〈
ε′
v · ε′

v

〉γ � 0.
The nonlinear set of equations involved in F(X) is solved for all Maxwell branches. The unknown vector

X at t is initialized at ith iteration to the solution vector Xn available at tn to achieve a faster convergence.
However, at t � 0 it is assumed that the shear viscosity in the actual problem and virtual thermoelastic problem
is same, and the effective internal variable in the virtual problem is zero. Hence, the pair of unknowns for
α-Maxwell element in γ -phase is initialized as θγα � 1, ε

γα
ov n � 0. Based on this, all the thermoelastic

constants for the virtual thermoelastic problem are evaluated using Eq. (27) before entering a Jacobian-free
optimization loop:

The first and secondmoments of the total strain (〈ε〉γ and
〈
ε′ · ε′〉γ , respectively) in the virtual thermoelastic

problem are evaluated using an appropriate elasticMFH scheme such as HSLB orDImethod for the considered
composite microstructure. These moments depend on the thermoelastic constants which in turn depend on
unknown vector X.

Based on step 2.1, the first and second moment of the internal strain for the α-Maxwell element in γ -phase
(
〈
ε′
v

〉γα and
〈
ε′
v · ε′

v

〉γα , respectively) is evaluated using local field solution in Eq. (25). These quantities also
depend on unknown vector X via 〈ε〉γ and

〈
ε′ · ε′〉γ .

The residual for F(X) is computed. If the residual vector is approximately zero, store the first and second
moments of the internal strain and go to step 3, else return to step 2.1. The Jacobian of theF(X) is approximated
numerically using finite difference.
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The macroscopic stress Σ at t can be obtained by the using the converged solution vector X obtained at i
+ 1 iteration of the optimization loop via Eqs. (25) and (29) (Fig. 11). If t ≤T, return to step 1 else the time
loop stops.

This scheme is implemented in MATLAB using trust-region-dogleg algorithm available in fsolve function.
All the tensor calculations are done in the normalized Voigt notation.

Evaluation of first and second moments of total strain

The first and second moment of the internal strain deviator as required in Eq. (24)1 depends on the first and
second moment of the total strain by use of Eq. (25). These are expressed [52] as

〈ε〉γ � A
γ [E] + aγ

〈
ε′ · ε′〉γ �

(
1

cγ

∂ψo(K
γ ,Gγ )

∂Gγ

)
� 1

cγ

ψo(K
γ ,Gγ + δGγ ) − ψo(K

γ ,Gγ − δGγ )

2(δGγ )

(A.2)

where δGγ is variation in the shear modulus, Aγ is the strain localization tensor and aγ is the thermal
strain localization tensor of γ -phase. It is sufficient to define Aγ for homogenizing a two-phase thermoelastic
composite problem (see Eq. (A.5)).

Mean-field solution of a linear thermoelastic homogenization problem

Consider a two-phase linear thermoelastic composite (identified as phase γ � 1 and 2, labeled as “m” and “f,”
respectively) defined with the thermoelastic energy function of the local constituents as

ψo � 1

2
(ε − εθ ) · C[ε − εθ ] � 1

2
ε · C[ε] + β · ε + h (A.3)

where the local terms εθ is the thermal strain and β is the thermal stress. Consider the composite constitutes
of fiber stiffness surrounded by the matrix stiffness, i.e., Cf and Cm, respectively, with the thermal stresses βf

and βm. The effective thermoelastic energy function and effective stress are given as

ψo � 1

2
E · C[E] + B · E + h

� � ∂ψo

∂E
� C[E] + B

C � C
m + cfδCAf

B � 〈β〉 + cfδC
[
af
]

h � 〈h〉 + cfδβ · af

(A.4)

where B is the effective thermal stress, δC � C
f − C

m, δβ � βf–βm and A
f is the strain localization tensor

for the fiber phase. In two-phase composite problem, the following two identities are applicable, i.e., 〈A〉 � I
s

and 〈a〉 � 0. In this problem, it is sufficient to define A
f as the thermal strain localization tensor af can be

expressed in terms of Af [53] as

af � (Af − I
s)δC−1[δβ] (A.5)

The strain localization tensor for the fiber phase Af is defined by HSLB elastic homogenization scheme.
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Hashin–Shtrikman lower bound (HSLB)

A closer estimate of effective elastic stiffness tensor can be obtained using a variational principle [54] that
yields in estimating the upper and lower bounds of the effective stiffness of composite by the choice of reference
medium. If the comparison material corresponds to the matrix material or the compliant medium, it estimates
the lower bound of the effective stiffness. The strain localization tensor corresponding to the lower bound is
given as

A
f
HSLB �

(
cm
(
A
SIP)−1

+ cfIs
)−1

A
SIP � (Is + Po(δC)−1)−1

(A.6)

where the strain localization tensor ASIP corresponds to a single inclusion problem and δC � C
f − Co with

Co � C
m for HSLB. The Hill’s polarization tensor, Po, is a function of the elastic properties of the comparison

material, i.e., the matrix material in case of HSLB and the geometrical shape of the inhomogeneity [55]. In
case of UD FRP composites, the geometrical shape of the fiber is modeled as a needle-shaped inclusion rather
than actually being a cylinder of higher aspect ratio [50].
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