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Abstract Both surface boundary motion and cavity stress concentration have always been concerned in
anisotropic medium. In this paper, the mapping function from anisotropic medium to homogeneous medium
was established, and the relationship between the free boundary of anisotropic medium and the mapping
of homogeneous medium boundary was proved. In the space of homogeneous medium mapping, the wave
displacement function was obtained by solving the equation of motion that meets the zero-stress boundary
conditions by the variable separation method and the symmetric method. Based on the complex function, the
multi-polar coordinate method and the region-matching technique, the algebraic equations were established
at auxiliary boundaries and free boundary conditions in the complex domain. Then, according to the sample
statistics, instead of the Fourier expansion method, the least square method was used to solve the undetermined
coefficient of the algebraic equations by discrete boundary. Finally, the process of the wave propagation was
shown in the time domain by inverse Fourier transform.

Keywords Mapping function · Anisotropic · Dynamic · Scattering · Shear deformation · Least squares

1 Introduction

The dynamic response of nonlinear boundary has always been an important research topic in the field of wave
motion. It is helpful to research on inverse problems of the elastic wave, and the site survey and prospecting,
seismic research, underwater detection and target identification, large-scale wall vibration analysis, nonde-
structive testing, flaw detection, etc. At present, a variety of theoretical methods and numerical methods on
convex-concave boundaries have been used to obtain fruitful results in isotropic medium. For example, the
wave function expansion method [1], Hermite function and mapping function [2], the Graf’s addition theorem
[3], weighted residual method [4], and other methods [5–10] were used to study concave boundary; the semi-
circular auxiliary boundary [11–14], the complex displacement fields and complex coordinates [15–18], and
other methods [19, 20] were used to study convex boundary. However, there are relatively few studies on non-
linear boundaries in anisotropic media. The pioneering work in this area started in the early 1990s, in which
the complex wave function method was used to study SH wave scattered by circular cavities, depressions,
and cylindrical semicircular sedimentary valleys in anisotropic media [21–26]. Subsequently, the propagation
of gradient material and multilayer piezoelectric material were studied [27–34], and the boundary element
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method was used to study the scattering of SH waves by cavities and inclusions in an anisotropic body and an
anisotropic elastic layer [35–37]. But there is almost no research report on the convex boundary.

Based on the existing research results, the SH wave scattering problem of scalene triangles with shallow
circular cavity in anisotropic medium is studied in this paper. A more flexible non-semicircle region division
method was used to solve the shallow cavity problem, and the auxiliary circle was applied to solve the sin-
gularity of the reflex angle at the triangle corner which singularity was proposed by Achenbach [38]. The
mapping function from anisotropic medium to homogeneous medium was derived and revised the transfor-
mation function of Liu et al. [21, 22]. The relationship between the free boundary of anisotropic medium
and the boundary of mapped homogeneous medium was proved, and the wave displacement function was
obtained by solving the wave equation that meets the scalene triangle zero-stress boundary conditions by the
variable separation method in the mapped homogeneous medium space. The wave functions that satisfy the
boundary conditions of the half space were derived by using symmetry method and complex coordinates in
the mapping space of the uniform medium. The defect of directly constructing the half-space scattering wave
function in the literature which did not consider anisotropic material asymmetry was corrected. Especially for
the difference in the range of wave function series and multiple auxiliary boundary continuous conditions, a
more effective least square method which only needs discrete boundaries was proposed. And the boundary
equation amplitudes were adjusted to coordinate Euclidean distance weight. After a numerical simulation, the
high accuracy of the auxiliary boundary continuity, the zero-stress boundary condition, the comparison with
finite element method, proved the correctness of the region-matching technique, the wave function equation
and the least square method. Finally, the effects of different angles of incidence, the frequency content of the
excitation, parameters of material medium, and positions of cavity were discussed in the frequency domain;
the process of the wave propagation and the scattering around the triangle and the shallow circle were shown
in the time domain. For many years, the mapping function from anisotropic medium to homogeneous medium
and the function of constructing the half-space scattering wave were given.

2 Methodology

2.1 Model

The typical project structure is shown in Fig. 1, which consists of a scalene triangle on half space and a cavity
under free surface, where O stands for the triangular peak, C1 and C2 symbolize the hypotenuse with the
gradients of 1:n1 and 1:n2, and O2 is circle center with rounded edge D2, and S represents free flat surface of
half space. Anti-plane wave propagates in the anisotropic half space with modulus C44, C45, C55, and density
ρ at the incident angle α.

2.2 Equation of motion and mapping function

In order to solve the singularity of the reflex angle at the triangle corner and obtain the global displacement
function which satisfies Helmholtz equation and complicated boundary conditions, with the help of the region-
matching technique and auxiliary circle, the space can be divided into region➀,➁,➂,➃ and➄ by the auxiliary
boundary D1 with circle center O1, auxiliary boundary D3 with circle center O3 and so on. P, P1 and P2 are
the projection of O, O1 and O2 on the flat surface in region ➂. O3 is the intersection of the extension lines of
C1 and the mid-perpendicular of the X4X5, where X4 and X5 are the intersection points of the trapezoidal edge
and the circles D4 and D5, respectively. The coordinate systems are established as shown in the figure, where
auxiliary circles D4 and D5 to solve singularity of reflex angle. Each angle is presented in Appendix A.

From the stress–strain relationship in anisotropic medium, the SH wave equation is

C55
∂2w

∂x2
+ 2C45

∂2w

∂x∂y
+ C44

∂2w

∂y2
� ρ

∂2w

∂t2
. (1)

Introducing complex variables z � x + yi and z � x − yi , in the complex plane (z, z), Eq. (1) can be
rewritten as:

(C55 − C44 + 2C45i)
∂2w

∂z2
+ 2(C44 + C55)

∂2w

∂z∂z
+ (C55 − C44 − 2C45i)

∂2w

∂z2
� ρ

∂2w

∂t2
. (2)
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Fig. 1 The model of the scalene triangle with a hole and regions divided

Correspondingly, radial stress and hoop stress have the forms of

τr z � 1

2

{[
(C55 + C44)

∂w

∂z
+ (C55 − C44 − 2C45i)

∂w

∂z

]
eθ i +

[
(C55 − C44 + 2C45i)

∂w

∂z
+ (C55 + C44)

∂w

∂z

]
e−θ i

}

τθ z � 1

2

{[
(C55i + C44i)

∂w

∂z
+ (C55i − C44i + 2C45)

∂w

∂z

]
eθ i +

[
(−C55i + C44i + 2C45)

∂w

∂z
+ (−C55i − C44i)

∂w

∂z

]
e−θ i

}
.

(3)

In order to convert the left side of formula (2) into a form ∂2w
/
∂χ∂χ , the following conversion is performed

∂2w

∂χ∂χ
�
(

∂z

∂χ

∂z

∂χ

)
∂2w

∂z2
+

(
∂z

∂χ

∂z

∂χ
+

∂z

∂χ

∂z

∂χ

)
∂2w

∂z∂z
+

(
∂z

∂χ

∂z

∂χ

)
∂2w

∂z2
+

∂w

∂z

(
∂2z

∂χ∂χ

)
+

∂w

∂z

(
∂2z

∂χ∂χ

)
.

(4)



1882 Y. Sun et al.

Comparing formula (2) and formula (4), we get:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂z
∂χ

∂z
∂χ

� C55 − C44 + 2C45i (a)
∂z
∂χ

∂z
∂χ

+ ∂z
∂χ

∂z
∂χ

� 2(C44 + C55) (b)
∂z
∂χ

∂z
∂χ

� C55 − C44 − 2C45i (c)
∂2z

∂χ∂χ
� ∂2z

∂χ∂χ
� 0 (d)

. (5)

From item (d), the solution form of z is:

z � aχ + bχ + c. (6)

Set the special solution c � 0; from (a), (b) and (c), know that there are three unknown real numbers in z.
Let a � x̂ + ŷi, b � x̂ + ẑi or a � x̂ + ẑi, b � ŷ + ẑi ; substitute z into items (a), (b) and (c); get⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a �

C45+

(
C44±

√
C44C55−C2

45

)
i

√
C44

b �
C45+

(
C44∓

√
C44C55−C2

45

)
i

√
C44

or

⎧⎪⎨
⎪⎩
a � C55±

√
C44C55−C2

45+C45i√
C55

b � C55∓
√
C44C55−C2

45+C45i√
C55

.

χ and χ are expressed as ⎧⎨
⎩

χ � bz−az
bb−aa

χ � bz−az
bb−aa

. (7)

Comparing the above four results, it is known that when the second solution (a) term takes a positive sign
in a homogeneous medium, χ � z,χ � z. Therefore, this solution is taken for convenience, of course other
solutions are also correct.

In order to convert into complex forms of Helmholtz equation that is easy to solve [17], 4u ∂2w

∂ξ∂ξ
� ρ ∂2w

∂t2
,

a and b are expressed by dimensionless γ1, γ2 and equivalent elastic modulus μ⎧⎨
⎩

ξ � 1
2

(
γ 1z − γ2z

)
ξ � 1

2

(
γ1z − γ 2z

) , (8)

where

⎧⎪⎨
⎪⎩

γ1 � C55+
√
C44C55−C2

45+C45i

C55

γ2 � C55−
√
C44C55−C2

45+C45i

C55

, and μ � (
C44C55 − C2

45

)/
C55.

For the convenience of expression, define a mapping function ξ � � ξ(z) to represent complex conversion.
The above formula (1) is transformed into

4
∂2w

∂ξ∂ξ
� 1

c2T

∂2w

∂t2
, (9)

where c2T � μ
ρ
. After separating the time variables, the above formula becomes

∂2w

∂ξ∂ξ
�
(
ik

2

)2

w, (10)

where k � ω
/
cT .

For hole in infinite space, the solution of the above formula (10) is

w
(
ξ, ξ

) �
+∞∑

n�−∞
AnH

1
n (k|ξ |)

(
ξ

|ξ |
)n

, (11)

where H1
n ( ) is Hankel function of first kind with nth order.
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Combining Eqs. (3) and (8), the radial stress and the hoop stress can be expressed as:

τr z �
(
f r1

∂w

∂ξ
+ f r2

∂w

∂ξ

)
eθ i +

(
f r3

∂w

∂ξ
+ f r4

∂w

∂ξ

)
e−θ i

τθ z �
(
f θ
1

∂w

∂ξ
+ f θ

2
∂w

∂ξ

)
eθ i +

(
f θ
3

∂w

∂ξ
+ f θ

4
∂w

∂ξ

)
e−θ i ,

(12)

where f r1 f r2 f r3 f r4 f θ
1 f θ

2 f θ
3 f θ

4 are presented in Appendix.
Establish a Cartesian coordinate system (x’,y’), which is defined as ξ � x ′ + y′i, ξ � x ′ − y′i . According

to the literature [2], this coordinate system (x’,y’) is a homogeneous medium mapping coordinate system
correspond to an anisotropic medium coordinate system (x,y). It is known from Eq. (8) that the complex
modulus |ξ | is related to the complex z phase angle θ and modulus |z|, and the complex ξ phase angle θ ’ is
only related to the z phase angle θ . Suppose the functional relationship is θ ′ � f (θ) � angle(� ξ(z)).

2.3 Wave function in region ➀, ➃, ➄

There is only standing wave WD() in the closed region ➀, ➃ or ➄, which needs to satisfy governing Eq. (2)
and free hypotenuse condition.

In the coordinate system (x,y), the zero-stress condition of the free surface hypotenuse C1 and C2. can be
expressed as:

τCθ0z �
{
0 θ0 � α1
0 θ0 � α2

. (13)

In the Cartesian coordinate system(x0,y0) and (x ′
0,y

′
0), the boundary stress is expressed as⎧⎨

⎩
τθ0z � (

f θ
1 e

θ i + f θ
3 e

−θ i
)

∂w
∂ξ

+
(
f θ
2 e

θ i + f θ
4 e

−θ i
)

∂w

∂ξ
(a)

τθ ′
0z

� 2iμ′
r ′
(
ζ ∂w

∂ζ
− ζ ∂w

∂ζ

)
� irμ′

r ′
((

γ 1e
θ i − γ2e−θ i

)
∂w
∂ζ

− (
γ1e−θ i − γ 2e

θ i
)

∂w

∂ζ

)
(b)

. (14)

Substituting the boundary condition (13) into item (a) of the above formula (14), get

∂w
/
∂ξ

∂w
/
∂ξ

� −
(
f θ
2 e

θ i + f θ
4 e

−θ i
)

(
f θ
1 e

θ i + f θ
3 e

−θ i
) . (15)

Substituting the above formula (15) into the term (b), the boundary stress in the coordinate system (x ′
0,y

′
0)

is obtained

τC
θ ′
0z

�
{
0 θ ′

0 � f (α1)
0 θ ′

0 � f (α2)
. (16)

In order to easily obtain equations that meet the boundary conditions, the coordinate system (x ′
e,y

′
e) is

established, in which the x ′
e-axis bisects the angle of the triangle corner in mapping space. The governing

equation in the polar coordinate system (r ′
e,θ

′
e) corresponding to the coordinates (x ′

e,y
′
e) is

1

r ′
e

∂

∂r

(
r ′
e
∂w

∂r ′
e

)
+

1

r2′
e

∂2w

∂θ2
′

e
+ k2w � 0. (17)

The wave equation that satisfies the boundary conditions is:

w �
∑

Aλ1 Jλ1 (kr
′
e) cos(λ1θ

′
e) + Bλ2 Jλ2 (kr

′
e) sin(λ2θ

′
e), (18)

where λ1 � 2mπ
f (α1)− f (α2)

and λ2 � (2m+1)π
f (α1)− f (α2)

, m � 0, 1, 2 · · ·.
In the complex plane (ξe, ξ e) corresponding to the coordinate system (x ′

e,y
′
e), the standing wave function

of the above formula (18) is written as

WD3(1)(ξe, ξ e) � W0

+∞∑
m�0

{
Cm Jmp0(KI|ξe|)

[(
ξe

|ξe|
)mp0

+ (−1)m
(

ξe

|ξe|
)−mp0

]}
, (19)
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where W0 is the displacement amplitude, and it is supposed to a unity in this paper; Cm is a coefficient to be
determined; Jmp0() is Bessel function with mp0 th order; p0 � π /(f (α1)-f (α2)). InWD3(1), the superscripts (1)
mean region ➀; the superscripts D3 represent auxiliary boundary D3; K1 is the shear wave number of region
➀. The following symbols are marked in the similar way.

According to the moving coordinates from (x ′
e,y

′
e) to (x ′

0,y
′
0), ξ0 can be expressed as

ξe � ξ0e
q0i , (20)

where q0 � -(f (α1) + f (α2))/2.
Substituting (20) into Eq. (19) and returning to the coordinate system (x0,y0), in the complex plane (Z j , Z j ),

Eq. (19) can be expressed as

WD3(1)(Z j , Z j
) � W0

+∞∑
m�0

{
Cm Jmp0

(
K1

∣∣∣ � ξ(Z0 j
)
eq0i

∣∣∣)
[(

� ξ(Z0 j
)
eq0i∣∣� ξ(Z0 j
)
eq0i

∣∣
)mp0

+ (−1)m
(

� ξ(Z0 j
)
eq0i∣∣ � ξ(Z0 j
)
eq0i

∣∣
)−mp0]}

, (21)

where Z0 j � Z3 + b03 j � 3 ; b03 � H − H3 + (H tan(α1) − H3 tan(α4))i , which is the complex coordinates
of O3 with the origin at O.

The corresponding shear stresses are:

τ
D3(1)
r j z

(
Z j , Z j

) �
+∞∑
m�0

Cm P̃ J
mp0

(
Z0 j

)

τ
D3(1)
θ j z

(
Z j , Z j

) �
+∞∑
m�0

Cm Q̃
J
mp0

(
Z0 j

)
,

(22)

where P̃ J
mp and Q̃ J

mp are presented in Appendix, and Hj � 0; J represents Bessel functions in Appendix
equation, and if J is replaced by H, it means Hankel function.

Similarly, in the ➃ and ➄ region, the scattered wave can be rewritten as

WD4(4)(Z j , Z j
) � W0

+∞∑
m�0

{
Fm Jmp4

(
K4

∣∣∣ � ξ(Z4 j
)
eq4i

∣∣∣)
[(

� ξ(Z4 j
)
eq4i∣∣ � ξ(Z4 j
)
eq4i

∣∣
)mp4

+ (−1)m
(

� ξ(Z4 j
)
eq4i∣∣� ξ(Z4 j
)
eq4i

∣∣
)−mp4]}

,

(23)

WD5(5)(Z5, Z5
) � W0

+∞∑
m�0

{
Gm Jmp5

(
K5

∣∣∣ � ξ(Z5 j
)
eq5i

∣∣∣)
[(

� ξ(Z5 j
)
eq5i∣∣� ξ(Z5 j
)
eq5i

∣∣
)mp5

+ (−1)m
(

� ξ(Z5 j
)
eq5i∣∣� ξ(Z5 j
)
eq5i

∣∣
)−mp5]}

,

(24)

where Z4 j � Z4 + b44 j � 4 , Z5 j � Z5 + b55 j � 5 and q4 � −( f (α6) + f
(−π

/
2
))

/2, q5 � −(
f
(
π
/
2
)
+ f (α7)

)
/2, p4 � π

/(
f (α6) − f

(−π
/
2
))
, p5 � π

/(
f
(
π
/
2
)− f (α7)

)
, b44 � b55 � 0.

The corresponding shear stresses are:

τ
D4(4)
r j z

(
Z j , Z j

) �
+∞∑
m�0

{
Fm P̃ J

mp4

(
Z4 j

)}

τ
D4(4)
θ j z

(
Z j , Z j

) �
+∞∑
m�0

{
Fm Q̃

J
mp4

(
Z4 j

)}
,

(25)

τ
D5(5)
r j z

(
Z j , Z j

) �
+∞∑
m�0

{
Gm P̃ J

mp5

(
Z5 j

)}

τ
D5(5)
θ j z

(
Z j , Z j

) �
+∞∑
m�0

{
Gm Q̃

J
mp5

(
Z5 j

)}
.

(26)
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Fig. 2 Circle symmetry in mapping space

2.4 Wave function in region ➁

In the region ➁, the total waves consist of the incident waveW (i), the reflected waveW (r) from the horizontal
free surface S, and the scattered waves WD1 and WD2 by the auxiliary boundary D1 and the cavity edge D2.

Due to the anisotropy of the material, a semi-infinite space scattering field cannot be directly constructed
by the symmetric method, so it needs to be constructed with the help of the material homogeneity field of
the mapping space. The surface stress is τS

θ ′
0z

� 0 from Eq. (14), and material is isotropic in mapping space

(x’,y’). Based on the complex coordinates and the symmetric method, a semi-infinite space scattering field
that satisfies boundary conditions is constructed, as shown in Fig. 2. The scattering wave equation with two
symmetrical cavities is

w �
+∞∑

m�−∞
Am′H1

m′(k
∣∣� ξ2(z)∣∣)

(
� ξ2(z)∣∣� ξ2(z)∣∣

)m′

+ Am′H1
m′(k

∣∣� ξ2(z)∣∣)
(

� ξ2(z)∣∣� ξ2(z)∣∣
)m′

. (27)

By taking the relationship of ξ2 � ξ2 − 2h2,ξ2 � −ξ2,ξ2 � ξ4p − h2,ξ4 � ξ4p − l2 (h2 � real
( � ξ(H2)),l2 � imag(� ξ(H2)) × i) into Eq. (27), it is expressed as

w �
+∞∑

m�−∞
Am′ H1

m′(k
∣∣ξ2∣∣)

(
ξ2∣∣ξ2∣∣
)m′

+ Am′H1
m′(k

∣∣∣−ξ2 − 2h2
∣∣∣)
⎛
⎝ −ξ2 − 2h2∣∣∣−ξ2 − 2h2

∣∣∣

⎞
⎠

m′

�
+∞∑

m�−∞
Am′H1

m′(k
∣∣ξ4 − � ξ(H2)

∣∣)
(

ξ4 − � ξ(H2)∣∣ξ4 − � ξ(H2)
∣∣
)m′

+ (−1)m Am′H1
m′(k

∣∣∣ξ4 + � ξ(H2)

∣∣∣)
⎛
⎝ ξ4 + � ξ(H2)∣∣∣ξ4 + � ξ(H2)

∣∣∣

⎞
⎠

−m′

.

(28)

According to Eq. (28), the equation of the scattered wave WD2(2) generated by the boundary D2, which
satisfies the governing Eq. (2) and the free boundary condition S in the complex plane (z j ,z j ), can be written
as

WD2(2)(Z j , Z j
) � W0

+∞∑
m�−∞

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
Em

⎡
⎢⎢⎢⎢⎢⎢⎣

H1
m

(
K2
∣∣� ξ(Z7 j

)− � ξ(H2)
∣∣)
(

� ξ(Z7 j
)− � ξ(H2)∣∣� ξ(Z7 j
)− � ξ(H2)

∣∣
)m

+

(−1)mH1
m

(
K2

∣∣∣� ξ(Z7 j
)
+ � ξ(H2)

∣∣∣)
⎛
⎝ � ξ(Z7 j

)
+ � ξ(H2)∣∣∣� ξ(Z7 j
)
+ � ξ(H2)

∣∣∣

⎞
⎠

−m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(29)

where Z7 j �
{
Z1 + b71 j � 1
Z2 + b72 j � 2 and b71 � H1 − L2i , b72 � H2.
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Similarly, in the complex plane (z j ,z j ), the equation of the scatteredwaveWD1(2) generated by the boundary
D1, can be written as

WD1(2)(Z j , Z j
) � W0

+∞∑
m�−∞

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
Dm

⎡
⎢⎢⎢⎢⎢⎢⎣

H1
m

(
K2
∣∣� ξ(Z6 j

)− � ξ(H1)
∣∣)
(

� ξ(Z6 j
)− � ξ(H1)∣∣� ξ(Z6 j
)− � ξ(H1)

∣∣
)m

+

(−1)mH1
m

(
K2

∣∣∣� ξ(Z6 j
)
+ � ξ(H1)

∣∣∣)
⎛
⎝ � ξ(Z6 j

)
+ � ξ(H1)∣∣∣� ξ(Z6 j
)
+ � ξ(H1)

∣∣∣

⎞
⎠

−m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(30)

where Z6 j �
{
Z1 + b61 j � 1
Z2 + b62 j � 2 and b61 � H1, b62 � H2 + L2i .

In the above formula, W0 is the displacement amplitude; Dm and Em are coefficients to be determined;
H1

m(·) is Hankel function of first kind with mth order.
The corresponding shear stresses are:

τ
D1(2)
r j z

(
Z j , Z j

) �
+∞∑

m�−∞
Dm P̃H1

m

(
Z6 j

)

τ
D1(2)
θ j z

(
Z j , Z j

) �
+∞∑

m�−∞
Dm Q̃

H1

m

(
Z6 j

)
.

(31)

τ
D1(2)
r j z

(
Z j , Z j

) �
+∞∑

m�−∞
Dm P̃H1

m

(
Z6 j

)

τ
D1(2)
θ j z

(
Z j , Z j

) �
+∞∑

m�−∞
Dm Q̃

H1

m

(
Z6 j

)
.

(32)

In the above stress formula, q � 0, and see Appendix in detail.
In the Cartesian coordinate system o6x6y6, the incident wave with incidence angle α [21], can be written

as

W (i) � Wie
i K i

2(y6 sin αi−x6 cosαi ) � Wie
−i K i

2
2 (z6eαi i+z6e−αi i ), (33)

where Wi � W0.
Substituting above formula into the wave Eq. (1), the wave velocity is:

csi � {[
(cos ai )

2C55 − (2 sin ai cos ai )C45 + (sin ai )
2C44

]/
ρ
}1/2

.

Reflected wave can be written as

W (r ) � Wre
i K r

2 (y6 sin αr+x6 cosαr ) � Wre
i Kr

2
2 (z6e−αr i+z6eαr i ). (34)

Substituting above formula into the wave Eq. (1), the wave velocity is:

csr � {[
(cos ar )

2C55 + (2 sin ar cos ar )C45 + (sin ar )
2C44

]/
ρ
}1/2

.

Substituting the total wave W � W (i) + W (r ) into the zero stress condition τ S
x3z3

∣∣
x3�0

� 0 at the free
boundary, obtain ⎧⎪⎨

⎪⎩
cot ar � cot ai − 2C45

/
C55

Wr � Wi

Kr
2 � Ki

2 sin αi

/
sin αr

ai �� 0 or

⎧⎨
⎩
ar � ai
Wr � Wi

Kr
2 � Ki

2

ai � 0 .

When cotαr1 � cotαi − 2C45/C55 ≥0, the reflected wave is in the first quadrant; while cotαr1 � cotαi −
2C45/C55 <0, the reflected wave does not exist because the anisotropic medium changes the direction of wave
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propagation. It means that the incident angle αi only be less than acot(2C45/C55) near the surface. Its total
expression is

W (i+r)(Z j , Z j
) � W0e

−i K i
2

2 (z6 j eαi i+z6 j e−αi i ) +W0e
i Kr

2
2 (z6 j e−αr i+z6 j eαr i ). (35)

Substituting it into Eq. (3), get the stress expression

τ (i+r)
r j z

(
Z j , Z j

) � 1

2

{ [
(C55 + C44)U

(
z6 j
)
+ (C55 − C44 − 2C45i)V

(
z6 j
)]
eθ i+[

(C55 − C44 + 2C45i)U
(
z6 j
)
+ (C55 + C44)V

(
z6 j
)]
e−θ i

}

τ
(i+r)
θ j z

(
Z j , Z j

) � 1

2

{ [
(C55i + C44i)U

(
z6 j
)
+ (C55i − C44i + 2C45)V

(
z6 j
)]
eθ i+[

(−C55i + C44i + 2C45)U
(
z6 j
)
+ (−C55i − C44i)V

(
z6 j
)]
e−θ i

}
.

(36)

See Appendix in detail.

2.5 Wave function in region ➂

In the enclosed region ➂, the total waves are composed ofWD1 WD3 WD4 andWD5 generated by the auxiliary
boundaries D1, D3, D4 and D5, respectively. In the complex plane (z j ,z j ), they can be written as

WD1(3)(Z j , Z j
) � W0

+∞∑
m�−∞

{
Im Jm

(
K3
∣∣� ξ(Z1 j

)∣∣)
(

� ξ(Z1 j
)

∣∣� ξ(Z1 j
)∣∣
)m}

, (37)

WD3(3)(Z j , Z j
) � W0

+∞∑
m�−∞

{
KmH

1
m

(
K3
∣∣� ξ(Z3 j

)∣∣)
(

� ξ(Z3 j
)

∣∣� ξ(Z3 j
)∣∣
)m}

, (38)

WD4(3)(Z j , Z j
) � W0

+∞∑
m�−∞

{
MmH

1
m

(
K3
∣∣� ξ(Z4 j

)∣∣)
(

� ξ(Z4 j
)

∣∣� ξ(Z4 j
)∣∣
)m}

, (39)

WD5(3)(Z j , Z j
) � W0

+∞∑
m�−∞

{
NmH

1
m

(
K3
∣∣� ξ(Z5 j

)∣∣)
(

� ξ(Z5 j
)

∣∣� ξ(Z5 j
)∣∣
)m}

, (40)

where Z1 j �
⎧⎨
⎩

Z3 + b13 j � 3
Z4 + b14 j � 4
Z5 + b15 j � 5

Z3 j �
⎧⎨
⎩

Z1 + b31 j � 1
Z4 + b34 j � 4
Z5 + b35 j � 5

Z4 j �
⎧⎨
⎩

Z3 + b43 j � 3
Z1 + b41 j � 1
Z5 + b45 j � 5

Z5 j �
⎧⎨
⎩

Z3 + b53 j � 3
Z1 + b51 j � 1
Z4 + b54 j � 4

and b31 � H1 + H3 +
(−L

/
2 + H3 tan(α4)

)
i , b34 � H3 + (−L + H3 tan(α4))i , b35 � H3 +

(H3 tan(α4))i , b13 � −b31, b14 � −H1 − L
/
2i , b15 � −H1 + L

/
2i , b43 � −b34, b41 � −b14, b45 � Li ,

b53 � −b35, b51 � −b15, b54 � −b45.
The corresponding shear stresses are:

τ
D1(3)
r j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Im P̃ J

m

(
Z3 j

)}
, δ � 0

τ
D1(3)
θ j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Im Q̃

J
m

(
Z3 j

)}
, δ � 0

(41)

τ
D3(3)
r j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Km P̃H1

m

(
Z1 j

)}
, δ � 0

τ
D3(3)
θ j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Km Q̃

H1

m

(
Z1 j

)}
, δ � 0

(42)
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τ
D4(3)
r j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Mm P̃H1

m

(
Z4 j

)}
, δ � 0

τ
D4(3)
θ j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Mm Q̃

H1

m

(
Z4 j

)}
, δ � 0

(43)

τ
D5(3)
r j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Nm P̃H1

m

(
Z5 j

)}
, δ � 0

τ
D5(3)
θ j z

(
Z j , Z j

) �
+∞∑

m�−∞

{
Nm Q̃

H1

m

(
Z5 j

)}
, δ � 0

(44)

where δ is the variable in the formula. See Appendix in detail.

2.6 Boundary conditions and solving method

Based on the continuity conditions of displacement and stress at the auxiliary boundaryD1,D3,D4,D5, and the
radial zero-stress at the cavity edge D2, a system of equations is established for solving the unknown complex
coefficients.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WD3(1)
(
Z3, Z3

) � WD1(3)
(
Z3, Z3

)
+WD3(3)

(
Z3, Z3

)
+WD4(3)

(
Z3, Z3

)
+WD5(3)

(
Z3, Z3

)
Z3 ∈ D3

τ
D3(1)
r3z

(
Z3, Z3

) � τ
D1(3)
r3z

(
Z3, Z3

)
+ τ

D3(3)
r3z

(
Z3, Z3

)
+ τ

D4(3)
r3z

(
Z3, Z3

)
+ τ

D5(3)
r3z

(
Z3, Z3

)
Z3 ∈ D3

WD4(4)
(
Z4, Z4

) � WD1(3)
(
Z4, Z4

)
+WD3(3)

(
Z4, Z4

)
+WD4(3)

(
Z4, Z4

)
+WD5(3)

(
Z4, Z4

)
Z4 ∈ D4

τ
D4(4)
r4z

(
Z4, Z4

) � τ
D1(3)
r4z

(
Z4, Z4

)
+ τ

D3(3)
r4z

(
Z4, Z4

)
+ τ

D4(3)
r4z

(
Z4, Z4

)
+ τ

D5(3)
r4z

(
Z4, Z4

)
Z4 ∈ D4

WD5(5)
(
Z5, Z5

) � WD1(3)
(
Z5, Z5

)
+WD3(3)

(
Z5, Z5

)
+WD4(3)

(
Z5, Z5

)
+WD5(3)

(
Z5, Z5

)
Z5 ∈ D5

τ
D5(5)
r5z

(
Z5, Z5

) � τ
D1(3)
r5z

(
Z5, Z5

)
+ τ

D3(3)
r5z

(
Z5, Z5

)
+ τ

D4(3)
r5z

(
Z5, Z5

)
+ τ

D5(3)
r5z

(
Z5, Z5

)
Z5 ∈ D5

WD1(2)
(
Z1, Z1

)
+WD2(2)

(
Z1, Z1

)
+W (i+r)

(
Z1, Z1

) � WD1(3)
(
Z1, Z1

)
+WD3(3)

(
Z1, Z1

)
+WD4(3)

(
Z1, Z1

)
+WD5(3)

(
Z1, Z1

)
Z1 ∈ D1

τ
D1(2)
r1z

(
Z1, Z1

)
+ τ

D2(2)
r1z

(
Z1, Z1

)
+ τ

(i+r)
r1z

(
Z1, Z1

) � τ
D1(3)
r1z

(
Z1, Z1

)
+ τ

D3(3)
r1z

(
Z1, Z1

)
+τ

D4(3)
r1z

(
Z1, Z1

)
+ τ

D5(3)
r1z

(
Z1, Z1

)
Z1 ∈ D1

τ
D1(2)
r2z

(
Z2, Z2

)
+ τ

D2(2)
r2z

(
Z2, Z2

)
+ τ

(i+r)
r2z

(
Z2, Z2

) � 0 Z2 ∈ D2

(45)

Currently, the Fourier expansion method is commonly used to solve the undetermined coefficients of
algebraic equations, and it is an average approximation of the entire boundary conditions. Due to the wave
field high gradient of the triangle edge and the auxiliary boundary corner point, The Fourier expansion method
whose convergence speed is slow is difficult to solve the problem of the scalene triangle. Therefore, this paper
proposes the least square method with the direct discrete boundary conditions. According to the set distance
on the boundary, the discrete points are taken and the displacement and stress on the two sides of the discrete
points are equal, as shown in Fig. 3. An infinite number of points n can be taken on the boundary to form
an infinite number of equations to solve the undetermined coefficients Cm, Dm, Em…. In order to minimize
the error of the undetermined coefficient of the finite term, a large number of sample points n (n 
m) are
approximated to the true solution by the least square method. This paper uses equidistant discrete points and
stress terms divided by μk (not reflected in the formula) to coordinate the weights of Euclidean distance. The
matrix is expressed as

M
T
MX � M

T
N , (46)

where
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Fig. 3 Discrete points of auxiliary circle and hole edge

M �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c̃3nm 0 0 0 0 ĩ3nm k̃3nm m̃3
nm ñ3nm

−c̃3τnm 0 0 0 0 ĩ3τnm k̃3τnm m̃3τ
nm ñ3τnm

0 0 0 − f̃ 4nm 0 ĩ4nm k̃4nm m̃4
nm ñ4nm

0 0 0 − f̃ 4τnm 0 ĩ4τnm k̃4τnm m̃4τ
nm ñ4τnm

0 0 0 0 g̃5nm ĩ5nm k̃5nm m̃5
nm ñ5nm

0 0 0 0 g̃5τnm ĩ5τnm k̃5τnm m̃5τ
nm ñ5τnm

0 −d̃1nm −ẽ1nm 0 0 ĩ1nm k̃1nm m̃1
nm ñ1nm

0 −d̃1τnm −ẽ1τnm 0 0 ĩ1τnm k̃1τnm m̃1τ
nm ñ1τnm

0 −d̃2τnm −ẽ2τnm 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cm

Dm

Em

Fm

Gm

Im

Km

Mm

Nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

ζ 1
n

ζ 1τ
n

ζ 2τ
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above formulas are presented in Appendix for more details.

2.7 Surface displacement amplitude and cavity stress

In region ➀, ➁, ➂, ➃ and ➄ the wave field Wj are

Wj �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WD3(1) 1©
WD1(2) +WD2(2) +W (i+r ) 2©
WD1(3) +WD3(3) +WD4(3) +WD5(3) 3©
WD4(4) 4©
WD5(5) 5©

. (47)

Equation (47) can also be expressed as

Wj � ∣∣Wj
∣∣e(ωt−φ j )i j � 1, 2, . . . . (48)
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Fig. 4 The precision of tolerance vs the circle radius of r

where |Wj | is the displacement amplitude, and φj is the phase angle of Wj

φ j � arctan
(
Im(Wj )

/
Re(Wj )

)
(49)

The dimensionless frequency of the incident waves can be expressed as

η � 2r2
λ

� kr2
π

(50)

where K1 � K2 � K3 � K4 � K5 � k, and k is given by Eq. (10). λ is the wavelength of the incident waves.
It is well known that the effect of elastic waves on the surface displacement and the cavity stress highly relies
on the wavelength. As can be seen from Eq. (50), the dimensionless frequency η is introduced to represent
the ratio of the radius (r2) of the cavity to the wavelength and indirectly represents the magnitude of the wave
number.

In region ➁, the cavity hoop stress can be expressed as

τθ z � τ
D1(2)
θ2z

+ τ
D2(2)
θ2z

+ τ
(i+r )
θ2z

. (51)

The dimensionless hoop stress is

τ ∗
θ z � ∣∣τθ z

/
τ0

∣∣, |Z2| � r2 . (52)

where τ0 � μkW0.

3 Numerical examples and discussions

3.1 Precision and convergence discussion

A number of precision discussion are carried out to determine the truncation values of n, m, and the optimal
value of r4, r5. For convenience, set r4 � r5 � r, H1 � 0; the tolerance for the continuity of the auxiliary
boundary and the zero-stress condition of the cavity edge, is used as a precision metric. The precision of
tolerance with n, m, r is discussed by a typical example (Table 1), where the incident angle α � 0° or 60° (the
max incident angle αmax � acot(2C45/C55) � 68°), the triangular edge slope n1 � 0.5 and n2 � 1.5, and the
material parameters κ � 0.8 and ν � 0.2(κ � C44/C55, ν � C45/C55). Generally, more terms of n and m are
required for higher dimensionless frequency of incident waves. For the number of truncation terms of m and
n, 70 (η � 1.0) and 360 are enough to get the high precision results of the examples in this paper, respectively;
for the value of r, 1.0 is the best precision results (Figs. 4, 5, and 6).

The convergence of displacement amplitudes with increasing M at three selected positions, the numerical
results of the auxiliary boundary, the cavity edge and the free surface are given in Figs. 7 and 8, which the
frequency of the incident η � 2.0. As shown in figure, the amplitude of the displacement is stable asM increases
to 25, the displacementW and stress τ rz continuity of the auxiliary boundary D are good, and the stress τ θz of
the free surface and τ rz of the circular cavity boundaryD2 are close to 0, which indicate that the wave function
and the least square method are effective.
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Fig. 5 The precision of tolerance vs the terms number of n

Fig. 6 The precision of tolerance vs the terms number of m

Fig. 7 The continuity of the auxiliary boundary and free edge zero-stress at α � 0°

Table 1 Parameters of scalene triangle and cavity

L n1 n2 H2 L2 r2 κ ν

Figures 3–8, 10, 13, 14, 17–19 6.0 0.5 1.5 6.0 0.0 1.0 0.8 0.2
Figure 9 6.0 / / 1e5 0.0 1.0 1.0 0.0
Figure 11 6.0 0.5 1.5 6.0 0.0 1.0 / 0.0
Figure 12 6.0 0.5 1.5 6.0 0.0 1.0 1.0 /
Figure 15 6.0 1.0 1.0 6.0 0.0 1.0 / 0.0
Figure 16 6.0 1.0 1.0 6.0 0.0 1.0 1.0 /
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Fig. 8 The continuity of the auxiliary boundary and free edge zero-stress at α � 60°

Fig. 9 Comparisons of the proposed solution results with those of Song et al. [39]

3.2 Correctness verification

An important method to verify the theory is to compare the solution results of the isosceles triangular boundary
in isotropic medium [39], as shown in Fig. 9. For comparison, the circular cavity is assumed to be deep enough
(H2 � 100,000), so that its impact on the free surface will become very weak, and the model with deep cavity
will be close to a triangular boundary without cavity; the material parameters (κ � 1.0 ν � 0.0) are degenerated
into isotropic material. It is seen that a sound agreement of the free surface motions can be observed not only
for low but also high-frequency waves.

Another important method to verify the theory is to compare with the solution results of the finite element
method (FEM), as shown in Fig. 10, which display the free surface displacement amplitudes |W/W0|, the cavity
edge stress τ ∗

θ z and the displacement cloud at a certain time. The FEM results are obtained by the commercial
software Ls-Dynawith explicit dynamicsmethod and user-definedmaterialmodels, whose constitutive relation
is built according to Eq. (53). The geometric model is meshed by shell element whose edge length 0.1 and
grid only with out-of-plane translational degree of freedom, the mesh area is large enough to eliminate the
effects of boundary reflections. And sine excitation is applied to the bottom or right edge of the analysis area,
corresponding to incident angle 0° or − 90°. The calculation time is long enough to ensure that it is in a steady
state, and less than the time that reflected wave reaches the area of cavity. The surface displacement magnitude
is measured from the displacement of the surface element nodes; the stress of cavity edge comes from the
nearest element of the cavity edge. It means that the cavity stress is the average of cavity edge area rather than
the cavity edge, so the FEM stress results may be a bit inaccurate. For incident angle α � − 90°, it is difficult
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Fig. 10 Comparisons of the proposed solution results with FEM results at η � 0.5 n1 � 0.5

Fig. 11 The shape of triangle and cavity vs κ

to obtain a sufficient reflected wave near the surface area due to limitation of computational grid domain and
computer computing power. Therefore, the finite element analysis results may be some deviations. But the
results from the proposed method are agree with those from the finite element method on the overall trend,
which is a very effective support for the paper theory.{

τxz � C55
∂w
∂x + C45

∂w
∂y

τyz � C45
∂w
∂x + C44

∂w
∂y

(53)

3.3 The characteristics of mapping function

It can be known from the anisotropic material coordinate system (x,y) and the isotropic material coordinate
system (x’,y’) that the shape of the triangle and the cavity changes with κ or ν. In the isotropic material space
κ only changes the mapping coordinate x expansion ratio; ν affects the scaling of the mapping coordinates x
and y (Figs. 11 and 12).
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Fig. 12 The shape of triangle and cavity vs ν

3.4 Parameters study in the frequency domain

Each position of free surface can be expressed by dimensionless y/(L/2) in the Cartesian coordinate system
o6x6y6, where − 1 represents the left triangle foot point, (n2-n1)/(n2 + n1) is triangle vertex, and 1 represents
the right triangle foot point.

(1) The comparison of cavity
It can be seen from the below figure that the cavity has a large impact on the surface at low or high
frequencies, while it has a smaller impact at incident angle 30° (Fig. 13).

(2) The influence of incident waves frequency
In order to reveal the influence of dimensionless frequencies on the free surface displacement and the
cavity stress, the first row pictures in Fig. 14 give the displacement amplitudes as a function of 2y/L and η
at various angles of the incidence (α � 0°, 30°, 60°) and the slope n1 � 0.5, and the second-row pictures
give the cavity stress as a function of θ and η. It shows that the number of the wave peaks in the triangular
region increases as the wave dimensionless frequencies increases, and the peak and oscillation frequency
increases on one side of the incident wave, while they decrease on the another side; the peak and the
oscillation frequency of the area near the larger triangle slope significantly increase, but the increase
will move to the side of wave incoming direction when the angle of incidence changes large. The cavity
concentrated stress is distributed over both sides of the wave propagation direction, and the shear stress
near the free boundary is greater than that on the infinite space, which is due to the superposition of
the incident wave and the free boundary reflection wave. The displacement amplitude of the triangular
surface is of a peak shape, and the displacement amplitude of the free flat surface is mountain-shaped
whose ridges show fluctuations.

(3) The influence of κ
In order to reveal the influence of material parameters on the free surface displacement and the cavity
stress, the first-row pictures in Fig. 15 give the displacement amplitudes as a function of 2y/L and κ at
various angles of the incidence (α � 0°, 30°, 60°) and the slope n1 � 1.0, and the second-row pictures give
the cavity stress as a function of θ and κ. It shows that the surface displacement and the cavity stress have
an increasing trend as the κ decreases, but the trend gradually weakens as the incident angle increases;
the number of free surface displacement peaks decreases as κ increases, while the number of cavity stress
peaks increases.

(4) The influence of ν

The first-row pictures in Fig. 16 give the displacement amplitudes as a function of 2y/L and ν at various
angles of the incidence (α � 0°, 30°, 60°) and the slope n1 � 1.0, and the second-row pictures give the cavity
stress as a function of θ and ν. There is no obvious regular change in surface displacement and cavity stress as
ν changes, and the overall level is at the same.

3.5 Time domain response

The transient response is obtained from the frequency domain results through the inverse Fourier transform
(IFT) algorithm. The incident time signal is a Ricker wavelet

Ri(t) � (
1 − 2π2 f 2c t

2)e−π2 f 2c t
2

(54)
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Fig. 13 The free surface displacement amplitudes |Wj | of the triangle without cavity and with cavity

Fig. 14 3D plots of surface displacement amplitudes |Wj | and cavity edge stress τ ∗
θz
vs η at n1 � 0.5 κ � 0.8

with the characteristic frequency f c � 0.5 Hz.
The calculated frequencies range from 0.0 to 2.0 Hz with 1/33 Hz intervals. The transfer function for every

position is deduced in the previous chapter for a particular frequency ω (or the wave number k). Then, the time
domain results can be synthesized by using the inverse FFT, and the shear wave propagates with the velocity
cT � 3. In Fig. 17, the reference point is set to be (x,y)� (8,− 16) for t � 0 s; in Figs. 18 and 19, the reference
point is set to be (x,y) � (20,-15) for t � 0 s. The reference coordinate system (x,y) is o6x6y6.

In Fig. 17, the synthetic displacement contour, with y range from− 12 to 12, contains 800 discrete positions
located along the surface of the triangle.When the reference point is (8,− 16), the vertical Ricker wave reaches
the flat surface (x � 0) at t � 2.3 s (csi � 3.44); after the vertical wave leave away from the flat surface several
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Fig. 15 3D plots of surface displacement amplitudes |Wj | and cavity edge stress τ ∗
θz
vs κ at η � 1.0 n1 � 1.0 ν � 0.0

Fig. 16 3D plots of surface displacement amplitudes |Wj | and cavity edge stress τ ∗
θz
vs ν at η � 1.0 n1 � 1.0 κ � 1.0

scattered waves appear one after another whose amplitudes are obviously different. The incident angle 60°
Ricker wave reaches the flat surface (y � − 12) at t � 2.6 s (csi � 2.83); when the wave reaches the triangle,
several scattered waves appear one after another whose amplitudes are also obviously different.

Figures 18 and 19 show the displacement of nodes with equally distance 0.03 at the incident angle 0° and
60°, respectively. These snapshots show the wave fields at 9 specified time points to illustrate the process of
the wave propagation and scattering around the triangular shape and the shallow circle. In Fig. 18, when the
incident wave passes through the hole, the scattered wave is produced by the hole, which propagates in the
opposite direction (t � 5 s); when the incident wave reaches the free surface, a reflected wave is produced, and
a circular scattered wave is also produced in the triangular area (t � 8–10 s). This appearance of displacement
also corresponds to Fig. 17. In Fig. 19, when the incident wave passes through the hole, the scattered wave is
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Fig. 17 3D plots of surface displacement amplitudes |Wj | vs time at n1 � 0.5

Fig. 18 Snapshots for α � 0° at 9 specified times

Fig. 19 Snapshots for α � 60° at 9 specified times
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produced, which propagates in the opposite direction (t � 9 s); when the wave reaches the triangular area, a
less obvious circular scattered wave is produced (t � 11–13 s). The amplitude and the range of influence on the
left side of the triangle are significantly higher than those on the right side, which also corresponds to Fig. 17.
Besides, the shape of wave scattered by circular cavity is non-circular, which is the biggest difference from
a homogeneous medium. Besides, through the time domain results of various time points, it can be used for
the transient response analysis of underground structures or surface structures to provide support for strength
design.

4 Conclusions

This paper derives the mapping function, which transforms from anisotropic space to isotropic space. By using
the mapping space and adopting the symmetric method, the zero-stress boundary condition of the semi-infinite
cavity is solved. Finally, through the complex variable function coordinate transformation, the region-matching
method and the least squaremethod, the solution of thewave to the typical oblique triangle boundary is obtained
in the frequency domain. From the formula derivation and numerical simulation, the following conclusions
can be drawn:

(1) It can be seen from the formula derivation that there are four mapping functions, that is, there are four
mapping spaces, and each mapping function can solve the problem. Therefore, we can further research
on cracks, special-shaped cavities and free-surface boundary in the mapping space, just as do with homo-
geneous medium.

(2) From the simulation results, κ determines the x scaling, and ν determines the x y scaling in the mapping
space.

(3) Because the anisotropic medium changes the direction of wave propagation, the incident angle αi only
be less than acot(2C45/C55) near the free surface, which can be used for shock absorption design.

(4) It can be seen that the triangle and the cavity have a significant amplification effect on the elastic wave,
which can even be amplified by more than 4 times; the concentrated stress of the cavity is significantly
increased and even can be amplified by more than 5 times.

(5) The snapshots show the process of the wave propagation and scattering around the triangle and shallow
cavity in the time domain. Besides, the time domain results of various points can be used for the transient
response analysis of the underground structures or the surface structures to provide support for structural
strength designs.
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Appendix A

Expressions of each angle in Fig. 1 model

α1 � arctan(n1), α2 � arctan(n2), α3 � π − arctan

(
L + r4 + r5

2H1

)
, α4

� α1, α5 � π − 2 � O3X5X4 − α1, α6 � π − α2, α7 � π − α1,

where � O3X5X4 � arccos

(
L2
X5X4

+L2
X5O

−L2
OX4

2LX5X4
LX5O

)
,

LX5X4
�

√
[r5 cos(α1) − r4 cos(α2)]2 + [L − r5 sin(α1) − r4 sin(α2)]2, LOX4

� H
/
cos(α2) − r4,

LOX5
� H

/
cos(α1) − r5, r3 � LX5X4

/
(2sin((α4+α5)/2)), H3 � (r3 + r5) cos(α4).

Appendix B

Expressions of functions
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∂z ,
∂w
∂z .
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