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Abstract In the present paper, Navier’s method based on the first-order shear deformation theory for bending
analysis of two-directional functionally graded beams subjected to various sets of boundary conditions is pre-
sented. In Navier’s method, different trigonometric series functions are proposed for each boundary condition.
The accuracy of these proposed functions was investigated and compared with the literature. It is also presented
in a parametric study. The governing equations are derived according to Lagrange’s principle. The variation of
the components of the beam material in the volume is defined by a power-law rule. The normalized maximum
transverse deflections, the normalized axial and transverse shear stresses are obtained for various boundary
conditions, gradation exponents (px, pz) in the x- and z-directions, and the slenderness (L/h). The trigonometric
series functions used in this study give results that are quite compatible with the literature. In addition, the
parametric study contributes to the literature.

Keywords Two-directional functionally graded materials · Navier’s method · Bending analysis · First-order
shear deformation theory · Trigonometric series functions

1 Introduction

Functionally graded materials (FGMs), which have wide usage areas such as aviation, aircraft and space
industry,mechanical, construction, and electrical circuit industry, are preferred because they are highly resistant
to thermal changes. Its mechanical properties change smoothly and continuously from one side to the other.
It is formed of ceramic and metal phases to reduce thermal stresses due to temperature changes. Due to the
constant change in the composition of the component materials, FGMs havemany advantages over composites.
Therefore, many researchers have studied the mechanical behavior of FGMs.

According to the literature, researchers have conducted a significant number of studies over the past
two decades to predict and understand the bending, buckling, and vibration behavior of conventional (one-
directional) functionally graded beams (or 1D-FGBs) and plates based on different theories [1–18].

1D-FGMs are unsuitable for meeting technical requirements such as temperature and stress distributions in
two or three directions for spacecraft and shuttles. To eliminate the mentioned disadvantage of 1D-FGM, a new
type of FGM is needed whose material properties can vary in two or three directions. For this reason, there are
many studies in the literature examining the mechanical behavior of two-directional functionally graded beams
(2D-FGBs) with numerical and analytical methods according to various beam theories. Among the studies
carried out with the finite element method, which is the most widely used numerical method in the literature,
we can mention the following: Karamanlı and Vo [19] performed the size-dependent bending analysis of
two-directional functionally graded microbeams via a quasi-3D theory and finite element method. Chinh et al.
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[20] investigated the elastostatic bending behavior of a two-directional functionally graded sandwich beam
under various types of non-uniform distributed loads by a finite element model. Chen et al. [21] presented
nonlinear free vibration analysis of a rotating two-directional functionally graded porous micro-beam using
isogeometric analysis based on the Timoshenko beam theory. Nguyen et al. [22] investigated the dynamic
behavior of a two-directional functionally graded sandwich beam made of three different materials due to
the non-uniform motion of a moving point load. Viet et al. [23] presented free vibration analysis based on a
finite element model of unidirectional and bidirectional functionally graded cantilever beams. Le et al. [24]
proposed an efficient third-order shear deformation beam element for free vibration and buckling analysis of
two-directional functionally graded sandwich beams.

Among analytical works, we can mention the following: Lü et al. [25] presented elasticity solutions for
bending and thermal deformations of bi-directional FGBs with different end conditions, using the state space-
based differential quadrature method. Şimşek [26] investigated free and forced vibration of bi-directional
functionally graded Timoshenko beam under the action of a moving load. Şimşek [27] studied buckling of
Timoshenko beams composed of 2D-FGBs having different boundary conditions. Nejad et al. [28] presented
buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on non-
local elasticity theory. Wang et al. [29] proposed an analytical solution for free vibration of a functionally
graded beam with variable material properties along the beam length and thickness. Karamanlı [30–32] pre-
sented the bending and elastostatic behavior of 2D-FGBs subjected to various sets of boundary conditions
by using different shear deformation theories and the Symmetric Smoothed Particle Hydrodynamics method.
Karamanlı [33–35] investigated free vibration and buckling of 2D-FGBs according to different beam theories
using various solution methods. Shanab and Attia [36] studied semi-analytical solutions for static and dynamic
responses of bi-directional functionally graded non-uniform nanobeams with surface energy effects. Huang
[37] investigated bending and free vibration behaviors of bi-directional functionally graded cylindrical beams.
Huang and Ouyang [38] presented the exact solution for bending analysis of 2D-FG Timoshenko beams.

Although there are many studies dealing with the mechanical behavior of FGM beams by numerical and
analytical methods, the literature review shows that research on 2D-FGBs with employing Navier’s method is
limited. The most critical situation that distinguishes the existing studies for Navier’s method is the functions
used in the solution. In thismethod, trigonometric functions that satisfy the boundary conditions for the solution
should be selected. Due to the difficulty in selecting these functions, studies using Navier’s method have
generally been limited to simple beams. By the literature survey and authors’ knowledge, there is no study
examining the bending behavior of 2D-FGBs with the proposed trigonometric series functions. This study
aims to perform a bending analysis of 2D-FGBs with various boundary conditions using trigonometric series
functions and to investigate the accuracy of the trigonometric series functions. The difference between Huang
and Ouyang [38] used for comparison and the presented study is methods. They used the equilibrium equations
for the plane state of elasticity in their research. Proposed trigonometric series functions were used before by
Nguyen et al. [39] for static, vibration, and buckling of laminated composite beams. The governing equations
are derived according to Lagrange’s principle. A power-law rule defines the variation of the components of
the beam material in the volume. The normalized maximum transverse deflections, the normalized axial, and
transverse shear stresses are obtained for various boundary conditions, gradation exponents (px, pz) in the x-
and z-directions, and the slenderness (L/h). In addition, this study aims to present some benchmark results for
the bending behavior of 2D-FGBs subjected to various sets of boundary conditions with employing Navier’s
method. Some new graphs that can be used as reference data for the future are presented in parametric studies.

2 Theory and formulation

2.1 Material properties

Figure 1 shows a two-directional functionally graded beam of length L, width b, thickness h. The x-, y-, and
z-axes are located along the length, width, and thickness of the beam, respectively. The beam is subjected to
a uniformly distributed loading q0 in the same direction as the z-axis. The beam consists of a mixture of two
components such as ceramic (Al2O3) and metal (Al). According to the rule of mixtures, the effective material
properties can be given by

P(x, z) � PcVc(x, z) + PmVm(x, z) (1)
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Fig. 1 Geometry of a 2D-FGBs under uniformly distributed loading with the corresponding coordinates

where Pm and Pc are the correspondingmaterial properties of the metal and ceramic constituents, e.g., Young’s
modulus E, Poisson’s ratio ν, and mass density ρ, respectively. Vc and Vm are the volume fractions of the
ceramic and metal, and they are related by

Vc(x, z) + Vm(x, z) � 1 (2)

For the 2D-FGBs, the effective material properties are assumed to follow the power-law rule. The volume
fraction of ceramic constituent is defined by

Vc(x, z) �
(
1 − x

2L

)px
(
1

2
+
z

h

)pz
(3)

where px, and pz are the gradation exponents (power-law exponents) in the x and z directions. The variation
of the volume fraction (Vc) in two dimensions is shown in Fig. 2.

Using Eqs. (1, 2 and 3), the effective material properties of the 2D-FGB whose material properties vary
continuously through the length and thickness can be found as follows:

P(x, z) � (Pc − Pm)
(
1 − x

2L

)px
(
1

2
+
z

h

)pz
+ Pm (4)

Based on Eq. (4), one can be expressed for the Young’s modulus E and shear modulus G by

E(x, z) � (Ec − Em)
(
1 − x

2L

)px
(
1

2
+
z

h

)pz
+ Em

G(x, z) � (Gc − Gm)
(
1 − x

2L

)px
(
1

2
+
z

h

)pz
+ Gm (5)

where Em, Ec, and Gm, Gc are Young’s modulus and shear modulus of metal and ceramic, respectively.

2.2 Governing Equations and Analytical Solution

The nonzero components of the displacement field of FSDT are given by

u(x, z, t) � u0(x, t) + z φ0(x, t),

w(x, z, t) � w0(x, t) (6)

Here superscript “0” indicates the variable at the neutral axis. According to the geometrical and physical
linearity assumptions, the strain–displacement relations and stresses of the beam take the following form:

εxx � ∂u

∂x
� u0,x + zφ0

,x , γxz � ∂u

∂z
+

∂w

∂x
� w0

,x + φ0 (7)

σxx � E(x, z)εxx , τxz � KG(x, z)γxz (8)
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Fig. 2 Variation of the volume fraction (V c) in x and z directions for a) px � pz � 0, b) px � pz � 1, c) px � pz � 5

where εxx is the normal strain, γ xz is the shear strains, σ xx is the normal stress, τ xz is the shear stress, K is
the shear correction factor, E(x, z) is the Young modulus, and G(x, z) is the shear modulus. (·),x denotes the
derivative with respect to x.

The governing equations can be obtained by Lagrange’s equations given by

d

dt

(
∂


∂q̇i

)
− ∂


∂qi
� 0 (9)

where qi represents the variables of ui, wi and φi. The Lagrangian functional is expressed in the following
form


 � T − (U + V ) (10)

The strain energy of the beam can be expressed by

U � 1

2

∫ L

0

∫

A
(σxxεxx + τxzγxz)d Adx (11)
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where A is the cross-sectional area of the beam. If Eqs. (7) and (8) are substituted into Eq. (11) together with
Eq. (5), one can obtain the strain energy in the following form

U � 1

2

∫ L

0

⎧⎪⎨
⎪⎩
(u0,x )

2
{
A0

(
1 − x

2L

)px
+ A1

}
+ 2u0,xφ

0
,x

{
B0

(
1 − x

2L

)px
+ B1

}

+(φ0
,x )

2
{
C0

(
1 − x

2L

)px
+ C1

}
+ (w0

,x + φ0)2
{
D0

(
1 − x

2L

)px
+ D1

}

⎫⎪⎬
⎪⎭
dx (12)

where the stiffness coefficients are defined as

� b

h/2∫

−h/2

(Ec − Em)

(
1

2
+
z

h

)pz
[1, z, z2]dz, [A1, B1,C1] � b

h/2∫

−h/2

Em[1, z, z
2]dz

D0 � b

h/2∫

−h/2

K (Gc − Gm)

(
1

2
+
z

h

)pz
dz, D1 � b

h/2∫

−h/2

KGmdz

(13)

The kinetic energy of beam can be given by

T � 1

2

∫ Le

0

∫

A
ρ(x, z)(u̇2 + ẇ2)d Adx (14)

where dot denotes the derivative with respect to time. Taking the derivative of Eqs. (6) with respect to time,
and substituting the result into Eq. (14) gives in the following form

T � 1

2

∫ L

0

⎧⎪⎨
⎪⎩
(u̇0)2

{
I0

(
1 − x

2L

)px
+ I00

}
+ 2u̇0φ̇0

{
I1

(
1 − x

2L

)px
+ I11

}

+( φ̇0)2
{
I2

(
1 − x

2L

)px
+ I22

}
+ (ẇ0)2

{
I0

(
1 − x

2L

)px
+ I00

}

⎫⎪⎬
⎪⎭
dx (15)

where the inertia coefficients are

[I0, I1, I2] � b

h/2∫

−h/2

(ρc − ρm)

(
1

2
+
z

h

)pz
[1, z, z2]dz, [I00, I11, I22] � b

h/2∫

−h/2

ρm[1, z, z
2]dz (16)

where ρm and ρc are the mass density of metal and ceramic, respectively. The work done by the vertical
uniformly distributed loading q0 can be expressed as

V �
∫ L

0
q0w

0dx (17)

Solutions to u0(x, t), w0(x, t) and φ0(x, t) can be assumed as

u0(x, t) �
m∑
i�1

ϕi (x) ui (t), w0(x, t) �
m∑
i�1

ψi (x)wi (t), φ0(x, t) �
m∑
i�1

θi (x)φi (t) (18)

where ϕi (x), ψi (x) and θi (x) are trigonometric series functions that change depending on the boundary con-
ditions of the beam, and ui (t), wi (t) and φi (t) are the generalized nodal displacements, and m represents the
number of trigonometric series. The trigonometric series functions selected to satisfy the boundary conditions
for the beams considered in the study are given in Table 1. Here, SS refers to the simply supported beam, CC
to the clamped–clamped beam, and CF to the clamped-free beam.

Substituting Eqs. (12), (15) and (17) into Eq. (9) with considering Eqs. (18) leads to
⎡
⎣

m11 0 m13

0 m22 0
m13T 0 m33

⎤
⎦

⎧⎨
⎩

üi
ẅi

φ̈i

⎫⎬
⎭+

⎡
⎣

k11 0 k13

0 k22 k23

k13T k23T k33

⎤
⎦

⎧⎨
⎩

ui
wi
φi

⎫⎬
⎭�

⎧⎨
⎩

0
f2
0

⎫⎬
⎭ (19)

where m, k and f are the mass matrix, the stiffness matrix and the force vector, respectively. m, k and f2 are
explicitly expressed for SS 2D-FGB in the following form



1846 M. Turan

Table 1 Kinematic boundary conditions and trigonometric series functions used in Navier’s method

BCs ϕi (x) ψi (x) θi (x) x � 0 x � L

SS cos iπx
L sin iπx

L cos iπx
L w0 � 0 w0 � 0

CC sin 2iπx
L sin2 iπx

L sin 2iπx
L u0 � w0 � φ0 � w0

,x � 0 u0 � w0 � φ0 � w0
,x � 0

CF sin (2i−1)πx
2L 1 − cos (2i−1)πx

2L sin (2i−1)πx
2L u0 � w0 � φ0 � w0

,x � 0

m11
i j �

L∫

0

{
I0

(
1 − x

2L

)px
+ I00

}
cos

(
iπ

L
x

)
cos

(
jπ

L
x

)
dx,

m13
i j �

L∫

0

{
I1

(
1 − x

2L

)px
+ I11

}
cos

(
iπ

L
x

)
cos

(
jπ

L
x

)
dx,

m22
i j �

L∫

0

{
I0

(
1 − x

2L

)px
+ I00

}
sin

(
iπ

L
x

)
sin

(
jπ

L
x

)
dx,

m33
i j �

L∫

0

{
I2

(
1 − x

2L

)px
+ I22

}
cos

(
iπ

L
x

)
cos

(
jπ

L
x

)
dx,

k11i j �
L∫

0

i j
π2

L2

{
A0

(
1 − x

2L

)px
+ A1

}
sin

(
iπ

L
x

)
sin

(
jπ

L
x

)
dx,

k13i j �
L∫

0

i j
π2

L2

{
B0

(
1 − x

2L

)px
+ B1

}
sin

(
iπ

L
x

)
sin

(
jπ

L
x

)
dx,

k22i j �
L∫

0

i j
π2

L2

{
D0

(
1 − x

2L

)px
+ D1

}
cos

(
iπ

L
x

)
cos

(
jπ

L
x

)
dx,

k23i j �
L∫

0

i
π

L

{
D0

(
1 − x

2L

)px
+ D1

}
cos

(
iπ

L
x

)
cos

(
jπ

L
x

)
dx,

k33i j �
L∫

0

i j
π2

L2

{
C0

(
1 − x

2L

)px
+ C1

}
sin

(
iπ

L
x

)
sin

(
jπ

L
x

)
dx

+

L∫

0

{
D0

(
1 − x

2L

)px
+ D1

}
cos

(
iπ

L
x

)
cos

(
jπ

L
x

)
dx,

f2 � Lq0
iπ

[1 − cos(iπ)] with i � j � 1, 2, ...,m (20)

The matrix governing equation of the 2D-FGB with the length of L in terms of U can be written as follows

MÜ +KU � F (21)

whereM,K and F are the mass, stiffness matrix and the force vector, respectively.U is the vector of unknowns,
and is as follows

U � {u1 · · · um w1 · · · wm φ1 · · · φm}T (22)
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Table 2 Convergence studies for normalized maximum transverse deflections of the 2D-FGBs with the different boundary
conditions (u0 ��0, L/h � 5, px � pz � 2)

Number of trigonometric series, m SS CC CF

1 9.9652 2.4536 78.4899
3 10.0019 2.5415 80.0493
5 10.0083 2.5699 80.2224
7 10.0067 2.5838 80.2862
8 10.0062 2.5836 80.3056
10 10.0077 2.5920 80.3315
12 10.0069 2.5975 80.3485
14 10.0074 2.6014 80.3606
16 10.0071 2.6044 80.3696
18 10.0073 2.6067 80.3766
Exact [38] 10.02139 2.681505 80.43270

For bending analysis,M is zero (M� 0) in Eq. (21). The system equations given by Eq. (21) has been solved
numerically by using any numerical method. After this process, displacements and stresses are calculated.

3 Results and discussion

In this section, some numerical results obtained from the bending analysis of 2D-FGBs with various boundary
conditions are presented. Numerical results are obtained with a code written in the MATLAB [40] program.
The accuracy of the proposed trigonometric series functions for each boundary condition is investigated. In
addition, some new graphs that can be used as reference data for the future are presented as parametric studies.
The physical parameters of the beam are L � 1 m and b � 0.1 m. Two different slenderness such that L/h �
5 and 20 are considered. The uniformly distributed loading q0 is 10,000 N/m. The shear correction factor is
considered to be K � 5/6 for rectangular cross sections. A functionally graded beam composed of aluminum
(Al) as metal and alumina (Al2O3) as ceramic is considered for which Em � 70GPa, ρm � 2702 kg/m3, νm
� 0.3, Ec � 380GPa, ρc � 3960 kg/m3, and νc � 0.3. The transverse deflections, axial and shear stresses are
given in the following normalized form:

w � 100Embh3

q0L4 w(x, 0), σ xx � bh

q0L
σxx (x, z), τ xz � bh

q0L
τxz(x, z) (23)

3.1 Convergence study

A convergence study is performed to determine the number of trigonometric series that will be sufficient.
The normalized maximum transverse deflections of the 2D-FGBs with respect to the number of trigonometric
series m for different boundary conditions (u0 ��0, L/h � 5, px � pz � 2) are given in Table 2. It is observed
that the deflections converge quickly for three boundary conditions. Fourteen trigonometric series (m � 14)
seem to be enough for the desired accuracy in numerical calculations. In addition, the results of the proposed
solution agree well with the exact solution given by Ref. [38].

3.2 Verification with previous results

Verification studies are carried out to demonstrate the accuracy of the proposed solution and to investigate
the responses of 2D-FGBs with various boundary conditions for bending problems. Tables 3 and 4 show a
comparison of the normalizedmaximum transverse deflections of the SS 2D-FGBs for various slenderness (L/h
� 5, L/h � 20) and gradation exponents. For u0 � 0, the effects of longitudinal displacements are neglected.
For u0 ��0, it is not neglected. The tables compare the normalized maximum transverse deflections of the SS
2D-FGBs with the results of Huang and Ouyang [38], which is the exact solution based on the Timoshenko
beam theory. The results are in good agreement as seen. According to these tables, the smallest normalized
displacements occur when px � pz � 0 (fully ceramic) for L/h � 5 and 20. With the increase of the px and pz in
both directions, the transverse deflections increase. The normalized maximum transverse deflection decreases
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Table 3 Comparison of the normalized maximum transverse deflections of the SS 2D-FGBs for various gradation exponents,
L/h � 5

px � 0 px � 0.5 px � 1 px � 2 px � 5

Present [38] Present [38] Present [38] Present [38] Present [38]

u0 � 0
pz � 0 3.1657 3.165658 3.5696 3.570196 4.0155 4.018162 5.0247 5.035384 8.5094 8.543177
pz � 0.5 4.5244 4.524283 5.0379 5.038563 5.5875 5.590249 6.7665 6.77707 10.2858 10.31679
pz � 1 5.3465 5.346444 5.9091 5.909761 6.5000 6.50278 7.7310 7.74031 11.1523 11.17526
pz � 2 6.2680 6.267887 6.8699 6.870436 7.4896 7.49151 8.7407 8.7464 11.9905 11.99889
pz � 5 7.7952 7.795057 8.4253 8.425339 9.0538 9.053855 10.2672 10.26585 13.1446 13.13675
u0 ��0
pz � 0 3.1657 3.165658 3.5696 3.570196 4.0155 4.018162 5.0247 5.035384 8.5094 8.543177
pz � 0.5 4.8349 4.834847 5.3544 5.355052 5.9045 5.90771 7.0688 7.081084 10.4737 10.5115
pz � 1 6.2600 6.259923 6.8082 6.809204 7.3702 7.374088 8.5064 8.520527 11.5713 11.60851
pz � 2 8.0304 8.030299 8.5274 8.528547 9.0252 9.029599 10.0074 10.02139 12.5844 12.6109
pz � 5 9.6485 9.648317 10.0798 10.080426 10.5147 10.51725 11.3769 11.38281 13.5941 13.59786

Table 4 Comparison of the normalized maximum transverse deflections of the SS 2D-FGBs for various gradation exponents,
L/h � 20

px � 0 px � 0.5 px � 1 px � 2 px � 5

Present [38] Present [38] Present [38] Present [38] Present [38]

u0 � 0
pz � 0 2.8963 2.89625 3.2641 3.26322 3.6717 3.668114 4.6004 4.585229 7.8653 7.791128
pz � 0.5 4.1543 4.154253 4.6231 4.622164 5.1266 5.122814 6.2140 6.199182 9.5121 9.457342
pz � 1 4.8915 4.891444 5.4039 5.402989 5.9447 5.940865 7.0791 7.065215 10.2861 10.2409
pz � 2 5.6773 5.677262 6.2239 6.223043 6.7902 6.786574 7.9446 7.931764 10.9996 10.96334
pz � 5 6.9536 6.953618 7.5296 7.528709 8.1090 8.105773 9.2406 9.229903 11.9757 11.94989
u0 ��0
pz � 0 2.8963 2.89625 3.2641 3.26322 3.6717 3.668114 4.6004 4.585229 7.8653 7.791128
pz � 0.5 4.4648 4.464817 4.9395 4.938653 5.4438 5.440275 6.5166 6.503195 9.7009 9.652053
pz � 1 5.8049 5.804923 6.3031 6.302432 6.8149 6.812172 7.8553 7.845432 10.7071 10.67415
pz � 2 7.4397 7.439674 7.8816 7.881153 8.3262 8.324664 9.2125 9.206755 11.5963 11.57536
pz � 5 8.8069 8.806879 9.1840 9.183795 9.5700 9.569164 10.3510 10.34686 12.4264 12.41100

as the L/h increases. For pz � 0, the normalized maximum transverse deflections do not change according to
the results of u0 � 0 and u0 ��0. For pz ��0, the results of u0 � 0 are smaller than the other.

In Tables 5 and 6, the normalized axial and transverse shear stresses of the SS 2D-FGBs are given for u0

��0. There is no difference in mechanical behavior between the u0 � 0 and u0 ��0. The results of this study
are compared with those of Karamanlı [32] based on a four-unknown shear and normal deformation theory
and Vo et al. [6] based on FSDT for px � 0. The results for axial stresses are in good agreement. For transverse
shear stresses, the results do not agree with those of Karamanlı [32] because the theories are different, but
they are in good agreement with those of Vo et al. [6]. The transverse shear strain is assumed to be constant in
the beam depth direction in the FSDT. In higher-order shear deformation theories, the transverse shear strain
is not constant throughout the depth. It is clear that the axial stress decreases as the gradation exponent in
the x-direction increases for pz ��0. In the z-direction, they increase with increasing pz. The transverse shear
stresses increase with the increase of px. They decrease with the increase of pz.

Comparison of the normalized maximum transverse deflections of the CC 2D-FGBs for various gradation
exponents and the slenderness (L/h� 5, L/h� 20) is given in Tables 7 and 8. The results are in good agreement
with those of Ref. [38]. It is clear that the deflections increase as the gradation exponents increase.

Verification of the normalized maximum transverse deflections of the CF 2D-FGBs for various gradation
exponents and the slenderness is shown in Tables 9 and 10. Here, a good agreement is observed between the
results. Also, as it is expected, the largest deflections occur in the CF beam within the considered boundary
conditions. As it is seen from Tables 9 and 10, the transverse deflections increase as the px and pz increase due
to the lower stiffness.
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Table 5 The normalized axial stress σ xx
(
L
/
2, h

/
2
)
of the SS 2D-FGBs (u0 ��0)

px � 0 px � 1 px � 2 px � 5

Present [32] [6] Present [32] Present [32] Present [32]

L/h � 5
pz � 0 3.7507 3.8005 3.7500 3.7509 3.7945 3.7511 3.7703 3.7508 3.6740
pz � 1 5.7969 5.8815 5.7959 5.5445 5.6196 5.2965 5.3454 4.6474 4.6207
pz � 2 6.7689 6.8821 6.7676 6.3154 6.4155 5.9072 5.9789 4.9507 4.9475
pz � 5 7.9442 8.1145 7.9428 7.3363 7.4802 6.7858 6.8933 5.4535 5.4784
L/h � 20
pz � 0 15.0027 15.0147 15.0000 15.0036 14.9895 15.0045 14.8909 15.0033 14.5014
pz � 1 23.1877 23.2099 23.1834 22.1780 22.1731 21.1858 21.0861 18.5895 18.2136
pz � 2 27.0754 27.1122 27.0704 25.2618 25.2728 23.6288 23.5505 19.8028 19.4770
pz � 5 31.7769 31.8070 31.7711 29.3452 29.3394 27.1433 27.0385 21.8141 21.5344

Table 6 The normalized transverse shear stress σ xz(0, 0) of the SS 2D-FGBs (u0 ��0)

px � 0 px � 1 px � 2 px � 5

Present [32] [6] Present [32] Present [32] Present [32]

L/h � 5
pz � 0 0.5827 0.7246 0.5976 0.6383 0.7923 0.6842 0.8484 0.7502 0.9278
pz � 1 0.5827 0.7234 0.5976 0.6276 0.7780 0.6614 0.8186 0.7031 0.8662
pz � 2 0.4958 0.6618 0.5085 0.5280 0.7017 0.5508 0.7290 0.5768 0.7582
pz � 5 0.3816 0.5840 0.3914 0.3984 0.6001 0.4092 0.6099 0.4205 0.6203
L/h � 20
pz � 0 0.5827 0.7425 0.5976 0.6383 0.8125 0.6842 0.8718 0.7502 0.9580
pz � 1 0.5827 0.7432 0.5976 0.6276 0.7993 0.6614 0.8415 0.7031 0.8901
pz � 2 0.4958 0.6789 0.5085 0.5280 0.7199 0.5508 0.7486 0.5768 0.7792
pz � 5 0.3816 0.6037 0.3914 0.3984 0.6223 0.4092 0.6364 0.4205 0.6385

Table 7 Comparison of the normalized maximum transverse deflections of the CC 2D-FGBs for various gradation exponents,
L/h � 5

px � 0 px � 0.5 px � 1 px � 2 px � 5

Present [38] Present [38] Present [38] Present [38] Present [38]

u0 � 0
pz � 0 0.8547 0.863026 0.9647 0.978111 1.0737 1.10022 1.2816 1.356669 1.9214 2.049671
pz � 0.5 1.2092 1.220616 1.3486 1.365809 1.4833 1.514758 1.7319 1.810773 2.4582 2.516059
pz � 1 1.4435 1.457556 1.5973 1.617412 1.7438 1.777834 2.0083 2.085985 2.7100 2.771532
pz � 2 1.7393 1.757577 1.9056 1.929766 2.0609 2.097836 2.3341 2.407925 2.9803 3.049694
pz � 5 2.2510 2.277039 2.4229 2.453877 2.5784 2.619059 2.8412 2.906739 3.4041 3.449993
u0 ��0
pz � 0 0.8547 0.863026 0.9647 0.978111 1.0737 1.10022 1.2816 1.356669 1.9214 2.049671
pz � 0.5 1.2713 1.282729 1.4119 1.429198 1.5471 1.578524 1.7945 1.873337 2.5143 2.571593
pz � 1 1.6262 1.640251 1.7773 1.797394 1.9191 1.953105 2.1707 2.249226 2.8374 2.905973
pz � 2 2.0918 2.11006 2.2369 2.261353 2.3703 2.408455 2.6014 2.681505 3.1623 3.259906
pz � 5 2.6216 2.647691 2.7529 2.784842 2.8723 2.916499 3.0761 3.154211 3.5429 3.627800

3.3 Parametric study

This section presents the normalized transverse deflections, axial and shear stresses of 2D-FGBs with various
boundary conditions. Since there is no difference in mechanical behavior between neglecting and not ignoring
the effects of longitudinal displacements, results are given according to u0 ��0. The beams have the slenderness
L/h � 5.

Normalized transverse deflections of the SS 2D-FGBs with respect to the normalized coordinate x/L
for various gradation exponents are presented in Fig. 3. As can be seen from the figure, it is clear that the
transverse deflections increase with the increase in the gradation exponent (i.e., the metallic character of the
beam increases). The location of the normalized maximum transverse deflections of the SS 2D-FGBs is at or
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Table 8 Comparison of the normalized maximum transverse deflections of the CC 2D-FGBs for various gradation exponents,
L/h � 20

px � 0 px � 0.5 px � 1 px � 2 px � 5

Present [38] Present [38] Present [38] Present [38] Present [38]

u0 � 0
pz � 0 0.5931 0.593618 0.6694 0.672502 0.7450 0.755911 0.8896 0.930423 1.3350 1.403893
pz � 0.5 0.8498 0.850586 0.9473 0.950911 1.0415 1.053375 1.2153 1.255979 1.7227 1.738709
pz � 1 1.0016 1.002556 1.1083 1.112183 1.2100 1.221954 1.3940 1.432535 1.8825 1.90403
pz � 2 1.1657 1.166952 1.2798 1.283877 1.3869 1.398537 1.5765 1.611873 2.0286 2.062482
pz � 5 1.4339 1.4356 1.5541 1.558375 1.6643 1.674906 1.8531 1.882173 2.2636 2.286525
u0 ��0
pz � 0 0.5931 0.593618 0.6694 0.672502 0.7450 0.755911 0.8896 0.930423 1.3350 1.403893
pz � 0.5 0.9119 0.912698 1.0106 1.014243 1.1052 1.116901 1.2779 1.317594 1.7787 1.791193
pz � 1 1.1843 1.185251 1.2883 1.291978 1.3853 1.396487 1.5563 1.593176 2.0099 2.031677
pz � 2 1.5182 1.519435 1.6112 1.615071 1.6963 1.70773 1.8438 1.881155 2.2105 2.264002
pz � 5 1.8045 1.806252 1.8842 1.888996 1.9581 1.971252 2.0880 2.126988 2.4024 2.460596

Table 9 Comparison of the normalized maximum transverse deflections of the CF 2D-FGBs for various gradation exponents,
L/h � 5

px � 0 px � 0.5 px � 1 px � 2 px � 5

Present [38] Present [38] Present [38] Present [38] Present [38]

u0 � 0
pz � 0 28.7473 28.78105 30.1186 30.15195 31.5755 31.60848 34.7396 34.77199 45.7295 45.76062
pz � 0.5 41.1764 41.22281 42.9325 42.97844 44.7654 44.81086 48.6286 48.67326 60.9351 60.97813
pz � 1 48.5509 48.60800 50.4807 50.53714 52.4738 52.52971 56.6042 56.65927 69.1962 69.24943
pz � 2 56.5698 56.64371 58.6409 58.71418 60.7554 60.82806 65.0592 65.13087 77.6258 77.69539
pz � 5 69.7012 69.80635 71.8873 71.99178 74.0785 74.18235 78.4199 78.52272 90.3718 90.47245
u0 ��0
pz � 0 28.7473 28.78105 30.1186 30.15195 31.5755 31.60848 34.7396 34.77199 45.7295 45.76062
pz � 0.5 44.1577 44.20422 45.9387 45.98466 47.7866 47.83211 51.6488 51.69343 63.7482 63.79118
pz � 1 57.3202 57.37739 59.2108 59.26747 61.1355 61.19166 65.0491 65.10426 76.6154 76.66856
pz � 2 73.4886 73.56287 75.2007 75.27434 76.9204 76.99351 80.3606 80.4327 90.2656 90.33556
pz � 5 87.4922 87.59765 88.9659 89.07082 90.4545 90.5589 93.4475 93.55095 102.0546 102.1562

Table 10 Comparison of the normalized maximum transverse deflections of the CF 2D-FGBs for various gradation exponents,
L/h � 20

px � 0 px � 0.5 px � 1 px � 2 px � 5

Present [38] Present [38] Present [38] Present [38] Present [38]

u0 � 0
pz � 0 27.7008 27.70342 28.9828 28.98523 30.3420 30.34430 33.2873 33.28938 43.5259 43.52787
pz � 0.5 39.7390 39.74269 41.3841 41.38755 43.0985 43.10171 46.7071 46.71000 58.2329 58.2355
pz � 1 46.7836 46.78800 48.5885 48.59271 50.4511 50.45505 54.3100 54.31365 66.1305 66.13375
pz � 2 54.2756 54.28121 56.2086 56.21395 58.1829 58.18802 62.2083 62.21300 74.0573 74.06156
pz � 5 66.4328 66.4406 68.4824 68.48991 70.5421 70.54933 74.6405 74.64726 86.0439 86.05008
u0 ��0
pz � 0 27.7008 27.70342 28.9828 28.98523 30.3420 30.34430 33.2873 33.28938 43.5259 43.52787
pz � 0.5 42.7204 42.7241 44.3903 44.39376 46.1197 46.12296 49.7272 49.73018 61.0459 61.04855
pz � 1 55.5528 55.55739 57.3187 57.32303 59.1129 59.11699 62.7549 62.75864 73.5496 73.55288
pz � 2 71.1944 71.20037 72.7684 72.77410 74.3479 74.35345 77.5097 77.51483 86.6972 86.70173
pz � 5 84.2237 84.2319 85.5610 85.56895 86.9181 86.92588 89.6680 89.67549 97.7267 97.73379
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Fig. 3 Normalized transverse deflections of the SS 2D-FGBs with respect to the normalized coordinate x/L for various gradation
exponents (u0 ��0)

very close to the mid-section. For px � 0, the location of the normalized maximum transverse deflections is at
the mid-section (x/L � 0.5). As seen, with the increase of px, x/L also increases. Also, when pz increases for
px � 5, x/L decreases.

Figure 4 shows normalized axial stress of the SS 2D-FGBs with respect to the normalized thickness z/h and
the normalized coordinate x/L for various gradation exponents. When px and pz increase, the ceramic ratio of
the beam decreases, and the metal ratio increases. Based on this information, the following comments can be
made. In any beam cross section in the x-direction, the tensile region is at the top, and the compression region
is at the bottom. As it is expected, the normalized absolute maximum stress is at the top surface of the beam.
It is clear that the tensile stress increase by increasing of gradation exponent in the z-direction. As it increases
px, the maximum axial stress decrease, and it moves away from the middle section.

In Fig. 5, normalized shear stress of the SS 2D-FGBs with respect to the normalized thickness z/h and the
normalized coordinate x/L for various gradation exponents are presented. The shear stress distribution is linear
for pz � 0. For nonzero values of pz, for example, with increasing px for pz � 1, shear stress does not change
at the left edge of the beam, while shear stress decreases at the right edge. The reason for this is that with the
increase in px, the material property of the left edge does not change, while the material property of the right
edge approaches metal. When px is constant, shear stress increases at the top of the section with increasing pz.
It is observed that the variation of pz is more effective on shear stress than the px.
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Fig. 4 Normalized axial stress of the SS 2D-FGBs with respect to the normalized thickness z/h and the normalized coordinate
x/L for various gradation exponents (u0 ��0, L/h � 5)

Fig. 5 Normalized shear stress of the SS 2D-FGBs with respect to the normalized thickness z/h and the normalized coordinate
x/L for various gradation exponents (u0 ��0, L/h � 5)
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Fig. 6 Normalized transverse deflections of the CC 2D-FGBs with respect to the normalized coordinate x/L for various gradation
exponents (u0 ��0)

Figure 6 shows normalized transverse deflections of the CC 2D-FGBs with respect to the normalized
coordinate x/L for various gradation exponents. The normalized transverse deflections increase with increasing
px and pz (i.e., decreasing the ceramic ratio of the beam). For px � 0, while the maximum deflection is in the
middle section of the beam, it moves away from the middle section with the increase of px. The comments for
the SS beam can be said for this as well.

In Fig. 7, the normalized axial stress of the CC 2D-FGBs with respect to the normalized thickness z/h and
the normalized coordinate x/L for various gradation exponents is presented. At different values of px and pz,
the compression region is above the section at the left and right edges of the beam. In the middle region of the
beam (approximately 0.25 x/L 0.8), the tensile region is above the section. The maximum compressive stress
occurs at the x/L � 0 and z/h � 0.5 point of the beam. Here, the material property is ceramic. The maximum
compressive stress increases with the increase of px and pz. The tensile stress decreases with increasing px in
the middle section of the beam x/L � 0.5. Here, with the rise of pz, the tensile stress increases.

The variations of the normalized shear stress of the CC 2D-FGBs with respect to the normalized thickness
z/h and the normalized coordinate x/L for various gradation exponents are given in Fig. 8. For px � 0 and pz
� 0, the shear stress is zero in the middle section. The shear stress increases at the left edge and decreases at
the right edge with the increase in px. Here, the material property is ceramic on the left edge, and the ceramic
ratio decreases toward the right end of the beam with the increase in px. When px is not changed, the maximum
shear stress increases with the increase of pz on the left and right edges.
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Fig. 7 Normalized axial stress of the CC 2D-FGBs with respect to the normalized thickness z/h and the normalized coordinate
x/L for various gradation exponents (u0 ��0, L/h � 5)

Fig. 8 Normalized shear stress of the CC 2D-FGBs with respect to the normalized thickness z/h and the normalized coordinate
x/L for various gradation exponents (u0 ��0, L/h � 5)
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Fig. 9 Normalized transverse deflections of the CF 2D-FGBs with respect to the normalized coordinate x/L for various gradation
exponents (u0 ��0)

In Fig. 9, the normalized transverse deflections of the CF 2D-FGBs are plotted for various px and pz. The
gradation exponents in x, z-direction px, and pz are set to 1. The effect of the varying gradation exponents in
the x, z-direction px, and pz is observed for the transverse deflections. As the gradation exponent in the x and
z-direction increases, the deflections increase. As expected, the increase in pz affects the deflections more than
px. The maximum deflections occur at the largest value of pz (high metal content of the beam). The maximum
deflections always occur at the free end of the beam, regardless of material properties.

The variations of the normalized axial stress of the CF 2D-FGBs with respect to the normalized thickness
z/h and the normalized coordinate x/L for various gradation exponents are given in Fig. 10. When px increases,
the material property on the left edge does not change, so there is not much change in axial stress. For example,
for pz � 0, 1, 2, and 5, the variation of px does not affect their magnitudes, as the maximum compressive
stress occurs at the left edge. However, the variation of px changes the axial stress distribution in the x, and
z-direction of the beam. The compressive stresses increase with the increase of pz. In addition, in any beam
cross section in the x-direction, the compression region is at the top, and the tensile region is at the bottom. As
is expected, the normalized absolute maximum stress is generally at the top surface of the beam.

The variations of the normalized shear stress of the CF 2D-FGBs with respect to the normalized thickness
z/h and the normalized coordinate x/L for various gradation exponents are shown in Fig. 11. Since themaximum
shear stress is on the left edge, increasing px does not change the value of the maximum shear stress. The
maximum shear stress increases with the increase of pz. Here, it is seen that pz is more effective on shear stress.

4 Conclusion

A Navier’s method based on FSDT is presented for bending analysis of the 2D-FGBs subjected to various sets
of boundary conditions. In Navier’s method, different trigonometric series functions are proposed for each
boundary condition. The governing equations are derived according to Lagrange’s principle. The variation of
the components of the beam material in the volume is defined by a power-law rule. The normalized maximum
transverse deflections, the normalized axial and transverse shear stresses are obtained for various boundary
conditions, gradation exponents (px, pz) in the x- and z-directions, and the slenderness (L/h). The results show
that the gradation exponents, as well as the boundary conditions, play a significant influence on the bending
behavior of the 2D-FGBs. According to the study, the following conclusions can be drawn:

• The trigonometric series functions used in the study can accurately predict the transverse deflections and
the stresses of 2D-FGBs with different boundary conditions. The accuracy and performance of the present
solution in the computation are well enough.

• The transverse deflections increase when the px and pz increase in both directions (i.e., ceramic ratio
decreases).

• The location of the maximum deflection in the SS and CC beams depends on the material property (depend
on px and pz).
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Fig. 10 Normalized axial stress of the CF 2D-FGBs with respect to the normalized thickness z/h and the normalized coordinate
x/L for various gradation exponents (u0 ��0, L/h � 5)

Fig. 11 Normalized shear stress of the CF 2D-FGBs with respect to the normalized thickness z/h and the normalized coordinate
x/L for various gradation exponents (u0 ��0, L/h � 5)
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• In CF beams, it has been observed that the material property has no effect on the location of the maximum
deflection, but it is quite effective on the magnitude of the maximum deflection.

• Since pz changes the material properties faster, the variation of pz is more effective on stresses than the px.
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