
Archive of Applied Mechanics (2022) 92:1529–1549
https://doi.org/10.1007/s00419-022-02128-y

ORIGINAL

M. E. Nasr · Ahmed E. Abouelregal

Light absorption process in a semiconductor infinite body
with a cylindrical cavity via a novel photo-thermoelastic
MGT model

Received: 4 August 2021 / Accepted: 25 January 2022 / Published online: 9 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract Photothermal spectroscopy is a method of measuring the optical absorption and thermal properties
of semiconductor materials using high-sensitivity spectroscopic techniques. Heating occurs due to light, which
is absorbed but not dissipated by emission. In this paper, a newmodel is provided that can be used to understand
the process of optical thermal transfer and the interaction between elastic plasmawaves and heat. The proposed
photothermal model is described by the Moore–Gibson–Thompson heat equation. Using the proposed model,
the thermal and photoacoustic effects in an infinite isotropic and homogeneous body with a cylindrical cavity
of semiconductor material crossed into a fixed magnetic field and subjected to high-intensity laser heat flux
were investigated. The inner surface of the cavity is considered to be traction-free, and the carrier density
is photogenerated by a laser pulse heat flux that decays exponentially. The numerical calculations for the
components of thermal stresses, displacement, temperature field, and carrier density are obtained using the
Laplace transform approach. The propagation of heat, elastic, and plasma waves, as well as the distributions
of each investigated field, were examined and explained. The comparison is also used to see how different
thermal response features, such as thermal relaxation, laser pulse duration, and lifetime, affect the thermoelastic
response.
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1 Introduction

Two events predicted by the conventional uncoupled thermoelasticity model do not correspond to the physical
facts. First, there are no elastic components in this theory’s heat conduction equation; second, the heat equation
is of the parabolic type, implying that heat waves would propagate at limitless velocities. To solve the first
weakness, Biot [1] proposed the idea of coupled thermoelasticity. This theory’s governing equations are
associated, which solves the classical theory’s first contradiction. The heat equation for the coupled model is
likewise parabolic; therefore, both theories suffer from the second flaw. Several researchers have proposed new
formulations of thermoelasticity to replace the coupled Biot theory [1]. Since the heat equations associated
with thesemodels are hyperbolic, they immediately avoid the challenge of infinite propagation velocities found
in both uncoupled and coupled thermoelastic models.

Using the Maxwell–Cattaneo law of heat conduction, Lord and Shulman [2] developed the theory of
generalized thermoelasticitywith one relaxation time for isotropicmaterials (labeled as the LS theory). Because
this theory’s heat equation is of the wave type, it assures that heat and elastic waves propagate at limited speeds.
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The rest of the governing equations for this theory, such as the equations of motion and constitutive relations,
are identical to those for the coupled and uncoupled models. By proposing a novel thermoelastic inequality,
Green and Lindsay [3] established the theory of thermoelasticity with two relaxation durations (named the GL
model). Not only does this theory change the heat equation, but it also changes the equations of the associated
theory. When the medium under examination has a center of symmetry, the classical Fourier equation of heat
conduction is not disturbed.

Green and Naghdi [4–6] made sufficient changes to the constitutive equations to allow consideration of a
noticeably larger class of heat flow problems known as GN-I, GN-II, and GN-III. The independent constitutive
variables in GN models contain a phrase termed “thermal displacement gradient”. When the different theories
are linearized, GN-I’s heat transport equation is identical to the classical heat equation, but GN-II and GN-
III both allow for the transmission of finite-speed thermal signals [6]. The presence of a thermal damping
component in the GN-III theory allows heat energy to be dissipated. Additional contributions to this theory
can be detected in [7–12].

The Moore-Gibson-Thompson (MGT) equation has grown more important in recent years, as evidenced
by numerous academic articles devoted to its study and interpretation. The theory was founded on a third-order
differential equation, which is crucial to many fluid dynamics [13]. Quintanilla [14, 15] is constructing a novel
heat conduction model under the MGT equation. Abouelregal et al. [16–18] prepared the proposed modified
heat equation after adding the relaxation parameter in the GN-III model and using the energy equation. The
number of articles on this theory has been greatly increased since the advent of the MGT equation [19–22].

Some materials, such as semiconductors, offer a variety of physical characteristics that are useful during
research. According to the principle of thermoelasticity, semiconductormaterials may only be classed as elastic
materials. The relevance of semiconductors in current technology was recently highlighted when they were
utilized to produce electrical energy from sunlight while also being subjected to laser pulses [23]. Semicon-
ductor materials are utilized as nanomaterials in various fields of mechanical and electrical engineering, and
they have a variety of uses in modern industry, including transistors, screens, and solar cells. The photothermal
theory has recently been applied to semiconductor media to produce sustainable energy technologies. Several
mathematical-physical models were studied to characterize the overlap between the photothermal equations
and the thermoelasticity equations. Gordon et al. [24] first introduced electronic deformations to photothermal
spectroscopy. While using a laser source, photoacoustic spectroscopy is utilized in the context of sensitive
analytical procedures to measure the velocity of sound of some semiconductor materials [25]. Many applica-
tions in current engineering industries employwave propagation during electro-deformations of semiconductor
medium in photothermal processing techniques [26–34].

The sample is regularly elastically and electro-deformed by the photo-excited carriers. The mechanism for
electronic deformation is founded on the fact that photogenerated plasma in the semiconductor produces crystal
lattice deformation, i.e., deformation of the conductive potential and valence strips in the semiconductor. This
can result in local stress in the sample via photo-stimulated carriers. This strain in turn can create plasma waves
in the semiconductor by regular elastic local similar to thermal wave production [35].

The damage caused by laser use of optical materials is a distinct area. For more than 50 years, several
publications have attempted to address the topic from a theoretical and experimental standpoint. Because pulsed
laser technologies are widely used in material processing and non-destructive detection and characterization,
the excitation of thermoelastic waves by a pulsed laser in solids is of significant interest.When a solid absorbs a
laser pulse, it creates a localized temperature rise, which induces thermal expansion and forms a thermoelastic
wave in the material. Two influences become significant in ultra-short pulsed laser heating [36]. A high-
powered focused laser beammay heatmaterials to thousands of degreesKelvin. The temperature of continuous-
wave laser heating may be monitored remotely with great precision by fitting the spectrum irradiance to a
blackbody curve. Heating using a pulsed laser offers several benefits, but the temperature increases and falls in
nanoseconds, necessitating quick electronics and time-consuming methods to estimate the temperature [37].

Metal softening and/or hardness, annealing of crystalline or polycrystalline materials, diffusion of dopants
in semiconductors, synthesis of compounds and thin films, polymerization of polymers, and other applications
of laser heating are all possible. Thermally triggered processes, bulk diffusion, and phase transitions have all
been aided by laser annealing. Laser heating has the benefit of being both spatially and temporally localized.
Additionally, by establishing thermal gradients, sample temperatures considerably above the sample chamber’s
capacity can be obtained, such as heated samples in diamond anvil cells [38, 39].

Laser heating has a number of benefits over traditional techniques, including accuracy, local therapy, and
low cost. Absorption occurs when a high-intensity laser interacts with a solid surface. As a result, the substrate
material gains internal energy, and the irradiated zone releases heat. Since the process is often rapid, temperature
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gradients in the irradiated zone remain considerable. As a result, there is a lot of thermal strain and thermally
generated tension in this area. Furthermore, from the standpoint of application, the end result is critical in
the laser treatment procedure. High stress levels in the irradiated zone may cause the surface to fail due to
stress-induced cracking. As a result, caution must be exercised during the laser therapy procedure [40].

The mechanical, electric, and thermal properties of semiconductor materials vary with changes in tem-
perature. When a temperature gradient due to the absorption of light occurs in semiconductor elastic mate-
rials, it causes an electric potential difference between endpoints in the semiconductor. Several authors have
analyzed the uncoupled and coupled systems of plasma, thermodynamic, and elastic equations as well as
the different effects of thermal as well as electronic deformation in semiconductors using classical models.
According to a literature review, there is no work examining the photothermal interactions of semiconductor
cylinders subjected to ultrashort pulsed laser heating and photogenerated plasmas, as well as the properties
of temperature-dependent materials. The primary motivation for conducting a comprehensive examination of
such issues in this study is the importance of the issue and its multiple applications. This theoretical study is
also, like spectroscopic methods, one of the important experimental tools that are used to investigate the micro
and macro properties of semiconductors.

When a semiconductormaterial sample is lit, pairs of superconductors are formed,which propagate through
the material according to density gradients. Each pair carries about the same amount of energy as the material’s
band gap. As the surplus electron joins with the hole, the energy is deposited, causing local heating of the
lattice. As a result, the temperature distribution in the sample will be calculated, which is based on the optical
absorption, mass recombination, and surface features in and on the sample. The photothermal process is the
development of a temperature field in a material using diffusion carriers and optically induced recombination.
This study addresses the case of low temperature rises in an infinite solid cylinder and gives a formulation
of the theory guiding the photothermal effect. This type of research, which is an extension of the optical
diffraction approach, has significant benefits in that it directly determines both the thermal and electronic
transport parameters within the semiconductor block as well as at the surface or interface. Another important
benefit is the ability to physically calculate and evaluate these transport properties using a mathematical model.

The purpose of this paper is to investigate disturbances in infinite, isotropic, homogeneous thermoelastic
semiconductor materials using the Moore-Gibson-Thompson (MGT) heat conduction equation. The propaga-
tion of waves in semiconductor materials has many applications in various fields of science and technology,
namely atomic physics, industrial engineering, thermal power plants, submarine structures, pressure vessels,
aerospace, chemical pipes, and metallurgy. The effect of thermo-electronic deformation in semiconductors has
been investigated, including partially coupled plasma, thermal mechanisms, and elastic waves. We used the
normal mode method analysis to solve a system of partial differential equations in this phenomenon under
proper boundary conditions. Physical field quantities are introduced analytically and graphed, along with some
analytical comparisons. The results obtained were compared with the results of the work of other researchers.

2 Basic equations

The generalized coupled hyperbolic plasma and generalized thermal and elastic equations, for thermoelastic
semiconductors with isotropic and homogeneous electronic, thermal, and elastic properties are given by:

Equations of motion:

σi j, j + Fi � �üi (1)

The constitutive equations:

σi j � Ci jklekl − (βi jθ + dni j N
)

(2)

The strain–displacement relations:

ei j � 1

2

(
ui, j + u j,i

)
(3)

In Eqs. (1)–(3), σi j are the stress components, � is the density of the material, ui are the displacement
components, Fi are the body force components, and i, j, k � 1, 2, 3, ei j is the strain tensor, ekk � e is the
cubical dilatation, dni j � dniδi j are the difference in deformation potential of the conduction and valence
bands and Ci jkl are the elastic constants for material, βi j � βiδi j are the stress-temperature coefficients. Also,
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θ � T − T0 denotes the thermodynamical temperature, T0 is the reference temperature, and N is the carrier
density.

The coupled plasma-thermal-elastic wave equation can be written as [27, 41]

(
DEi j N, j

)
,i � �

∂N

∂t
+
1

τ
N + κθ + G (4)

where DEi j are the diffusion coefficients, κ is the thermal activation coupling parameter, τ is the lifetime of
photogenerated electron–hole pairs andG is the carrier photogeneration “source” term. In the case of harmonic
modulation lasers, Vasilev and Sandomirskii [42] first found that the thermal activation coupling parameter κ
is insignificant at low temperatures.

Cattaneo-Vernotte in [43–45] introduced a wider Fourier law by adding the thermal relaxation τ0 to the
vector of the heat flow �q as

(
1 + τ0

∂

∂t

)
�q � −Ki j �∇θ (5)

In Eq. (1), Ki j refers to the thermal conductivity tensor.
The improved Fourier law based on the GN-III model can be represented as [6]

�q � −Ki j �∇θ − K ∗
i j

�∇ϑ (6)

where the function ϑ denotes thermal displacement which satisfies ϑ̇ � θ and the parameters K ∗
i j refer to the

thermal conductivity rates. The equation for the energy balance can be written as [10, 46]

�CE
∂θ

∂t
+ T0

∂

∂t

(
βi j ei j

) � −�∇ · �q + Q (7)

where CE is the specific heat at constant volume, Q is the heat source.
The combination of the improved Fourier law proposed in (6) with the energy Eq. (7) has the sameweakness

as Fourier’s normal theory, predicting that thermal waves are spreading immediately. Quintanilla [14, 15] and
Abouelregal et al. [16–18] prepared the proposed modified heat equation after adding the relaxation parameter
in the GN-III model. The modified Fourier’s law would then take the following form [14, 15]

(
1 + τ0

∂

∂t

)
�q � −Ki j �∇θ − K ∗

i j
�∇ϑ (8)

Consider that the semiconductor elastic medium is subjected to light beams from the outside and that the
excited free electrons create a carrier-free charge density with semiconductor gap energy Eg . Because of the
absorbed optical energy, there is a change in electronic deformation and elastic vibrations. Thermal-elastic-
plasma waves will affect the overall form of the heat conductivity equation in this situation. The modified
Fourier law for semiconductor materials with plasma effects in a generalized version can be written as follows:

(
1 + τ0

∂

∂t

)
�q � −Ki j �∇θ − K ∗

i j
�∇ϑ −

∫
Eg

τ

∂N

∂t
d �x (9)

The photo-excitation effect is represented by the final term in Eq. (9). When the above equation is differ-
entiated with respect to �x , the result is

(
1 + τ0

∂

∂t

)( �∇ · �q
)

� −�∇ ·
(
Ki j �∇θ

)
− �∇ ·

(
K ∗
i j

�∇ϑ
)

− Eg

τ

∂N

∂t
(10)

By substituting Eq. (10) into Eq. (7), the modified heat conduction equation with thermal memory that
explains the interaction between the thermal-plasma-elastic waves may be derived as

(
1 + τ0

∂

∂t

)[
�CE

∂2θ

∂t2
+ T0

∂2

∂t2
(
βi j ui, j

)− �
∂Q

∂t

]
� (Ki j θ̇, j

)
,i +
(
K ∗
i jθ, j

)

,i
+
Eg

τ

∂2N

∂t2
(11)
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We assume that the adjacent free space is permeated by an initial magnetic field �H . This generates an
induced electro-field �E and induced magnetic field

−→
h that fulfills the magnetic equations of Maxwell and is

sufficient for slowly moving media:

�J � ∇ × �h, ∇ × �E � −μ0
∂ �h
∂t

, �E � −μ0

(
∂ �h
∂t

× �H
)

, ∇ · �h � 0 (12)

τi j � μ0
[
Hih j + Hjhi − Hkhkδi j

]
(13)

where μ0 is the magnetic permeability, �J is the current density and τi j is the Maxwell stress tensor.

3 Formulation of the problem

In this section, wave propagation on a cylindrical cavity semiconductor material during the photo-thermo-
elastic process is investigated using the constructed combined plasma, thermal, and elastic wave model. It was
thought to use an infinitematerial,which is an elastic semiconductorwith a cylindrical cavity, and thermoelastic,
isotropic, and uniform properties. Decreasing the heat flux of the laser pulse resulted in photogeneration of
carrier density, which is confined to the inner surface of the cavity.

The cylindrical coordinates (ρ, φ, z) with the z-axis aligned along the cylinder axis are considered. Due
to symmetry, the semiconductor medium with a cylindrical cavity is assumed to cover the area ρ0 ≤ ρ < ∞,
and its state may be described in terms of the time t and distance ρ. Initially, the temperature in the cylinder
is steady and uniform T0. Furthermore, for the regularity constraint, all physical field variables are assumed to
be finite within the medium.

The only non-vanishing displacement components and displacement–strain relations are

uρ � u(ρ, t), eρρ � u

ρ
, eφφ � ∂u

∂ρ
(14)

The stress–strain-temperature-carrier relations (2) will be the form

σρρ � 2μ
∂u

∂ρ
+ λe − (3λ + 2μ)(αtθ + δnN ),

σφφ � 2μ
u

ρ
+ λe − (3λ + 2μ)(αtθ + δnN ),

σzz � λe − (3λ + 2μ)(αtθ + dnN ) (15)

where αt is the linear thermal expansion coefficient, δn is the electronic deformation coefficient, λ, μ are the
Lame’s constants, and e � 1

ρ
∂(ρu)

∂ρ
. When the Lorentz force Fρ is taken into account, the dynamic motion

equation becomes

∂σρρ

∂ρ
+
1

ρ

(
σρρ − σφφ

)
+ Fρ � �

∂2u

∂t2
(16)

Assume the cylinder is immersed in a magnetic field of constant strength
−→
H 0 � (0, 0, H0). According

to Eq. (12), we obtain

�E �
(
0, μ0H0

∂u

∂t
, 0

)
, �J �

(
0,

∂

∂ρ

(
1

ρ

∂(ρu)

∂ρ

)
, 0

)
, �h �

(
0, 0,

1

ρ

∂(ρu)

∂ρ

)
(17)

The magnetic field �H0 induces the radial component of the Lorentz force Fρ , which is given by

Fρ � μ0

( �J × �H0

)

ρ
(18)

Thus, we have Fρ and Maxwell’s stress τρρ from Eqs. (13) and (17) as

Fr � μ0H
2
0

∂

∂ρ

(
1

ρ

∂(ρu)

∂ρ

)
, τρρ � μ0H

2
0
1

ρ

∂(ρu)

∂ρ
(19)
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Inserting Eqs. (15) and (19) into Eq. (16), then we have

(
λ + 2μ + μ0H

2
0

) ∂

∂ρ

(
1

ρ

∂(ρu)

∂ρ

)
− γ

∂θ

∂ρ
− dn

∂N

∂ρ
� �

∂2u

∂t2
(20)

where {γ, dn} � (3λ + 2μ){αt , δn}.
When we apply the operator 1

ρ
∂(ρu)

∂ρ
to both sides of Eq. (20), we obtain

(
λ + 2μ + μ0H

2
0

)∇2e − γ∇2θ − dn∇2N � �
∂2e

∂t2
(21)

In the cylindrical coordinate system, the Laplacian operator is given by ∇2 � ∂2

∂ρ2 +
1
ρ

∂
∂ρ
. Without any heat

sources (Q � 0), the generalized modified MGTE heat conduction Eq. (11) will be as follows:
(
1 + τ0

∂

∂t

)[
�CE

∂2θ

∂t2
+ γ T0

∂2e

∂t2

]
� K∇2θ̇ + K ∗∇2θ +

Eg

τ

∂2N

∂t2
(22)

The governing equations can easily be transformed into dimensionless forms. As a result, the dimensionless
variables listed below are presented:

{
ρ′, u′} � v0η{ρ, u},

{
t ′, τ ′

0, τ
′} � v20η{t, τ0, τ }, {θ ′, N ′} � 1

ρv20
{γ θ, dnn},

{
σ

′
i j , τ

′
ρρ

}
� 1

ρv20

{
σi j , τρρ

}
, η � ρCE

K
, v20 � v21 + v2a (23)

In Eq. (23), the parameter v1 �
√

λ+2μ
�

represents the dilatational wave speed, and the factor va �
√

μ0H2
0

�

symbolizes the medium Alfven wave speed. The governing equations can be rewritten in the following forms
if the primes are ignored:

(
1 + τ0

∂

∂t

)[
∂2θ

∂t2
+ ε1

∂2e

∂t2

]
�
(

∂

∂t
+ ω∗

)
∇2θ + ε2

∂2N

∂t2
(24)

∇2e − ∇2θ − ∇2N � ∂2e

∂t2
(25)

∇2N � g1
∂N

∂t
+ g2N + g3θ (26)

σρρ � 2β2 ∂u

∂ρ
+
(
1 − 2β2)e − θ − N ,

σφφ � 2β2 u

ρ
+
(
1 − 2β2)e − θ − N ,

σzz � (1 − 2β2)e − θ − N (27)

where

β2 � μ

λ + 2μ
, ε1 � γ 2T0

ρ2Cec20
, ω∗ � K ∗

c20K
, ε2 � γ Egv

2
0η

τdn�CE
,

η0 � (c0η)2, g1 � ρ

DEη0
, g2 � 1

DEη0τ1
, g3 � κdn

γ DEη0
(28)

The initial conditions of the problem are taken as

u(ρ, 0) � 0 � ∂u(ρ, 0)

∂ρ
, N (ρ, 0) � 0 � ∂N (ρ, 0)

∂ρ
,

θ(ρ, 0) � 0 � ∂θ(ρ, 0)

∂ρ
(29)
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We suppose that the cylinder’s interior surface is traction-free. Then the mechanical boundary conditions
in this case can be expressed as

σρρ(ρ, t) � 0 at ρ � ρ0 (30)

Also, we assume that a variable heat flux in the form of exponentially laser pulsed heat is applied to the
boundary surface ρ � ρ0. As a result, the following boundary condition may be applied [47]:

qρ � q0
t2

16t2p
e−t/tp , at ρ � ρ0 (31)

where q0 is a constant and tp is the pulsing heat flux duration time.
Using the modified Fourier’s Law (8), after using dimensionless variables (23), there will be

(
1 + τ0

∂

∂t

)
q̇ρ � −

(
∂

∂t
+ ω∗

)
∂θ

∂ρ
(32)

Equations (31) and (32) are decoupled to provide the following boundary condition:

q0
16t2p

(
1 + τ0

∂

∂t

)
∂

∂t

(
t2e−t/tp

) � −
(

∂

∂t
+ ω∗

)
∂θ

∂ρ
at ρ � ρ0 (33)

The carriers can reach the sample surface during the diffusion phase, with a finite probability of recombi-
nation. As a result, the carrier density boundary condition may be written as follows:

DE
∂N

∂ρ
� svN at ρ � ρ0 (34)

where sv is the surface recombination velocity.

4 Solution in the domain of the Laplace transform

The Laplace transform is utilized for solving linear differential equations with constant coefficients. In control
system engineering, the Laplace transformation is very important. Laplace transforms of various functions
must be performed to examine the control system. In order to analyze the dynamic control system, both the
characteristics of the Laplace transform and the inverse Laplace transformation are employed. The Laplace
transform of a function g(t), which is denoted by L[g(t)] or by g(s), is defined by the following equation:

L[g(t)] � g(s) �
∞∫

0

g(t)e−stdt, s > 0 (35)

We get the following results by using the Laplace transform approach to Eqs. (24)–(27):
(∇2 − ψ

)
θ � ψε1e − ε2s

2N (36)
(∇2 − s2

)
e � ∇2θ + ∇2N (37)

(∇2 − g4
)
N � g3θ (38)

⎡

⎣
σρρ

σφφ

σ zz

⎤

⎦ �
⎡

⎣
2β2 0

(
1 − 2β2

) −1 −1
0 2β2

(
1 − 2β2

) −1 −1
0 0

(
1 − 2β2

) −1 −1

⎤

⎦

⎡

⎢⎢
⎢
⎣

∂u
∂ρ
u
ρ

θ

N

⎤

⎥⎥
⎥
⎦

(39)

where ψ � s2(1 + τ0s)/(s + ω∗).
When Eqs. (36)–(38) are decoupled, then we get

(∇6 − α2∇4 + α1∇2 − α0
){

θ, N , e
} � 0, (40)
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where α2, α1 and α0 are specified by

α2 � s2 + g7 +
g6
g3

, α1 � s2g7 + g8 +
g6g5
g3

, α0 � s2g8,

g4 � sg1 + g2, g5 � g4 − g3, g6 � g3ψε1,

g7 � g4 + ψ, g8 � g4ψ + s2g3ε2 (41)

Presenting λi , (i � 1, 2, 3) into Eq. (40), we obtain
(∇2 − λ21

)(∇2 − λ22
)(∇2 − λ23

){
θ, N , e

} � 0 (42)

where λ21, λ
2
2 and λ23 are the roots of the equation

λ6 − α2λ
3 + α1λ

2 − α0 � 0 (43)

which are given by

λ21 � 1

3

[
2β0 sin(γ0) + α2

]
,

λ22 � −1

3
β0

[
sin(γ0) +

√
3 cos(γ0)

]
+
1

3
α2,

λ22 � 1

3
β0

[√
3 cos(γ0) − sin(γ0)

]
+
1

3
α2 (44)

with

β0 �
√

α2
2 − 3α1, γ0 � 1

3
sin−1

(

−2α3
2 − 9α2α1 + 27α0

2β3
0

)

(45)

The general solution to Eq. (42) can be written as

{
e, θ, N

} �
3∑

i�1

{1, Li , Hi }Ai K0(λiρ) (46)

where Kn(.) indicates the second type of modified Bessel functions of order n. The function Kn(.) is expo-
nentially decaying, unlike conventional Bessel functions, which are oscillatory. The three parameters Ai ,

(i � 1, 2, 3) are dependent on s. In addition, Li and Mi are two distinct factors that are correlated to Ai . We
get the following relations by inserting Eq. (46) into Eqs. (36)–(38)

Hi � g3
(
λ2i − s2

)

λ4i − g5λ2i
, Ln �

(
λ2i − s2

)(
λ2i − g4

)

λ4i − g5λ2i
, i � 1, 2, 3 (47)

The cubical dilatation e in the Laplace transform domain is expressed as

e � 1

ρ

∂

∂ρ
(ρu) �

3∑

i�1

Ai K0(λiρ) (48)

When both sides of the above equation are integrated with regard to ρ, we obtain

u � −
3∑

i�1

1

mi
Ai K1(λiρ) (49)

Equation (49) is differentiated in terms of ρ to provide

du

dρ
�

3∑

i�1

Ai

(
K0(λiρ) +

1

ρλi
K1(λiρ)

)
(50)
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Consequently, the closed form solutions for thermal stresses are as follows:

σρρ �
3∑

i�1

Ai

(
�i K0(λiρ) +

2β2

ρλi
K1(λiρ)

)
,

σφφ �
3∑

i�1

Ai

(
�i K0(λiρ) +

2β2

ρλi
K1(λiρ)

)
,

σ zz �
3∑

i�1

Ai�i K0(λiρ) (51)

where

�i � 1 − Li − Hi, �i � 1 − 2β2 − Li − Hi (52)

The non-dimensional Maxwell’s stress τρρ is given by

τρρ � v2a

v20
e � v2a

v20

3∑

i�1

Ai K0(λiρ) (53)

The boundary conditions (30), (33) and (34) have the following forms after performing the Laplace trans-
form:

∂θ
∂ρ

∣∣
∣
ρ�ρ0

� − sq0(1+st0)tp3

8t2p(s+ω∗)(1+stp)3
� −G(s),

σ ρρ(ρ0, s) � 0,

DE
∂N
∂ρ

∣∣
∣
ρ�ρ0

� s f N (ρ0, s)

(54)

Equations (46) and (51) are substituted into Eq. (54), giving

3∑

i�1
λi Ai K1(ρ0λi ) � G(s),

3∑

i�1

1
mi

Ai K1(ρ0λi ) � 0,

3∑

i�1
Ai Hi

(
(DE − sv)K0(λiρ0) +

DE
ρ0λi

K1(λiρ0)
)

� 0

(55)

We derive the values of the parameters Ai , (i � 1, 2, 3) by solving the system (55).
The inversion of Laplace transforms was obtained in this study using an accurate and efficient numerical

approach based on Fourier series expansion [48]. Any function in the Laplace domain can be inverted to the
time domain using this method as follows:

�(ρ, t) � ect

t

⎛

⎝1

2
�(ρ, c) + Re

N f∑

j�1

�

(
ρ, c +

i jπ

t

)
(−1) j

⎞

⎠ (56)

where N f denotes the number of terms, Re denotes the real part, and i denotes the imaginary number unit.
Numerous numerical tests have demonstrated that the value of the parameter c fulfills the relation cτ ∼� 4.7,
allowing for quicker convergence [49].



1538 M. E. Nasr, A. E. Abouelregal

Fig. 1 The temperature variation θ for different models of photo-thermoelasticity

5 Numerical results

To demonstrate the theoretical results obtained in the previous sections, we will now present some numerical
findings. Using Mathematica software, the influence of the modified photothermal heat equation (MGTPT),
which is defined by the Moore-Gibson-Thompson (MGT) equation, on the studied physical fields can now
be seen as graphical representations and tables. In the theoretical analysis, isotropic silicon (Si) is used as the
semiconductor solid material in the device. The physical parameters utilized at T0 � 300 K are as follows
[26]:

λ � 3.64 × 1010 kg m−1s−2, μ � 5.46 × 1010 kg m−1s−2, ρ � 2330 kg m−3,

K � 1.51Wm−1K−1, CE � 6.95 × 102 JkgK−1, dn � −9 × 10−31 m3,

Eg � 1.11 eV, DE � 2.5 × 10−3 m2s−1, s f � 2ms−1, τ � 5 × 10−5 s

In the context of the coupled theory of thermal-plasma-elastic waves under theMGTEmodel, the numerical
approach described in (56) has been used to distribute the distribution of non-dimensional temperature θ , the
radial displacement u, the radial and hoop stresses σρρ and σφφ , Maxwell’s stress τρρ and the absolute carrier
density N along the radial direction of the cylinder. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 graphically depict
the numerical findings for time t � 0.12s and ρ0 � 1.

5.1 Verification of the results

To validate the numerical results and the validity of the proposedMGTPT photo-thermoelastic model, a numer-
ical comparison with the results of Abbas and Aly [50], Lotfy et al. [51] and Khamis et al. [52] and Abouelregal
[53] was done. The governing equations in [51–53] were applied using the Lord and Shulman [2], Green—
Naghdi [4], and Green and Lindsay [3] photo-thermoelastic models, whereas the current model introduced and
applied the Moore-Gibson-Thompson photo-thermoelastic model (MGTPT) [43]. By comparing the results, it
was discovered that the thermal parameters τ0 and K ∗ of the photothermal model (MGTPT) have a significant
influence on the studied fields, despite the agreement in behavior and convergence in numerical values. In
addition, the presence of the thermal parameters τ0 in the proposed model reduces and relaxes the mechanical
and thermal wave behavior.

In three additional cases, numerical calculations will be performed for all studied field variables.



Light absorption process in a semiconductor infinite body 1539

Fig. 2 The displacement variation u for different models of photo-thermoelasticity

Fig. 3 The carrier density N variation for different models of photo-thermoelasticity

5.2 Comparison of several thermoelasticity models

The suggested Moore-Gibson-Thompson photothermal (MGTPT) model is a generalization of several photo-
thermoelasticity models used in this study. It was provided not only to generalize but also to solve some of the
physical consequences found in some earlier models. In the first and second sections, many inconsistencies
are addressed.

Many earlier models of photo-thermoelasticity can be derived as special instances by reference to the
modified Moore–Gibson–Thompson heat conduction equation (MGTPT). When τ0 � K ∗ � 0, the coupled
photo-thermoelasticity theory (CPTE) is obtained, and when K ∗ � 0, the generalized Lord and Shulman
photo-thermoelasticity model (PLS) is obtained. Furthermore, the photothermal Green and Naghdi model
(PGN-III) can be obtained if the relaxation parameter τ0 � 0 is omitted, and the photothermal Green and
Naghdi model (PGN-II) may be obtained if the term that contains the parameter K is absent. If τ0, K ∗ > 0,
this indicates that the photothermal model (MGTPT) is used.

The present subsection will examine the comparison of the newly given model with other previous pho-
tothermal models in order to verify them. To illustrate comparison and research, as well as for practical



1540 M. E. Nasr, A. E. Abouelregal

Fig. 4 The radial stress variation σρρ for different models of photo-thermoelasticity

Fig. 5 The hoop stress variation σφφ for different models of photo-thermoelasticity

purposes, tables and figures will be used to illustrate discussions and comparisons. Tables 1, 2, 3, 4, 5 and 6
as well as Figs. 1, 2, 3, 4, 5 and 6 show the changes in investigated studied fields against radial distance ρ
for the CPTE, PLS, PGN-II, PGN-III, and MGTPT models. In this case, the non-dimensional carrier lifetime
parameter τ and the pulsing heat flux duration time tp are fixed (τ � 0.01, tp � 0.15).

The change of the absolute value of non-dimensional temperature θ with regard to radial distance ρ is
shown in Fig. 1. It has been discovered that as ρ increases, the temperature θ values increase until they
reach a maximum around ρ � 1.2, after which they decrease monotonically with increasing distance ρ. The
magnitudes of carrier density N as a function of distance ρ are depicted in Fig. 2. The graphic shows that
the carrier density N value is highest near the surface and subsequently declines in a monotonous manner
as the distance from the cavity increases. Figure 3 shows how the radial displacement u varies with distance
ρ. The displacement grows rapidly with increasing r until it reaches the peak point, after which it decreases
monotonically from the boundary surface away from the application of the laser pulse heat flux.

Figures 4 and 5 illustrate the radial and hoop stresses σρρ and σφφ , in photo-thermoelastic media for various
photothermal models with regard to radius ρ for different models of photothermal. The radial pressure σρρ

on the cavity surface (ρ � 1) is zero in all representations, which corresponds to the case of the mechanical
boundary of the problem where the cavity surface is free of traction. From the figures, it can be observed that
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Fig. 6 The Maxwell’s stress τρρ for different models of photo-thermoelasticity

Fig. 7 The 3D plot of the temperature θ versus the distance ρ and instant time t

Table 1 The variation of the temperature θ against the radial distance ρ

r CPTE PLS PGN-II PGN-III MGTPT

1 0.00448047 0.00451887 0.00180564 0.00522654 0.00375518
1.2 0.14278600 0.10578100 0.11973100 0.16954400 0.08934000
1.4 0.09504820 0.06999120 0.07970440 0.11335100 0.05906150
1.6 0.04998960 0.03434300 0.04039950 0.06217240 0.02802530
1.8 0.02439680 0.01469320 0.01841330 0.03248600 0.01111790
2 0.01157230 0.00574802 0.00794450 0.01677240 0.00379131
2.2 0.00543004 0.00209105 0.00331837 0.00864885 0.00107774
2.4 0.00253927 0.000709288 0.00135766 0.00446829 0.000218371
2.6 0.00118721 0.000222315 0.000547798 0.00231448 0.0000008982
2.8 0.000555702 0.0000626562 0.000218910 0.00120195 0.000029955
3 0.000260532 0.0000147247 0.0000868866 0.000625658 0.0000209335
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Fig. 8 The 3D plot of the displacement u versus the radial distance ρ and instant time t

Fig. 9 The 3D plot of the carrier density N versus the distance ρ and instant time t

Table 2 The variation of the displacement u against the radial distance ρ

r CPTE PLS PGN-II PGN-III MGTPT

1 − 0.6146860 − 0.5020980 − 0.500120 − 0.669967 − 0.4627400
1.2 0.2340620 0.13298100 0.1665100 0.3428190 0.11486500
1.4 0.2302130 0.15477300 0.1819500 0.3030590 0.13974900
1.6 0.1313330 0.08776720 0.1035590 0.1743630 0.07926850
1.8 0.0657977 0.04045710 0.0496004 0.0918823 0.03578150
2 0.0314727 0.01667140 0.0219710 0.0473547 0.01410010
2.2 0.0147895 0.00634001 0.0093214 0.0243125 0.00496429
2.4 0.0069069 0.00224874 0.00385147 0.0125019 0.00154802
2.6 0.00322162 0.000742812 0.00156410 0.00644753 0.000406303
2.8 0.00150395 0.000225318 0.000627759 0.00333529 7.34597E − 05
3 0.000703257 6.04179E − 05 0.00024989 0.00173018 − 3.85393E − 06
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Fig. 10 The 3D plot of the radial stress σρρ versus the radial distance ρ and instant time t

Fig. 11 The 3D plot of the Maxwell stress τρρ versus the radial distance ρ and instant time t

Table 3 The variation of the carrier density N against the radial distance ρ

r CPTE PLS PGN-II PGN-III MGTPT

1 0.0357853 0.0190579 0.0248371 0.0551856 0.0162936
1.2 0.0177977 0.00867268 0.0117863 0.0288679 0.00724007
1.4 0.00842566 0.00353148 0.00516636 0.0147179 0.00281451
1.6 0.00392045 0.00132969 0.00217099 0.00748081 0.000980057
1.8 0.00181508 0.000467862 0.00088956 0.00381402 0.000303018
2 0.000840325 0.000153596 0.000358658 0.00195301 7.90951E − 05
2.2 0.000389796 4.63963E − 05 0.000143052 0.00100427 1.43309E − 05
2.4 0.000181278 1.24252E − 05 5.66357E − 05 0.000518345 6.42611E − 07
2.6 8.45286E − 05 2.64393E − 06 2.23069E − 05 0.000268404 2.36229E − 06
2.8 3.95143E − 05 2.31013E − 07 8.75416E − 06 0.000139371 − 1.55019E − 06
3 0.000018514 − 1.8205E − 07 3.42681E − 06 7.25449E − 05 7.5685E − 07
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Table 4 The variation of the radial stress σρρ against the radial distance ρ

r CPTE PLS PGN-II PGN-III MGTPT

1 0 0 0 0 0
1.2 − 0.141744 − 0.104855 − 0.122523 − 0.168542 − 0.0961487
1.4 − 0.0955306 − 0.0702822 − 0.0825105 − 0.114022 − 0.0644194
1.6 − 0.0504102 − 0.034645 − 0.0421969 − 0.0627014 − 0.0312148
1.8 − 0.0246317 − 0.0148613 − 0.0194658 − 0.0327842 − 0.0128925
2 − 0.0116891 − 0.00582494 − 0.00853475 − 0.0169285 − 0.00473107
2.2 − 0.00548574 − 0.00212263 − 0.00363764 − 0.00872909 − 0.00154639
2.4 − 0.0025654 − 0.000721265 − 0.00152463 − 0.00450942 − 0.00043611
2.6 − 0.00119941 − 0.000226554 − 0.000632491 − 0.00233561 − 9.43055E − 05
2.8 − 0.000561388 − 6.40532E − 05 − 0.000260737 − 0.00121283 − 6.60157E − 06
3 − 0.000263185 − 1.51472E − 05 − 0.000107074 − 0.000631285 8.18E − 06

Table 5 The variation of the hoop stress σφφ against the radial distance ρ

r CPTE PLS PGN-II PGN-III MGTPT

1 − 0.00478359 − 0.00332681 − 0.00419168 − 0.00553329 − 0.0047073
1.2 − 0.14252000 − 0.12331600 − 0.1312200 − 0.16919100 − 0.1056070
1.4 − 0.09491780 − 0.08202640 − 0.0872858 − 0.11318200 − 0.0699013
1.6 − 0.04993690 − 0.04179800 − 0.04506020 − 0.06210040 − 0.0343092
1.8 − 0.02437660 − 0.01925210 − 0.02126930 − 0.03245570 − 0.0146824
2 − 0.01156470 − 0.00843472 − 0.00964625 − 0.01675960 − 0.00574502
2.2 − 0.00542718 − 0.00359359 − 0.00429110 − 0.00864338 − 0.00209036
2.4 − 0.00253820 − 0.00150586 − 0.00189098 − 0.00446594 − 0.000709181
2.6 − 0.00118682 − 0.000624643 − 0.000829725 − 0.00231347 − 0.000222323
2.8 − 0.000555559 − 0.000257493 − 0.000363486 − 0.00120151 − 6.26723E − 05
3 − 0.000260481 − 0.000105742 − 0.000159212 − 0.000625471 − 1.47338E − 05

Table 6 The Maxwell’s stress τρρ against the radial distance ρ

r CPTE PLS PGN-II PGN-III MGTPT

1 0.05044140 0.038384300 0.043292900 0.046664200 0.03676470
1.2 0.01261400 0.010559800 0.011456200 0.012023400 0.01024540
1.4 − 0.00240053 − 0.00155058 − 0.001875520 − 0.002114730 − 0.00144903
1.6 − 0.00311251 − 0.00245645 − 0.002721710 − 0.002904560 − 0.00236856
1.8 − 0.00182249 − 0.00145528 − 0.00160320 − 0.001705530 − 0.00140633
2 − 0.000863584 − 0.000654316 − 0.000736636 − 0.000795198 − 0.000627722
2.2 − 0.000367158 − 0.000245808 − 0.000292332 − 0.000326449 − 0.000231201
2.4 − 0.000145199 − 7.72107E − 05 − 0.000102623 − 0.000121815 − 6.94535E − 05
2.6 − 5.42248E − 05 − 1.85111E − 05 − 3.14581E − 05 − 4.15781E − 05 − 1.46865E − 05
2.8 − 1.92289E − 05 − 1.81614E − 06 − 7.86372E − 06 − 1.28196E − 05 − 1.10104E − 07
3 − 6.46954E − 06 1.39239E − 06 − 1.16829E − 06 − 3.41784E − 06 2.06376E − 06

thermal stresses are usually compressive. In Fig. 6, the change in Maxwell stress τρρ in relation to distance ρ
was displayed. Figure 2 shows that the Maxwell stress τρρ variance takes its highest surface value and declines
rapidly until reaching its lowest point, then grows extremely monotonously until it disappears.

In addition to the previous observations from Tables 1, 2, 3, 4, 5 and 6, we can mention some noteworthy
facts.

• The existence of variations in the fields is obviously developing over time in the photothermal MGTPT
model and has an important influence across all domain profiles examined.

• The thermal parameters τ0 and K ∗ has a significant impact on all of the domains investigated, as seen in the
graphs.

• The phenomena of restricted thermal transmission velocity of the photo-thermoelasticity MGTPT theory is
well understood in all Figures and Tables.

• Different domain distributions have a limited prevalence. This is in contrast to cases where coupling and
decoupling theorems in photo-thermoelasticity have an infinite propagation rate, which results in nonzero
values for all functions anywhere in the medium.
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• The coupled photothermal model (CPTE), as well as modified and generalized photothermal models (PLS,
PGNII, PGNIII, and MGTPT), give values that are different in magnitude but similar in behavior at the
surface of the semiconducting cylinder, where the boundary conditions appear.

• For all physical domains, all curves converge, where ρ tends to zero to meet the regularity requirement.
• The temperature of GN-III is likewise found to be higher than that of MGTE, with comparable results for
the PLS and MGTPT models.

• The results of the frequently used GN-III thermal elasticity model show that it varies considerably from the
GN-II thermal elasticity models in terms of reduced energy dissipation.

• In the LS and MGTE models, the inclusion of the relaxation parameter might result in a slower temperature
decline.

• The solution instantly fills the entire medium in the case of the CPTE coupled and the PGNIII model. The
solution is thus not the same zero for every tiny value of time (although it may be very small). The solution
achieved with the MGTPT photo-thermoelasticity model equations, however, shows the comportment of
final wave propagation velocities.

• The PGN-III results also show convergence from the conventional elasticity model (CPTE), which, unlike
other generalized thermoelasticity models, does not vanish quickly inside the body due to heat. This is fully
consistent with Quintanilla’s claims [14] and Abouelregal et al. observations [17–19].

• In one section of the cylinder, all kinds of pressure are compressed, while in another area, there is tension.
Tensile highlights that the medium next to the cylinder surface is positioned throughout time, and this
conforms to the information given in [54]. Furthermore, the higher value and amplitude of fields measured
at the cavity surface are obvious with the rise in radial breadth. The explanations for this occurrence are
included in [55].

• For small time values, the solution is located in a limited area of space enclosing the spherical cavity, and
beyond this region is identically null. The area becomes longer and fills up the middle of the medium. The
boundary of the wavefront is located. All models provide almost identical findings for long time values.
This is because the second sound effects are not long enough.

5.3 The effect of the instant time

For constant values of carrier lifetime τ and laser pulse duration tp parameters, Figs. 7, 8, 9, 10 and 11 depict
changes in the behavior of photothermal field variables as functions of distance ρ and time t in 3D plots.
In this case, the discussion was carried out in the context of the proposed model of photo-thermoelasticity
(MGTPT), which includes relaxation time. Figures 7, 8, and 9 show that as time t passes, the carrier density N ,
temperature θ , and the amount of displacement u distributions increase along the radial direction. Figures 10
and 11 demonstrate the change of radial stress σρρ and Maxwell stress τρρ against the radial distance ρ over
the instant time t . It was discovered that when the values of time along the ρ-direction grow, the distributions
decrease.

All of these diagrams demonstrate the phenomena of limited propagation speeds. The photothermal impacts
of the surrounding medium are confined to an area near the cavity for the smallest values of time taken
into account. For the maximum value of time, this area grows to fill the whole medium. The propagation of
wavefronts from the cavity of an unboundedmedium is shown in this region.The classical coupled photothermal
theory (CPTE), on the other hand, does not have this problem since thermal impacts are instantly felt throughout
the medium.

Due to laser pulse heat flux, the medium attached to the cylindrical cavity surface is expanded, and the
others are compressively deformed. Deformation is a process that is dynamic. Over time, the growth zone is
progressively moving inside and getting bigger and bigger. The displacement u is, therefore, increasing and
growing. At a given moment, the nonzero radial area is limited owing to the thermal-and plasma-based wave
effect. It implies that photothermal transfers with a limited velocity over time into the depth of the material.
The more instantly the thermal area and the displacement are evaluated, the more appropriate.

The medium at the cavity surface is subject to a tensile stress that increases with time. The presence of
stress at the cavity surface could be attributed to the effects of cross-effects caused by the connection of the
temperature, photothermal, and strain fields. Due to these intersectional effects, the laser excitation leads to
the generation of a further photothermal field of thermal stress.
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Table 7 Effects of carrier lifetime and laser pulse duration parameters on the dimensionless physical fields

τ tp Photothermal physical fields

θ N u σρρ τρρ

0.0010 0.10 0.1096020 0.00936350 0.0141481 − 0.1086590 0.01261400
0.11 0.0952248 0.00813520 0.0122921 − 0.0944050 0.01095930
0.12 0.0834737 0.00713128 0.0107752 − 0.0827550 0.00960688
0.13 0.0737530 0.00630083 0.00952045 − 0.0731181 0.00848815

0.0012 0.10 0.1175260 0.0212263 0.0211393 − 0.1167550 0.01118950
0.11 0.1021090 0.0184418 0.0183663 − 0.1014390 0.00972166
0.12 0.0895079 0.0161660 0.0160998 − 0.0889212 0.00852197
0.13 0.0790846 0.0142835 0.0142250 − 0.0785662 0.00752957

0.0013 0.10 0.1203870 0.0302383 0.0272163 − 0.119772 0.00990401
0.11 0.1045950 0.0262717 0.0236460 − 0.104060 0.00860480
0.12 0.0916876 0.0230297 0.0207280 − 0.0912185 0.00754294
0.13 0.0810104 0.0203478 0.0183142 − 0.0805960 0.00666455

0.0014 0.10 0.122520 0.0428456 0.035965 − 0.122125 0.00806922
0.11 0.106448 0.0372251 0.0312471 − 0.106105 0.0070107
0.12 0.0933118 0.0326314 0.0273911 − 0.0930111 0.00614556
0.13 0.0824455 0.0288314 0.0242013 − 0.0821798 0.0054299

5.4 The effect of carrier lifetime and laser pulse duration parameters

Exploration of lasers was useful to understand the properties of a material’s inner structure, and as a result,
various modern applications in physical sciences, engineering, and medicine have emerged. The thermal effect
of a non-Gaussian laser on a thermoelastic material that is employed as a heat source is highly relevant under
the influence of extended thermoelastic theories.

The use of photothermal excitation of shorter elastic pulses (high-frequency elastic waves) in various
fields of practical physics is now of great interest. When a laser beam (laser light source) was incident on
an intracavity sample, the laser pulses caused the temperature to increase. The free carrier’s chargeintensity
appears after all excited electrons have been photo-excited. The fact that photothermal-produced ultrasonic
waves contain information about the producing medium and surrounding media has enabled the creation of
one-dimensional theoretical models.

Theoretical and practical ways of obtaining information on carrier intrinsic concentrations and a long
carrier lifetime τ are critical criteria for modeling semiconductor devices in order to comprehend and improve
device physics and performance. The minority carrier movement and effective carrier lifetime parameter τ of
the absorber material for solar cells affect the open-circuit voltage and photo-generated current density N in
particular.

The phenomena of microwave heating using pulsed lasers is investigated in this section. The solid cylinder
is constructed of silicon and heated by a pulsed non-Gaussian laser beam with a duration of tp, causing the
vibration to be dampened by thermoelasticity. Energy dissipation occurs when temperature and stress combine,
turning mechanical energy into permanent heat energy. Table 7 shows how the duration of a laser pulse tp
and the lifespan parameter τ , influence the dimensionless thermo-physical investigated fields at ρ � 1.1. The
study in this subsection will be carried out in light of Moore-Gibson-Thomson’s photo-thermoelastic modified
theory (MGTPT).

The investigated fields, comprising temperature, displacement carrier density, and thermal stress compo-
nents, are dependent not only on distance ρ and time t but also on the duration of the laser pulse tp and the
photo-generated carrier lifespan parameter τ , as shown in Table 7. Moreover, thermal and mechanical waves
are more sensitive to the change of laser duration tp than to the change of lifetime τ .

The values of the temperature θ , carrier density N , and radial displacement u have all been demonstrated
to decrease as the time of the laser pulse tp grows, but the values of thermal stress σρρ and Maxwell’s stress
τρρ have both increased. From the Table, it can be seen that by increasing the photo-generated carrier lifetime
parameter τ , we find that there is an increase in the temperature, carrier density N , the magnitudes of the
thermal stress σρρ and Maxwell’s stress τρρ . However, the radial displacement u distribution decreases with
the increase in value of the lifetime parameter τ .

In the investigation of the macroscopic output of some materials pertaining to photothermal materials,
which dominate in the determination of material characteristics, the carrier lifetime parameter τ will play a
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significant role. All of these findings demonstrate the concept of limited heat dispersion rates. For designers
of novel materials and other disciplines of materials science and physical engineering, the results obtained in
this example might be useful in the presence of plasma waves and elasticity. Because of flaws and a lack of
information about material characteristics, measuring carrier lifetime in many thin-film photovoltaic materials
may be challenging.

Rapidly varying contraction and expansion cause temperature fluctuations in materials susceptible to heat
transmission by conduction [56]. Because pulsed laser technologies are widely utilized in material processing,
nondestructive testing, and characterization, this mechanism has attracted a lot of attention [57].

6 Conclusion

This study offers a new photothermoelastic model of heat conduction based on the Moore-Gibson-Thompson
equation. The improved photothermal model includes the Type III Green-Naghdi model, as well as the Lord
and Shulman heat transfer equation. This expanded model is used to explore the interaction of heat, plasma,
and elastic waves in semiconducting materials. Only a few reviews of the literature on our model have been
published due to the complexity of the governing equations in extended photothermal theory. As special
instances, many thermoelastic and photothermal models may be developed from a given model.

According to the discussions, the following important conclusions can be summarized:

• Thermal parameters have a major influence on the distributions of photothermal field values. In the fields
studied, the effects of laser pulse duration and lifetime characteristics are also important.

• The temperature passes through the medium as a finite velocity wave in the new stretched thermal image-
flexible MGTPTmodel rather than as an infinite velocity wave in the classical models. Thus, the generalized
MGTPT model can be considered better in understanding the photo-thermoelastic process than the PGN-III
model. Coupled photo-thermoelastic and generalized models provide close results for high time values. On
the contrary, when we examine the short value of time, the situation is quite different.

• Due to the laser pulsed heat flow, the medium attached to the surface of the cylindrical cavity is expanded,
and the cylinder is compactly deformed.

• When comparing the solutions, it can be concluded that the lifespan coefficient is an important phenomenon
and has a great influence on the distribution of different physical domains.

The proposed work in this study is a theoretical basis for describing the photoacoustic effect in semiconductors
that takes into account the thermal effects, diffusion, and recombination of carriers. The ideas presented in this
study can also be very useful to scientists working in areas such as physics, material design, thermal efficiency,
and geophysics. Finally, the method used in the present work can be used to address a variety of thermoelastic
and thermodynamic problems.
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