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Abstract This work introduces a novel four-node quadrilateral finite element based on the strain approach
and the first-order shear deformation theory for static and free vibration responses of functionally graded (FG)
material plates. Material properties of the plate are assumed to be graded across the thickness direction by
using a simple power law distribution of the volume fractions constituents. The developed element possesses
five essential degrees of freedom per node. This element is obtained by the superposition of two strain-
based elements where the first is a membrane with two degrees of freedom per node and the second is a
Reissner–Mindlin plate that has three degrees of freedom per node. The displacements field of the proposed
element which contains higher-order terms is based on assumed strain functions satisfying compatibility
equations. The performance of the suggested element is evaluated through several tests and the obtained
results are compared with available solutions from the literature. The results of the present element have
proved excellent accuracy and efficiency in predicting bending and free vibration of FG plates.

Keywords Assumed strains · Free vibration · Reissner–Mindlin · FGM plate · Finite element

1 Introduction

Functionally graded materials (FGM) are considered as new composite materials first introduced by the
Japanese group of scientists [1, 2] where they have often been used in various structural engineering applica-
tions, such as aircraft, aerospace, marine. One of the remarkable advantages of FGM is to ensure the continuity
of their mechanical and physical characteristics through the thickness and therefore they are introduced to
eliminate the stress concentration at the interface of the layers leading to the delamination encountered in the
laminated composites.

Research works on the development of advanced numerical methods for the behaviour analysis of func-
tionally graded (FG) plate structures become among the most important research axes in structural mechanics.
Nowadays, the finite element method (FEM) has been proved to be a powerful and reliable computational
tool for the analysis of FG structures. Several numerical models based on the FEM have been proposed by
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many researchers to predict accurately the behaviour of FG structures. Praveen and Reddy [3] used the FEM
to investigate the static and dynamic thermo-elastic behaviour of FG plates. In another research work, Reddy
[4] presented the finite element formulations based on the third-order shear deformation theory (TSDT) for
analysis of FG plates. Based on the first-order shear deformation theory (FSDT), bending, free vibration and
mechanical and thermal buckling of FG plates were studied by Nguyen-Xuan et al. [5, 6] and Natarajan et al.
[7] using the edge-based smoothed FEM [5], node-based smoothed FEM [6] and cell-based smoothed FEM
[7]. Singha et al. [8] used a high precision plate bending finite element based on the FSDT for the nonlinear
analysis of FG plates. Various four unknown shear deformation theories were investigated by Thai and Choi
[9] using a four-node displacement finite element with ten degrees of freedom per node for the bending and
free vibration responses of FG plates with arbitrary boundary conditions. The in-plane displacements were
described by the use of Lagrangian linear interpolation functions, whereas the transverse displacement was
given by Hermitian cubic interpolation functions. Moita et al. [10] proposed two non-conforming triangular
finite element models based on higher-order shear deformation theory for the linear and geometric nonlinear
static analysis of FG plate–shell structures. Based on modified FSDT, recently Tati [11] made an attempt to
develop a five unknowns high-order shear deformation plate finite element model to study FG plates subjected
to sinusoidal or uniformly distributed transversal loads. Both the assumed natural shear strain technique and the
concept of the neutral plane were used to avoid any potential locking phenomenon and the membrane-bending
coupling. In another work, Tati [12] investigated the behaviour of buckling for FG plates under mechanical
and thermal loadings using his finite element model [11]. Sadgui and Tati [13] formulated a finite element
with assumed natural shear strains based on trigonometric shear deformation theory and it was successfully
applied for both mechanical buckling and free vibration of FG plates.

Finite element formulation based on the strain approach was first introduced by Ashwell and Sabir [14]
where a cylindrical shell element was developed in which the displacements field can be derived from assumed
strain functions (by integration). The advantages of this approach presented by various elements [15–21] can
be cited as easy satisfaction of the convergence criteria, independent functions for the various assumed strain
components satisfying the compatibility equations and obtention of higher-order terms in the displacements
field without incorporating non-essential degrees of freedom.

The first attempt to apply the strain-based approach to plate bending problems was presented by Belarbi
and Charif [22] using a 3D solid finite element. In their work, an eight-node hexahedral element was developed
to analyse the static behaviour for thin and thick plate structures. Since this first work, two improved three-
dimensional solid plate elements with nine and eight nodes were proposed [23, 24]. For the nine-node element
[23], the number of degrees of freedom of the element is reduced from 27 to 24 using the static condensation
technique,whereas for the eight-node element [24], its displacements field satisfies the equilibrium equations as
an additional condition. To investigate static and free vibration, Messai et al. [25] formulated and implemented
in ABAQUS code a nine-node solid plate element. These all strain-based solid plate elements presented above
[22–25] contain only the three translational degrees of freedom (u, v, w) per node and they were used with a
change in the law of behaviour using the constants of plane stress and a shear correction coefficient.

This approach has been extended for the development of plate bending elements based on the Reissner—
Mindlin theory [26–30] where several elements containing three degrees of freedom (w, βx, βy) per node
were proposed for isotropic plates [26–30]. One of the best initial studies in this field was the formulation
of a rectangular plate element by Belounar and Guenfoud [26] for the linear analysis of plates having only
regular shapes. In another investigation, Belounar et al. [27] proposed a three-node triangular element that was
successfully used for both static and natural vibration of plates. More recently, to study the responses of linear
bending, free vibration and buckling of plates, 4-node triangular and quadrilateral elements were developed
[28–30]. These elements were proposed to improve the accuracy of the basic strain-based element [26] which
suffers from shear locking for very thin plates. It can be seen that all existing strain-based plate elements were
established for only isotropic materials and this has motivated the authors to develop a newly assumed strain
finite element for the analysis of FG plates.

In the present study, a quadrilateral element based on the strain approach within the framework of the first-
order shear deformation theory is developed for the first time to investigate static and free vibration behaviours
of FG plates. The elastic material properties of FG plates are considered to vary across the thickness by a
power-law distribution of the volume fractions constituents. The present element named SBQP20 (Strain-
Based Quadrilateral Plate with 20 degrees of freedom) has five essential degrees of freedom (u, v, w, βx, βy) at
each of the four corner nodes and their displacement functions are obtained by the superposition of two strain-
based elements. The first is a membrane element named SBRIE (Strain-Based Rectangular In-plane Element)
[15]with two degrees of freedom (u, v) per node, whereas the second is a Reissner–Mindlin plate element called
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SBQP (Strain-Based Quadrilateral Plate) [28] which contains three degrees of freedom (w, βx, βy) per node.
The Reissner–Mindlin plate element (SBQP) [28] previously developed by the authors passes the patch test,
free of shear locking, and gives good results in static, free vibration and buckling analyses of isotropic plates.
Several numerical examples using the present element (SBQP20) are presented to demonstrate its performances
for FG plates and the obtained results are compared to existing analytical and numerical solutions given in the
literature.

2 Governing equations

2.1 Displacements and strains

For the first-order shear deformation theory, the components of the displacement vector U, V and W in x, y
and z directions, respectively, of any point of coordinates (x, y, z) within the plate are expressed in terms of
displacements (u, v and w) and rotations (βx and βy) of the mid plane [31] as:

z � −h

2
; E(z) � Em.

V (x, y, z) � v(x, y) + zβy(x, y), (1)

W (x, y, z) � w(x, y),

where, u and v are the components of in-plane displacement vector at any point (x, y, 0) in x and y directions,
respectively. The transverse displacement w(x, y) is considered to be constant across the thickness of the plate.
The rotations around the x- and y-axes are βy and βx, respectively.

The in-plane strain {ε} vector can be written as:

{ε} � {εm} + z{κ} {ε} � { εx εy γxy
}T

. (2)

In which {εm}, {κ} are membrane and bending strains vectors, respectively.

{
εm
} �

⎧
⎨

⎩

εmx
εmy
γm
xy

⎫
⎬

⎭
�
⎧
⎨

⎩

∂u
∂x
∂v
∂x

∂u
∂y + ∂v

∂x

⎫
⎬

⎭
; {κ} �

⎧
⎨

⎩

κx
κy
κxy

⎫
⎬

⎭
�

⎧
⎪⎨

⎪⎩

∂βx
∂x
∂βy
∂y

∂βx
∂y + ∂βy

∂x

⎫
⎪⎬

⎪⎭
. (3)

The transverse shear strain {γ } vector is given as:

{γ } �
{

γxz
γyz

}
�
{

∂w
∂x + βx
∂w
∂y + βy

}

. (4)

2.2 Constitutive equations

FGMs are composed of two or more materials in which the material constituent’s volume fractions change
continuously through their thickness (Fig. 1). The relations of Young modulus (E) and density (ρ) [4] are given
by:

E(z) � (Ec − Em)VC + Em,

ρ(z) � (ρc − ρm)VC + ρm, (5)

where VC � ( 12 + z
h

)n
; (n ≥ 0).

Poisson’s ratio ν is assumed to be constant through the thickness.
where subscripts c and m indicate the material properties of the ceramic and the metal, respectively, n is

the volume fraction exponent, and VC is the volume fraction of the ceramic (Fig. 2).
For the top: z � h

2 ; E(z) � Ec.

For the bottom: z � − h
2 ; E(z) � Em.
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Fig. 1 Functionally graded (FGM) plate geometry
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Fig. 2 Variation of the volume fraction function against the non-dimensional thickness

The plate is fully ceramic for n equal to zero, whereas for an infinite value of n, the plate becomes fully
metallic.

The constitutive equations of an elastic FGM plate can be given by

{σ } � [H ]{ε},
⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
�
⎡

⎣
H11 H12 0
H12 H22 0
0 0 G12

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
, (6)

{τ } � [G]{γ },
{

τxz
τyz

}
�
[
G13 0
0 G23

]{
γxz
γyz

}
, (7)

H11 � H22 � E(z)

1 − υ2 ; H12 � H21 � υE(z)

1 − υ2 ; G12 � G13 � G23 � E(z)

2(1 + υ)
,

where stresses and strains are:

{σ } � {σx σy τxy
}T; {ε} � { εx εy γxy

}T; {τ } � { τxz τyz
}T;

{γ } � {γxz γyz
}T

.
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2.3 Stress resultants

The stress resultants are obtained by integration of the stress components σ x, σ y, τ xy, τ xz and τ yz through the
plate thickness (h) as:

⎧
⎨

⎩

Nx
Ny
Nxy

⎫
⎬

⎭
�

h/2∫

−h/2

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
dz;

⎧
⎨

⎩

Mx
My
Mxy

⎫
⎬

⎭
�

h/2∫

−h/2

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
zdz;

{
Tx
Ty

}
�

h/2∫

−h/2

{
τxz
τyz

}
dz. (8)

By substituting Eqs. (2)–(4), (6) and (7) into Eq. (8), the constitutive equations for axial forces {N}, bending
moments {M} and transverse shear forces {T} can be obtained as:

{N } �
⎧
⎨

⎩

Nx
Ny
Nxy

⎫
⎬

⎭
� [Hm]

⎧
⎨

⎩

εmx
εmy
γm
xy

⎫
⎬

⎭
+ [Hmb]

⎧
⎨

⎩

κx
κy
κxy

⎫
⎬

⎭
, (9)

{M} �
⎧
⎨

⎩

Mx
My
Mxy

⎫
⎬

⎭
� [Hmb]

⎧
⎨

⎩

εmx
εmy
γm
xy

⎫
⎬

⎭
+ [Hb]

⎧
⎨

⎩

κx
κy
κxy

⎫
⎬

⎭
, (10)

{T } �
{
Tx
Ty

}
� [Hs]

{
γxz
γyz

}
, (11)

where the constitutive matrices for membrane [Hm], bending [Hb], coupled membrane-bending [Hmb] and
shear [Hs] are given by:

[Hm] �
h
2∫

−h
2

[H ]dz, (12)

[Hb] �
h
2∫

−h
2

[H ]z2dz, (13)

[Hmb] �
h
2∫

−h
2

[H ]zdz, (14)

[Hs] � k

h
2∫

−h
2

[G]dz, (15)

where k is the shear correction factor.
The earlier Eqs. (9)–(11) can be written in the matrix form as follows:

⎧
⎨

⎩

N
M
T

⎫
⎬

⎭
�
⎡

⎣
[Hm] [Hmb] 0
[Hmb] [Hb] 0
0 0 [Hs]

⎤

⎦

⎧
⎨

⎩

εm

κ
γ

⎫
⎬

⎭
. (16)

3 Finite element formulation of the proposed plate element

The formulated four-node quadrilateral plate element (SBQP20) possesses five degrees of freedom per node
(Fig. 3) which are three translations (u, v, w) in the x,y and z directions, respectively, and two rotations (βx,
βy) in the z–y and z–x planes, respectively.
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Fig. 3 Quadrilateral FGM plate element (SBQP20)

3.1 Displacement interpolation of the SBQP20 element

To formulate the displacement functions of the present element (SBQP20), the opportunity is taken to explore
the displacements fields obtained from the plate element (SBQP) [28] and the membrane element (SBRIE)
[15].

The displacements field given in [15] for the membrane element (SBRIE) is:
{
u
v

}
� [Pm]{αm}, (17)

where {αm} � {α1, α2, . . . , α8}T

[Pm] �
[
1 0 −y x xy 0 − y2

2
y
2

0 1 x 0 − x2
2 y xy x

2

]

. (18)

For the Reissner–Mindlin plate element (SBQP), the displacement functions [28] are:
⎧
⎨

⎩

w
βx
βy

⎫
⎬

⎭
� [Pb]{αb}, (19)

where {αb} � {α9, α10, . . . , α20}T

[Pb] �
⎡

⎢
⎣
1 −x −y − x2

2 − x2y
2 − y2

2 − xy2

2 − xy
2

x
2

xy
2

y
2

xy
2

0 1 0 x xy 0 y2

2
y
2

1
2

y
2 0 − y

2

0 0 1 0 x2
2 y xy x

2 0 − x
2

1
2

x
2

⎤

⎥
⎦. (20)

The displacements fields of themembrane elementEq. (17) and theReissner–Mindlin plate elementEq. (19)
have been developed using the strain approach where they satisfy the rigid body modes and the constant strains
criteria as well as the compatibility equations (“Appendix”).

As stated earlier, the combination of Eqs. (17) and (19) has allowed to have the interpolation functions of
the displacement for the formulated plate element (SBQP20) as:

{Ue} �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u
v
w
βx
βy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

�
[
[Pm] 0
0 [Pb]

]{ {αm}
{αb}

}
� [P]{α}, (21)
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where {α} � { {αm} {αb}
}T � {α1, α2, . . . , α20}T.

[P] �
[
[Pm] 0
0 [Pb]

]
. (22)

The transformation matrix [C] which relates the element 20 degrees of freedom ({qe}T � (u1, v1, w1, βx1,
βy1,…,u4, v4, w4, βx4, βy4)) to the 20 constants ({α}T � (α1,…,α20)) can be given as:

{qe} � [C]{α}, (23)

where

[C] � [ [P1] [P2] [P3] [P4] ]T. (24)

And the matrix [Pi] is calculated from Eq. (22) for each of the four element nodes coordinates (xi, yi), (i
� 1, 2, 3, 4) to obtain:

[P]i �
[
[Pm]i [0]
[0] [Pb]i

]

nodes,i�1, 2, 3, 4
. (25)

Now, we can derive the constant parameters vector {α} according to Eq. (23)

{α} � [C]−1{qe}. (26)

Then, substituting Eq. (26) into Eq. (21), we obtain:

{Ue} � [P][C]−1{qe} � [N ]{qe}, (27)

where

[N ] � [P][C]−1. (28)

3.2 Evaluation of the strain matrices

For membrane behaviour, the strains {εm} are expressed in terms of displacements as:

{
εm
} �

⎧
⎨

⎩

εmx
εmy
γm
xy

⎫
⎬

⎭
�
⎡

⎣
∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

⎤

⎦
{
u
v

}
. (29)

Substitution of Eq. (21) in Eq. (29) yields

{
εm
} �

⎡

⎣
∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂z

⎤

⎦[ [Pm] [0]
]
2×20{α} � [Qm]{α}. (30)

In which the membrane strains matrix [Qm] is:

[Qm] �
⎡

⎣
0 0 0 1 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 x 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎦. (31)

For Reissner–Mindlin plate theory, the curvatures {κ} and the transverse shear strains {γ } are given in
terms of displacements as:

{κ} �
⎧
⎨

⎩

κx
κy
κxy

⎫
⎬

⎭
�
⎡

⎣
0 ∂/∂x 0
0 0 ∂/∂y
0 ∂/∂y ∂/∂x

⎤

⎦

⎧
⎨

⎩

w
βx
βy

⎫
⎬

⎭
, (32)

{γ } �
{

γxz
γyz

}
�
[

∂/∂x 1 0
∂/∂y 0 1

]
⎧
⎨

⎩

w
βx
βy

⎫
⎬

⎭
. (33)
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Substituting Eq. (21) into Eqs. (32) and (33), we have

{κ} �
⎡

⎣
0 ∂/∂x 0
0 0 ∂/∂y
0 ∂/∂y ∂/∂x

⎤

⎦[ [0] [Pb]
]
3×20{α} � [Qb]{α}, (34)

{γ } �
[

∂/∂x 1 0
∂/∂y 0 1

][
[0] [Pb]

]
3×20{α} � [Qs]{α}. (35)

In which the bending [Qb] and the transverse shear [Qs] strains matrices are:

[Qb] �
⎡

⎣
0 0 0 0 0 0 0 0 0 0 0 1 y 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 x 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 (2x) 0 (2y) 1 0 0 0 0

⎤

⎦, (36)

[Qs] �
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 y 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x

]
. (37)

The relationships between the strains {εm}, {κ}, {γ } and the element nodal displacements {qe} are obtained
by substituting Eq. (26) into Eqs. (30), (34) and (35) to have:

{
εm
} � [Qm][C]−1{qe} � [Bm]{qe},

{κ} � [Qb][C]−1{qe} � [Bb]{qe},
{γ } � [Qs][C]−1{qe} � [Bs]{qe}, (38)

where {εm}, {κ} and {γ } are the membrane, curvatures and transverse shear strains, respectively, and
[Bm], [Bb] and [Bs] are strain matrices which are described as follows:

[Bm] � [Qm][C]−1; [Bb] � [Qb][C]−1; [Bs] � [Qs][C]−1. (39)

3.3 Derivation of the element matrices and the element load vector

The standard weak form for static analysis can be expressed as:
∫

Se

δ
{
εm
}T{N }dS +

∫

Se

δ{κ}T{M}dS +
∫

Se

δ{γ }T{T }dS �
∫

Se

δ{Ue}T{ fv}dS. (40)

Insertion of Eqs. (16), (27) and (38) into Eq. (40) yields:

δ{qe}T
⎛

⎜
⎝
∫

Se

[Bm]
T[Hm][Bm]dS

⎞

⎟
⎠{qe} + δ{qe}T

⎛

⎜
⎝
∫

Se

[Bm]
T[Hmb][Bb]dS

⎞

⎟
⎠{qe}

+ δ{qe}T
⎛

⎜
⎝
∫

Se

[Bb]
T[Hmb][Bm]dS

⎞

⎟
⎠{qe} + δ{qe}T

⎛

⎜
⎝
∫

Se

[Bb]
T[Hb][Bb]dS

⎞

⎟
⎠{qe}

+ δ{qe}T
⎛

⎜
⎝
∫

Se

[Bs]
T[Hs][Bs]dS

⎞

⎟
⎠{qe} � δ{qe}T

⎛

⎜
⎝
∫

Se

[N ]T{ fv}dS
⎞

⎟
⎠. (41)

The element stiffness matrix [Ke] is composed of the summation of five matrices as:
[
K e] � [K e

m

]
+
[
K e
mb

]
+
[
K e
bm

]
+
[
K e
b

]
+
[
K e
s

]
, (42)
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where [Ke
m] is the membrane part of the stiffness matrix, [Ke

mb], [Ke
bm] are the coupled membrane-

bending components, [Ke
b] is the bending part and [Ke

s] is the shear part and these are given as:

[
K e
m

] �
∫

Se
[Bm]

T[Hm][Bm]dS � [C]−T
(∫

Se
[Qm]

T[Hm][Qm]dS

)
[C]−1, (43)

[
K e
mb

] �
∫

Se
[Bm]

T [Hmb][Bb]dS � [C]−T
(∫

Se
[Qm]

T [Hmb][Qb]dS

)
[C]−1, (44)

[
K e
bm

] �
∫

Se
[Bb]

T [Hmb][Bm]dS � [C]−T
(∫

Se
[Qb]

T [Hmb][Qm]dS

)
[C]−1, (45)

[
K e
b

] �
∫

Se
[Bb]

T [Hb][Bb]dS � [C]−T
(∫

Se
[Qb]

T [Hb][Qb]dS

)
[C]−1, (46)

[
K e
s

] �
∫

Se
[Bs]

T [Hs][Bs]dS � [C]−T
(∫

Se
[Qs]

T [Hs][Qs]dS

)
[C]−1. (47)

The element nodal equivalent load vector {Fe} caused by the distributed transverse load {f v} can bewritten
as:

{
Fe} �

∫

Se

[N ]T { fv}dS. (48)

For the free vibration analysis, a weak form of the principle of virtual work under the assumptions of the
FSDT can be expressed as:

∫

Se

δ
{
εm
}T {N }dS +

∫

Se

δ{κ}T {M}dS +
∫

Se

δ{γ }T {T }dS +
∫

Se

δ{Ue}T
{
Ü
}
dS � 0. (49)

Inserting Eqs. (16), (27) and (38) in Eq. (49), we have:

δ{qe}T
⎛

⎜
⎝
∫

Se

[Bm]
T [Hm][Bm]dS

⎞

⎟
⎠{qe} + δ{qe}T

⎛

⎜
⎝
∫

Se

[Bm]
T [Hmb][Bb]dS

⎞

⎟
⎠{qe}

+ δ{qe}T
⎛

⎜
⎝
∫

Se

[Bb]
T [Hmb][Bm]dS

⎞

⎟
⎠{qe} + δ{qe}T

⎛

⎜
⎝
∫

Se

[Bb]
T [Hb][Bb]dS

⎞

⎟
⎠{qe}

+ δ{qe}T
⎛

⎜
⎝
∫

Se

[Bs]
T [Hs][Bs]dS

⎞

⎟
⎠{qe} + δ{qe}T

⎛

⎜
⎝
∫

Se

[N ]T [m][N ]dS

⎞

⎟
⎠{q̈e} � 0. (50)

The element mass matrix [Me] can be computed by the following equation:

[
Me] �

∫

Se
[N ]T [m][N ]dS � [C]−T

(∫

Se
[P]T [m][P]dS

)
[C]−1. (51)

For free vibration, the mass matrix [m] which contains the mass density ρ varying in z direction can be
given as:

[m] �

⎡

⎢⎢⎢
⎣

I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

⎤

⎥⎥⎥
⎦

. (52)

where (I0, I1, I2) � ∫
h
2

−h
2

ρ(z)
(
1, z, z2

)
dz.
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Table 1 Material properties

Properties Aluminium (Al) Zirconia (ZrO2) Alumina (Al2O3)

E (GPa) 70 200 380
ν 0.3 0.3 0.3
ρ (kg/m3) 2707 5700 3800

The element stiffness [Ke] andmass [Me] matrices given, respectively, in Eqs. (42) and (51) and the element
nodal equivalent load vector {Fe} of Eq. (48) are numerically computed using an exact Gauss integration.
These matrices and vectors are assembled to obtain the structural stiffness and mass matrices ([K], [M]) as
well as the structural load vector {F}.

For static and free vibration analysis, the formulations can be, respectively, written:

[K ]{q} � {F}, (53)
(
[K ] − ω2[M]

){q} � 0, (54)

where ω is the natural frequency.

4 Numerical results

In this section, we investigate static and free vibration responses of FG plates using the proposed element
and its results are compared with existing analytical and numerical solutions. To show the applicability of the
present formulation, a set of examples have been performed for different types of FG plates whose properties,
including Young’s modulus, Poisson’s ratio, and density are listed in Table 1. The shear correction factor
considered is k � 5/6 and the boundary conditions for an arbitrary edge with clamped and simply supported
edge conditions are, respectively:
Clamped (C):

u � v � w � βx � βy � 0 at x � 0, a and y � 0, b.
Simply supported (S):

v � w � βy � 0 at x � 0, a,
u � w � βx � 0 at y � 0, b.

4.1 Static analysis

4.1.1 Square plates under uniform and sinusoidal loads

Let us consider an Al/ZrO2 square plate subjected to a uniform load (Fig. 4) with simply supported (SSSS) and
clamped (CCCC) boundary conditions and with various values of gradient index (n � 0, 0.5, 1, 2). The plate is
modelled with different meshes (Fig. 5) and the obtained results of the non-dimensional central displacement
(W � 100wcEmh3/12 q0a4(1 − ν2)) are presented in Table 2 for thickness-to-side ratio (a/h � 5). The results
obtained from the present formulation are compared with other approaches available in the literature [5, 6,
32–34] and a very good agreement can be observed. It can be seen that the convergence of the results for the
proposed element (SBQP20) is quite fast for all meshes.

Shear locking free test is considered for simply supported and clampedAl/ZrO2 plates subjected to uniform
load with varying ratios a/h and power-law index n. Using a mesh of 16×16, the numerical results of the
central deflection (W � 100wcEmh3/12 q0a4(1 − ν2)) presented in Fig. 6 indicate that the SBQP20 element
is not affected by the length-to-thickness ratio for thin plates.

Next, a simply supported Al/Al2O3 square plate subjected to sinusoidal load (Fig. 4) is studied with two
thickness-to-side ratios (a/h � 10 and 100). Table 3 shows the results of the dimensionless displacement (W
� 10wcEch3/q0a4) of the SBQP20 element using several meshes (Fig. 5) and with different values of volume
fraction exponent (n � 1, 4, 10). The results of the present element are compared with those of the first-order
shear deformation theory (FSDT) [35], the quasi-3D solutions given by Neves et al. [35–37], Carrera et al. [38]
and the analytical solutions from Carrera et al. [39]. It is observed that the results of the present element are in
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Fig. 4 Square FG plates under sinusoidal load (S) and uniform load (U)
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Fig. 5 Square plate with a mesh of N ×N elements

Table 2 Dimensionless deflection (W ) of Al/ZrO2 square plates under uniform loads with (a/h � 5)

Boundary condition Methods n
0 0.5 1 2

SSSS SBQP20 (8×8) 0.1703 0.2305 0.2696 0.3088
SBQP20 (12×12) 0.1711 0.2316 0.2709 0.3103
SBQP20 (16×16) 0.1713 0.2320 0.2714 0.3109
SBQP20 (20×20) 0.1714 0.2321 0.2716 0.3111
SBQP20 (32×32) 0.1716 0.2323 0.2718 0.3114
IGA-Quadratic [32] 0.1717 0.2324 0.2719 0.3115
MITC4 [6] 0.1715 0.2317 0.2704 0.3093
ES-DSG3 [5, 6] 0.1700 0.2296 0.2680 0.3066
NS-DSG3 [6] 0.1721 0.2326 0.2716 0.3107
kip-Ritz [33] 0.1722 0.2403 0.2811 0.3221
MLPG [34] 0.1671 0.2505 0.2905 0.3280

CCCC SBQP20 (8×8) 0.0750 0.0999 0.1165 0.1349
SBQP20 (12×12) 0.0756 0.1007 0.1175 0.1360
SBQP20 (16×16) 0.0758 0.1010 0.1178 0.1364
SBQP20 (20×20) 0.0759 0.1011 0.1180 0.1366
SBQP20 (32×32) 0.0760 0.1012 0.1182 0.1368
IGA-Quadratic [32] 0.0760 0.1013 0.1183 0.1369
MITC4 [6] 0.0758 0.1010 0.1179 0.1365
ES-DSG3 [5, 6] 0.0761 0.1013 0.1183 0.1370
NS-DSG3 [6] 0.0788 0.1051 0.1227 0.1420
kip-Ritz [33] 0.0774 0.1034 0.1207 0.1404
MLPG [34] 0.0731 0.1073 0.1253 0.1444



2072 A. Belounar et al.

Fig. 6 Dimensionless deflection (W ) versus various ratios (a/h) of SSSS and CCCC Al/ZrO2 square plates under uniform load

Table 3 Dimensionless deflection (W ) of SSSS Al/Al2O3 square plates under sinusoidal load

a/h Methods n
1 4 10

10 SBQP20 (8×8) 0.5796 0.8591 0.9816
SBQP20 (12×12) 0.5848 0.8672 0.9900
SBQP20 (16×16) 0.5866 0.8700 0.9929
SBQP20 (20×20) 0.5875 0.8713 0.9942
FSDT [35] 0.5889 0.8736 0.9966
Quasi-3D [35] 0.5845 0.8750 0.8750
Quasi-3D [36] 0.5868 0.8698 0.9886
Quasi-3D [37] 0.5868 0.8700 0.9888
Quasi-3D [38] 0.5875 0.8821 1.0072
Reference [39] 0.5875 0.8821 1.0072

100 SBQP20 (8×8) 0.5529 0.8135 0.9203
SBQP20 (12×12) 0.5582 0.8219 0.9291
SBQP20 (16×16) 0.5601 0.8248 0.9321
SBQP20 (20×20) 0.5610 0.8262 0.9336
FSDT [35] 0.5625 0.8280 0.9360
Quasi-3D [35] 0.5624 0.8286 0.8286
Quasi-3D [36] 0.5648 0.8241 0.9228
Quasi-3D [37] 0.5647 0.8240 0.9227
Quasi-3D [38] 0.5625 0.8286 0.9361
Reference [39] 0.5625 0.8286 0.9361

good agreement compared with analytical solutions [39] as well as of those the FSDT [35] and the quasi-3D.
From Tables 2 and 3, it can be concluded that the non-dimensional central displacement increases with the
increase of gradient index n. This can be due to the reduction in stiffness of the structure material caused by
an increase in the metallic volume fraction.

4.2 Free vibration analysis

4.2.1 Square plates

The convergence tests of fully simply supported Al/Al2O3 square plates (Fig. 5) with three thickness-to-side
ratios (a/h � 5, 10 and 20) and various values of volume fraction exponent (n) are carried out to examine the
stability of the proposed quadrilateral element. Many authors have established this test to investigate the free
vibration analysis of FG square plates. Among them, Nguyen-Xuan et al. [5] applied the edge-based smoothed
FEM (ES-DSG), the four-node mixed interpolation of tensorial component (MITC4) and the discrete shear
gap triangle (DSG3). Matsunaga [40] proposed a higher-order shear deformation theory (HSDT) and Zaho
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Table 4 Dimensionless fundamental frequency (î) of SSSS Al/Al2O3 square plate

a/h Methods n
0 0.5 1 4 10

5 SBQP20 (8×8) 0.21055 0.17991 0.16262 0.13932 0.13198
SBQP20 (12×12) 0.21091 0.18020 0.16284 0.13946 0.13214
SBQP20 (16×16) 0.21104 0.18030 0.16292 0.13951 0.13219
SBQP20 (20×20) 0.21110 0.18035 0.16296 0.13953 0.13222
ES-DSG (20×20) [5] 0.21218 0.18114 0.16351 0.13992 0.13272
DSG3 (16×16) [5] 0.21335 0.18216 0.16444 0.14069 0.13343
MITC4 (16×16) [5] 0.21182 0.18082 0.16323 0.13968 0.13251
HSDT [40] 0.21210 0.18190 0.16400 0.13830 0.13060
kip-Ritz [41] 0.20550 0.17570 0.15870 0.13560 0.12840
Reference [42] 0.21120 0.18050 0.16310 0.13970 0.13240

10 SBQP20 (8×8) 0.05744 0.04878 0.04401 0.03809 0.03641
SBQP20 (12×12) 0.05758 0.04889 0.04410 0.03815 0.03649
SBQP20 (16×16) 0.05763 0.04893 0.04413 0.03818 0.03652
SBQP20 (20×20) 0.05765 0.04895 0.04415 0.03819 0.03653
ES-DSG (20×20) [5] 0.05800 0.04924 0.04439 0.03839 0.03673
DSG3 (16×16) [5] 0.05834 0.04954 0.04467 0.03861 0.03693
MITC4 (16×16) [5] 0.05787 0.04913 0.04429 0.03830 0.03665
HSDT [40] 0.05777 0.04917 0.04426 0.03811 0.03642
kip-Ritz [41] 0.05673 0.04818 0.04346 0.03757 0.03591
Reference [42] 0.05770 0.04900 0.04420 0.03820 0.03660

20 SBQP20 (8×8) 0.01473 0.01248 0.01126 0.00977 0.00937
SBQP20 (12×12) 0.01477 0.01251 0.01128 0.00979 0.00939
SBQP20 (16×16) 0.01478 0.01253 0.01129 0.00980 0.00940
SBQP20 (20×20) 0.01479 0.01253 0.01129 0.00980 0.00941
ES-DSG (20×20) [5] 0.01488 0.01261 0.01137 0.00986 0.00946
DSG3 (16×16) [5] 0.01498 0.01270 0.01145 0.00993 0.00952
MITC4 (16×16) [5] 0.01485 0.01258 0.01134 0.00984 0.00944
kip-Ritz [41] 0.01464 0.01241 0.01118 0.00970 0.00931
Reference [42] 0.01480 0.01250 0.01130 0.00980 0.00940

et al. [41] utilized the element-free kip-Ritz method based on the FSDT, whereas Hosseini-Hashemi et al. [42]
suggested an analytical approach using FSDT. The results of the fundamental non-dimensional frequency (î�
ωh(ρc/Ec)1/2) of the SBQP20 element using four meshes (8×8, 12×12, 16×16 and 20×20) are presented
in Table 4. It can be observed that these results converge towards analytical solutions [42] and agree well
with several other available ones [5, 40, 41]. It is also shown (Table 4) that the fundamental natural frequency
decreases with the increase in volume fraction exponent n for all cases and this is due to the change in plate
rigidity related to the material properties. For a better view, the first normalized frequency (î/îanalytical) is
shown in Fig. 7 for three thickness-to-side ratios (a/h) and with different values of the exponent n using a 20×
20 mesh and the analytical solution is given by Hosseini-Hashemi et al. [42]. Figure 7 shows that the SBQP20
element gives better results compared to other methods [5, 40–42] for all cases (a/h).

To verify the accuracy and the performance of the present element to the sensitivity of boundary conditions,
two types of FG square plates are considered for several values of power law index (n) and thickness ratio
(a/h). The first case of boundary conditions is SSSC and SCSC for Al/Al2O3 plate, whereas the second case
is SFSC and SFSS for Al/ZrO2 plate. Tables 5, 6, 7 and 8 illustrate the first non-dimensional frequency (î �
ωa2(ρc/Ec)1/2/h) of the present element using a 16×16 mesh. The computed results of the SBQP20 element
are compared with analytical solutions based on the FSDT given by Hosseini-Hashemi et al. [42] and other
numerical finite element solutions (FEM) based on the polynomial, sinusoidal, hyperbolic, and with FSDT [9].
It can be concluded that the obtained results of the SBQP20 element are in good agreement with analytical
solutions [42], and other available ones based on FEM [9] for all thickness ratios, volume fraction exponent,
and boundary conditions.

4.2.2 Circular plate

In this example, a clamped circular FG plate with different thickness-radius ratios (h/R) is considered. The
plate consists of Aluminium (Al) at the bottom and Alumina (Al2O3) at the top. Using the meshing shown
in (Fig. 8), the obtained results of the first six non-dimensional frequencies (î � 100ωh(ρc/Ec)1/2) of the
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Fig. 7 The normalized frequency (î/îRef) of SSSS Al/Al2O3 plate with various (a/h)

Table 5 Dimensionless fundamental frequency (î) of SSSC Al/Al2O3 square plate

a/h Methods n

0 0.5 1 2 5 8 10

5 SBQP20 5.9642 5.1194 4.6361 4.1999 3.8911 3.7736 3.7134
FSDT [42] 5.9625 5.1188 4.6356 4.1996 3.8916 3.7746 3.7146
FEM (FSDT) [9] 6.0662 5.2038 4.7165 4.2799 3.9755 3.8578 3.7964
FEM (poly) [9] 6.0695 5.2145 4.7188 4.2583 3.8945 3.7682 3.7133
FEM (sin) [9] 6.0713 5.2135 4.7199 4.2585 3.8916 3.7667 3.7135
FEM (sinh) [9] 6.0692 5.3262 4.7185 4.2573 3.8878 3.6163 3.6704

10 SBQP20 6.7768 5.7655 5.2045 4.7266 4.4457 4.3426 4.2824
FSDT [42] 6.7751 5.7649 5.2039 4.7261 4.4462 4.3439 4.2839
FEM (FSDT) [9] 6.7739 5.7661 5.2121 4.7415 4.4648 4.3608 4.2994
FEM (poly) [9] 6.7742 5.7693 5.2124 4.7333 4.4335 4.3254 4.2665
FEM (sin) [9] 6.7745 5.7686 5.2124 4.7330 4.4322 4.3247 4.2662
FEM (sinh) [9] 6.7739 5.7927 5.2121 4.7330 4.4326 4.3225 4.2612

20 SBQP20 7.0541 5.9814 5.3930 4.9024 4.6376 4.5429 4.4836
FSDT [42] 7.0526 5.9810 5.3926 4.9019 4.6382 4.5443 4.4854
FEM (FSDT) [9] 7.0012 5.9439 5.3683 4.8882 4.6249 4.5271 4.4663
FEM (poly) [9] 7.0012 5.9447 5.3683 4.8858 4.6159 4.5170 4.4568
FEM (sin) [9] 7.0013 5.9446 5.3684 4.8858 4.6154 4.5166 4.4567
FEM (sinh) [9] 7.0012 5.9499 5.3683 4.8858 4.6158 4.5164 4.4556
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Table 6 Dimensionless fundamental frequency (î) of SCSC Al/Al2O3 square plate

a/h Methods n

0 0.5 1 2 5 8 10

5 SBQP20 6.7785 5.8510 5.3132 4.8116 4.4188 4.2653 4.1910
FSDT [42] 6.7663 5.8409 5.3039 4.8032 4.4127 4.2604 4.1865
FEM (FSDT) [9] 6.9897 6.0266 5.4813 4.9797 4.5940 4.4383 4.3607
FEM (poly) [9] 6.9984 6.0461 5.4873 4.9478 4.4738 4.3077 4.2406
FEM (sin) [9] 7.0018 6.0452 5.4896 4.9486 4.4701 4.3064 4.2417
FEM (sinh) [9] 6.9980 6.2609 5.4869 4.9456 4.4577 4.2375 4.0834

10 SBQP20 8.0913 6.9021 6.2382 5.6640 5.3050 5.1700 5.0944
FSDT [42] 8.0702 6.8847 6.2222 5.6494 5.2930 5.1594 5.0844
FEM (FSDT) [9] 8.0569 6.8786 6.2338 5.6801 5.3319 5.1940 5.1159
FEM (poly) [9] 8.0578 6.8843 6.2344 5.6655 5.2794 5.1359 5.0619
FEM (sin) [9] 8.0587 6.8836 6.2347 5.6655 5.2772 5.1346 5.0615
FEM (sinh) [9] 8.0578 6.9295 6.2341 5.6652 5.2772 5.1292 5.0486

20 SBQP20 8.5922 7.2917 6.5771 5.9783 5.6479 5.5284 5.4549
FSDT [42] 8.5674 7.2715 6.5585 5.9612 5.6332 5.5152 5.4423
FEM (FSDT) [9] 8.4224 7.1647 6.4851 5.9159 5.5895 5.4621 5.3846
FEM (poly) [9] 8.4224 7.1661 6.4852 5.9116 5.5738 5.4446 5.3683
FEM (sin) [9] 8.4227 7.1660 6.4853 5.9114 5.5731 5.4441 5.3682
FEM (sinh) [9] 8.4224 7.1756 6.4851 5.9116 5.5735 5.4433 5.3660

Table 7 Dimensionless fundamental frequency (î) of SFSC Al/ZrO2 square plate

a/h Methods n

0 0.5 1 2 5 8 10

5 SBQP20 3.4463 3.2600 3.1871 3.1714 3.2147 3.2106 3.1986
FSDT [42] 3.4383 3.2528 3.1804 3.1651 3.2092 3.2055 3.1936
FEM (FSDT) [9] 3.4863 3.2971 3.2255 3.2134 3.2614 3.2577 3.2452
FEM (poly) [9] 3.4867 3.2998 3.2259 3.2067 3.2426 3.2397 3.2294
FEM (sin) [9] 3.4873 3.2996 3.2263 3.2069 3.2422 3.2397 3.2298
FEM (sinh) [9] 3.4867 3.3204 3.2259 3.2066 3.2417 3.2358 3.2131

10 SBQP20 3.7171 3.5029 3.4234 3.4156 3.4842 3.4857 3.4733
FSDT [42] 3.7068 3.4936 3.4146 3.4074 3.4766 3.4786 3.4664
FEM (FSDT) [9] 3.7044 3.4919 3.4152 3.4106 3.4811 3.4823 3.4695
FEM (poly) [9] 3.7045 3.4927 3.4153 3.4085 3.4750 3.4764 3.4644
FEM (sin) [9] 3.7045 3.4926 3.4154 3.4085 3.4749 3.4764 3.4645
FEM (sinh) [9] 3.7044 3.4970 3.4153 3.4084 3.4749 3.4759 3.4635

20 SBQP20 3.8077 3.5835 3.5017 3.4970 3.5752 3.5789 3.5665
FSDT [42] 3.7962 3.5732 3.4920 3.4877 3.5665 3.5706 3.5584
FEM (FSDT) [9] 3.7673 3.5476 3.4694 3.4673 3.5450 3.5478 3.5350
FEM (poly) [9] 3.7673 3.5478 3.4694 3.4668 3.5433 3.5463 3.5337
FEM (sin) [9] 3.7673 3.5478 3.4694 3.4668 3.5433 3.5463 3.5337
FEM (sinh) [9] 3.7673 3.5488 3.4694 3.4668 3.5433 3.5463 3.5335

current element are illustrated in Table 9 and the six mode shapes of the circular plate are plotted in Fig. 9.
To demonstrate the superiority of the SBQP20 element, the numerical values of the frequencies are compared
with those obtained from FEM with ABAQUS [45], semi-analytical solutions with FSDT [43], uncoupled
model (UM) based on the FSDT [44], and HSDT-based IGA [45]. Through the present study, it can be seen
that the results of the SBQP20 element are comparable with analytical and other solutions [43–45]. However,
it can be seen that the UM [44] exhibits higher results than the other solutions [43, 45].

5 Conclusion

Based on the FSDT, an efficient four-node quadrilateral element with five degrees of freedom per node, named
SBQP20, has been formulated for the analysis of FG plates. The proposed element is a combination of a
membrane element that possesses two degrees of freedom at each node and a Reissner–Mindlin plate element
with three degrees of freedom per node. The displacements fields of the present element that contain higher-
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Table 8 Dimensionless fundamental frequency (î) of SFSS Al/ZrO2 square plate

a/h Methods n

0 0.5 1 2 5 8 10

5 SBQP20 3.2445 3.0660 2.9971 2.9842 3.0299 3.0275 3.0164
FSDT [42] 3.2374 3.0598 2.9912 2.9789 3.0252 3.0231 3.0121
FEM (FSDT) [9] 3.2504 3.0722 3.0048 2.9943 3.0416 3.0391 3.0278
FEM (poly) [9] 3.2506 3.0737 3.0051 2.9885 3.0199 3.0240 3.0144
FEM (sin) [9] 3.2510 3.0741 3.0053 2.9885 3.0255 3.0240 3.0147
FEM (sinh) [9] 3.2506 3.0897 3.0051 2.9884 3.0252 3.0221 3.0112

10 SBQP20 3.4502 3.2499 3.1759 3.1696 3.2356 3.2377 3.2263
FSDT [42] 3.4417 3.2424 3.1689 3.1631 3.2297 3.2321 3.2209
FEM (FSDT) [9] 3.4332 3.2353 3.1636 3.1593 3.2259 3.2275 3.2159
FEM (poly) [9] 3.4332 3.2358 3.1636 3.1576 3.2208 3.2227 3.2117
FEM (sin) [9] 3.4333 3.2358 3.1637 3.1576 3.2207 3.2227 3.2118
FEM (sinh) [9] 3.4332 3.2393 3.1636 3.1575 3.2207 3.2223 3.2110

20 SBQP20 3.5150 3.3076 3.2320 3.2280 3.3009 3.3046 3.2932
FSDT [42] 3.5058 3.2995 3.2244 3.2208 3.2943 3.2983 3.2871
FEM (FSDT) [9] 3.4852 3.2815 3.2085 3.2063 3.2787 3.2817 3.2702
FEM (poly) [9] 3.4852 3.2815 3.2085 3.2057 3.2774 3.2804 3.2689
FEM (sin) [9] 3.4852 3.2815 3.2085 3.2057 3.2774 3.2804 3.2689
FEM (sinh) [9] 3.4852 3.2823 3.2085 3.2057 3.2774 3.2804 3.2689

SSSC three sides simply supported and one side clamped, SCSC two sides simply supported and two sides clamped, SFSC two
sides simply supported, one side clamped and one free, SFSS three sides simply supported and one free

Fig. 8 Meshing of circular plate with 588 quadrilateral elements

Table 9 First six frequencies (î) of a clamped circular Al/Al2O3 plate with (n � 1)

h/R Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.01 Semi-analytical [43] 0.0236 0.0491 0.0805 0.0918 0.1178 0.1404
FEM [45] 0.0234 0.0486 0.0798 0.0909 0.1167 0.1391
UM [44] 0.0257 0.0535 0.0877 0.1000 0.1283 0.1529
IGA (HSDT) [45] 0.0236 0.0492 0.0807 0.0924 0.1191 0.1431
SBQP20 0.0236 0.0493 0.0808 0.0924 0.1196 0.1418

0.1 Semi-analytical [43] 2.3053 4.6934 7.5146 8.5181 10.7128 12.6197
FEM [45] 2.2888 4.6661 7.4808 8.4829 10.6776 12.5877
UM [44] 2.5038 5.0831 8.1156 9.1931 11.5376 13.5743
IGA (HSDT) [45] 2.3076 4.7005 7.5318 8.5380 10.7483 12.6636
SBQP20 2.3069 4.7052 7.5257 8.5701 10.7868 12.7287

0.2 Semi-analytical [43] 8.6535 16.7666 25.6486 28.7574 34.0756 35.0981
FEM [45] 8.6403 16.7890 25.7661 28.9152 34.1893 35.3618
UM [44] 9.3162 17.9164 27.2480 30.4998 – 37.1197
IGA (HSDT) [45] 8.6787 16.8595 25.8479 29.0092 34.0581 35.4875
SBQP20 8.6589 16.8050 25.6897 28.9213 34.0909 35.3059
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Fig. 9 First six mode shapes of clamped circular Al/Al2O3 plate with h/R � 0.1

order terms are developed within the framework of the strain approach and they are based on assumed strains
satisfying compatibility equations. The accuracy and the reliability of the SBQP20 element have been proved
through several numerical applications for static and free vibration of FG plates with various shapes, boundary
conditions, side-to-thickness ratios, and several values of gradient index n. The obtained results of the SBQP20
element have been found to agree globally well with published reference solutions for both static and free
vibration problems. Through this work, the present finite element formulation is thus very promising to provide
a simple and effective tool for the computation and simulation of FG plates. In perspective, this element can
be further extended for the analysis of FG plates subjected to thermal loads and mechanical/thermal buckling
as well as FG shell structures.
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Appendix

For membrane behaviour, the three strains (εx, εy and γ xy) given by Eq. (30) satisfy the following compatibility
equation

∂2εx

∂y2
+

∂2εy

∂x2
− ∂2γxy

∂x∂y
� 0. (1a)

For Reissner–Mindlin plate theory, the curvatures (κx, κy and κxy) and the transverse shear strains (γ xz and
γ yz) given in Eqs. (34)–(35) satisfy the following compatibility equations:

∂2κx

∂y2
+

∂2κy

∂x2
� ∂2κxy

∂x∂y
;

∂2γxz

∂x∂y
− ∂2γyz

∂x2
+

∂κxy

∂x
� 2

∂κx

∂y
;

∂2γyz

∂x∂y
− ∂2γxz

∂y2
+

∂κxy

∂y
� 2

∂κy

∂x
. (2a)
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