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Abstract The surface quality and manufacturing errors of gear teeth directly affect their noise and vibration
during operation. These errors depend on the quality classes of the gears. The errors or deviations from the ideal
surface of a gear have a combination of periodic and random patterns. The available research on the random
errors applies numeric methods for solving the governing equations, which are not able to apply arbitrary
complicated types of input models in terms of frequency content. They require several iterations and long
simulation times especially if the studied system has multiple degrees of freedom, e.g., multi-stage gearboxes.
In this paper, a new approach is proposed to determine the effect of random manufacturing errors on the
vibrations measured on the bearings of mating gears. This approach is based on finding the spectral density
of the response using the excitation spectral density and the frequency response function of the transfer path
between an excitation point and a measurement point. For that purpose, a dynamic model for a gear pair and
bearings is considered, and the governing equations are derived. Then, an expression for the vibration caused
by random error is derived based on the frequency response functions of the system. The numerical values of
the expression are then compared with the results obtained from Monte Carlo simulation for a range of values
of system parameters. Then, different levels of random manufacturing error are investigated, and the effect of
system parameters on the resulting vibration is also studied. The results provide insight into designing new
gearboxes based on acceptable levels of vibration and in quantifying the contribution of manufacturing errors
in the gearbox to machinery vibration.
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Abbreviations

cy1 Bearing damping of the driving gear
cg Output shaft damping
e(t) Manufacturing error
ky1 Bearing stiffness of the driving gear
cg Output shaft stiffness
m1 Mass of the driving gear
N1 Number of teeth of the driving gear
Ib Mass moment of inertia of the output disk
I1 Mass moment of inertia of the driving gear
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y1 Vertical displacement of the driving gear
Y1(ω) Fourier transform of y1
C Damping matrix of the system
E(ω) Fourier transform of e(t)
K Stiffness matrix of the system
M1 Input moment
Rb1 Pitch radius of the driving gear
See(ω) Spectral density of an arbitrary manufacturing error
X(ω) Fourier transform of the vector of state variables
θ1 Rotation angle of the driving gear
θ2 Rotation angle of the driven gear
�1(ω) Fourier transform of θ1
�m(ω) Fourier transform of θm
cy2 Bearing damping of the driven gear
cp Input shaft damping
kt Meshing stiffness
ky2 Bearing stiffness of the driven gear
kp Input shaft stiffness
m2 Mass of the driven gear
N2 Number of teeth of the driven gear
Im Mass moment of inertia of the motor
I2 Mass moment of inertia of the driven gear
y2 Vertical displacement of the driven gear
Y2(ω) Fourier transform of y2
E[·] Mathematical expectation
H1(ω), H2(ω) The frequency–response functions between the error and the lateral vibrations
M Mass matrix of the system
M2 Loading moment
Rb2 Pitch radius of the driven gear
Snb(ω) Spectral density of a narrow-band manufacturing error
ω1 Maximum frequency content of narrow-band manufacturing error
θm Rotation angle of the motor
θb Rotation angle of the output disk
�2(ω) Fourier transform of θ2
�b(ω) Fourier transform of θb

1 Introduction

Gear vibrations are mostly caused by several sources including variable meshing stiffness, installation errors,
gear faults [1], and manufacturing errors [2]. Vibration caused by variable meshing stiffness is inevitable
because the meshing stiffness depends on the number of teeth pairs in contact at a given time, which varies
during rotation of the gears. Installation errors and local gear faults can normally be avoided or at least
kept to a minimum. Manufacturing errors can be reduced, but there is always a trade-off between reduced
manufacturing errors and increased manufacturing costs. Therefore, it is necessary to have an estimate of the
effects of manufacturing errors on the gearbox performance and vibrations in order to determine the minimum
requirements for manufacturing quality in the design process of the final system assembly.

A group of researchers have been trying to analyze and optimize the gear profile so that the profile errors
are minimized [3–8]. Sato et al. [9] studied the effects of gear profile and contact ratio on the rotational
vibrations of gears. They validated their simulation results by comparing them with dynamic meshing test
results. Tavakoli and Houser [8] and Munro et al. [6] in similar studies used different combinations of tooth
and tip reliefs to minimize the static transmission errors of spur gears. Simon [7] provided a method for
calculating the optimum values of the tooth tip relief and crowning of gears. Cai and Hayashi [4] found the
optimum tooth profile for spur gears so that they have no rotational vibration caused by tooth profile. They
showed the effectiveness of the method in simulations. Bonori et al. [10] and Faggioni et al. [5] used a genetic
algorithm and a Random–Simplex optimization algorithm, respectively, to minimize the vibrations caused
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by gear profile selection. Despite the efforts to eliminate profile errors, there is always manufacturing errors,
which lead to discrepancies between the ideal profile and the manufactured one. These errors and their effects
can be studied both experimentally and theoretically. For theoretical studies, realistic models of the gear pairs
are necessary.

Linear and nonlinear models of gear dynamics have been provided in previous research studies [11, 12].
Velex and Maatar [13] provided a dynamic model for gears in order to study the effects of gear profile
and mounting faults on the gear vibrations. Faggioni et al. [14] proposed a nonlinear model for studying
the nonlinear vibrations and stability of gear pairs. Masoumi et al. [15] presented a lumped-mass model for a
planetary gearbox in order to investigate the nonlinear vibrations and chaos in the gearbox. They considered the
effects of backlash and time-varying meshing stiffness in that model. The results showed an induced imbalance
in the gearbox. Masoumi et al. [16] in another study, applied a similar model in order to investigate the effects
of gear tooth profile and meshing on the vibrations and contact stresses in planetary gearboxes. Unlike the
signal-based studies on machinery vibrations [17–21], these gear dynamics models can be combined with the
models for gear manufacturing errors, which affect the gear tooth profiles and consequently the vibrations
of gearboxes, to improve gearbox design. Therefore, one of the goals of the current research is developing a
combined model to analytically study the effects of manufacturing errors.

Because of common random excitation sources in gearboxes, analyzing random vibrations in gearboxes
is essential. Random and/or harmonic input torques are considered as one of the sources in this classification.
Several research studies, such as [22–25], have investigated the dynamics of gear pairs under random input
torques.Another randomexcitation source is gearmanufacturing or profile error. It can cause excessive torsional
and also lateral vibrations. Fakhfakh et al. [26] used a 12-degree-of-freedom (DOF) variable-stiffness model
to simulate the dynamics of a two-stage gear system. The behavior of the system was studied with and without
manufacturing and assembly errors. It was observed that an eccentricity caused an amplitude modulation,
but a profile error increased the level of vibration without showing a specific peak in the vibration spectrum.
Bonori and Pellicano [3] proposed an approach for analyzing the vibration of a gear pair with profile errors.
They applied a 1DOF model for a gear pair considering backlash and variable meshing stiffness. A random
distribution was assumed for the profile error. They compared the vibrations of the gear pair in error-free and
imperfect cases, and observed that these profile errors could lead to chaotic behavior. Xun et al. [27] studied
the dynamics of a planetary gearbox in the case of random tooth profile error. By applying a multiple-scales
based stochastic method, they obtained the distributions of dynamic transmission errors (DTEs), which was
verified by employing the Monte Carlo method. Based on the results, they concluded that manufacturing
precision has significant effects on DTE. Guo and Fang [28] developed a 12-DOF dynamic model to analyze
deterministically the effects of manufacturing errors on the DTEs of a helical gear pair. They were able to
predict the DTE of the system with experimental validations. Guo and Fang in a similar study [29] performed
several statistical analyzes to investigate the effect of different machining accuracy errors on gear vibration.
In summary, all the mentioned research works have used numerical methods, which have heavy numerical
calculation cost especially in complicated systems with several degrees of freedom and with many modelling
details. In the methods based on numerical solutions of differential equations of motion, the inputs are entered
in the time domain, but frequency and amplitude distributions of complicated types of random errors are not
easy to implement.

The majority of published research on gear vibrations has focused on fault detection and diagnosis using
signal-based [19, 30, 31] or model-based [32] approaches without considering the manufacturing errors, but
a few works consider that in their models. Park et al. [33] measured the transmission error in a gear set using
two encoders. They applied ensemble empirical mode decomposition to the obtained signal, which includes
information on gear profile deviations, in order to diagnose gear faults. Dadon et al. [34] numerically simulated
the surface interaction between gear teeth in order to investigate the possibility of fault detection in the case of
gear manufacturing errors. They investigated the effect of different severity levels of gear tooth profile error.
The results showed that the ability to detect faults is degraded in gears with low-quality tooth surfaces, and
the robust detection of small faults is not feasible. More investigation is needed in the case of concurrent
manufacturing errors and local faults in rotating machinery containing gear transmissions.

Based on the above discussion, in low-accuracy-machined gears, the contribution of the profile randomerror
to gear vibration is significant. It affects the general dynamics and performance of the gear pair, and excessive
profile error can possibly lead to a poor estimate of transmission error, an increase in overall vibration, and
can make fault detection more challenging. Simulating the effect of manufacturing error on system vibration
in the design process can help to reduce the manufacturing costs of the gears while satisfying performance
requirements. All the existing theoretical studies on the effects of gear manufacturing error are based on
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Fig. 1 Schematic view of an MDOF system, where fi (ω) and wi (ω) are the ith input and output, respectively

numerical simulations, which take a long time to run and are computationally expensive even for small systems.
For more complicated systems and for the purpose of parameter optimization in the presence of manufacturing
error, a more efficient method is desirable, especially during the design process where experiments are not
possible. Generating the desired types of random errors in current numerical methods is also limited in terms
of amplitude and frequency. In this study, a multi-DOF (MDOF) model, including the input and output rotors,
and the gears’ lateral and torsional vibrations, is prepared. A random pattern of tooth profile error with a
known spectral density is considered. By using a frequency domain approach, the vibration levels on the
bearings, caused by the random error, are determined. Unlike previous studies, this method provides us with
an expression for calculating the vibration level without going through the process of solving the equations of
motion, numerically. The results of the proposed method are compared with those obtained by Monte Carlo
simulations. After validating the approach, the effects of system parameters on the vibration levels are studied
by changing their numerical values over specified ranges. The results show the accuracy of the proposed
method and especially its shorter computation time, which gives the results in a few seconds instead of hours
of simulations spent on numerical methods.

2 Theory

The spectral density Sy(ω), of the response of a linear 1DOF system to a random excitation, is defined as Sy
(ω) � |H(ω)|2S f (ω) where S f (ω) is the spectral density of the input, and H(ω) is the frequency response
function of the system. The mean squared displacement of the response, E

[
y2

]
, which is an applied parameter,

can be then obtained as E
[
y2

] � ∫ ∞
−∞|H(ω)|2S f (ω)dω, as well [35].

In a linear system with multiple degrees of freedom and multiple inputs, such as what is shown in Fig. 1,
this approach can be applied by decoupling the governing equations using the mode shapes of the system. In
other words, the system is decoupled into m 1DOF systems, and then the mean square displacement of the
responses can be obtained for all the new degrees of freedom in the orthogonal coordinate system. A simpler
approach is available for obtaining the mean square response in the original coordinate system. It uses the
matrix of frequency response functions, [H(ω)], of the entire system. In the frequency domain, the relation
between the inputs and outputs can be written as:

⎡

⎢⎢
⎣

W1(ω)
W2(ω)

...
Wm(ω)

⎤

⎥⎥
⎦ � [H(ω)]

⎡

⎢⎢
⎣

F1(ω)
F2(ω)

...
Fm(ω)

⎤

⎥⎥
⎦ �

⎡

⎢
⎣

H11(ω) · · · H1m(ω)
...

. . .
...

Hm1(ω) · · · Hmm(ω)

⎤

⎥
⎦

⎡

⎢⎢
⎣

F1(ω)
F2(ω)

...
Fm(ω)

⎤

⎥⎥
⎦ (1)

where Hi j (ω), Wi (ω) and Fi (ω) are the ij element of the frequency response function matrix and Fourier
transform of the ith output and the ith input, respectively.

Therefore, the mean square of the system response on the nth output caused by the ith input can be obtained
from the following equation [36, 37]:

E
[
w2
n

] �
∫ ∞

−∞
|Hni (ω)|2S fi (ω)dω (2)

3 Equations of motion

A system, containing a gear pair, bearings, and input and output rotors, is simplified to an 8-DOF lumped-mass
model and shown in Fig. 2. The random manufacturing error is shown as a function of time, e(t), which is
connected to the meshing spring and damper in series. The symbols used for stiffness, damping, mass and
mass moment of inertia of the system components are k, c, m, and I , respectively. The supporting bearings of
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Fig. 2 Schematic view of the gear pair model (reproduced from [38])

the gears are simplified as linear springs and dampers in the y direction, where 1 and 2 in the subscripts refer
to the driving and driven gears, respectively. The meshing stiffness and damping are specified with subscript
t . The rotational and translational DOFs are shown by θ and y, respectively.

By using Newton’s second law, the equations of motion can be written around the static equilibrium as:

m1 ÿ1 + cy1 ẏ1 + ky1y1 � −Fk − Fc (3)

m2 ÿ2 + cy2 ẏ2 + ky2y2 � Fk + Fc (4)

I1θ̈1 � kp(θm − θ1) + cp
(
θ̇m − θ̇1

) − Rb1(Fk + Fc) (5)

I2θ̈2 � Rb2(Fk + Fc) − kg(θ2 − θb) − cg
(
θ̇2 − θ̇b

)
(6)

Im θ̈m � M1 − kp(θm − θ1) − cp
(
θ̇m − θ̇1

)
(7)

Ibθ̈b � −M2 + kg(θ2 − θb) − cg
(
θ̇2 − θ̇b

)
(8)

where

Fk � (Rb1θ1 − Rb2θ2 + y1 − y2 + e(t)) · kt (t) (9)

Fc � (
Rb1θ̇1 − Rb2θ̇2 + ẏ1 − ẏ2 + ė(t)

) · ct (10)

In order to investigate the vibrations caused by manufacturing error, the average value of the meshing stiffness
is substituted into the equations of motion (similar to what is done in [26]) to eliminate the contribution of
variable meshing stiffness to the vibration level. It is assumed that the vibration amplitudes are low, there
is no loss of contact, and meshing frequency does not create primary or parametric resonance. This average
value of the meshing stiffness is taken over one period of gear rotation. Therefore, the equations of motion,
Eqs. (3)–(13), can be written in matrix form as:

⎡

⎢⎢
⎢⎢⎢
⎣

m1 0 0
0 m2 0
0 0 I1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

I2 0 0
0 Im 0
0 0 Ib

⎤

⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢
⎣

ÿ1
ÿ2
θ̈1
θ̈2
θ̈m
θ̈b

⎤

⎥⎥
⎥⎥⎥
⎦
+

⎡

⎢⎢
⎢⎢⎢
⎣

cy1 + ct −ct ct Rb1
−ct cy2 + ct −ct Rb1
ct Rb1 −ct Rb1 cp + ct R2

b1

−ct Rb2 0 0
ct Rb2 0 0

−ct Rb1Rb2 −cp 0
−ct Rb2 ct Rb2 −ct Rb1Rb2

0 0 −cp
0 0 0

cg + ct R2
b2 0 −cg

0 cp 0
−cg 0 cg

⎤

⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢
⎣

ẏ1
ẏ2
θ̇1
θ̇2
θ̇m
θ̇b

⎤

⎥⎥
⎥⎥⎥
⎦
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+

⎡

⎢⎢
⎢⎢
⎢
⎣

ky1 + kt −kt kt Rb1
−kt ky2 + kt −kt Rb1
kt Rb1 −kt Rb1 kp + kt R2

b1

−kt Rb2 0 0
kt Rb2 0 0

−kt Rb1Rb2 −k p 0
−kt Rb2 kt Rb2 −kt Rb1Rb2

0 0 −k p
0 0 0

kg + kt R2
b2 0 −kg

0 kp 0
−kg 0 kg

⎤

⎥⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢⎢
⎢
⎣

y1
y2
θ1
θ2
θm
θb

⎤

⎥⎥
⎥⎥
⎥
⎦

�

⎡

⎢⎢
⎢⎢
⎢
⎣

−kt e(t)−ct ė(t)
kt e(t)+ct ė(t)

−Rb1[kt e(t)+ct ė(t)]
Rb1[kt e(t)+ct ė(t)]

0
0

⎤

⎥⎥
⎥⎥
⎥
⎦

(11)

Two approaches are used in this research in order to find the solution of these equations in the case of random
manufacturing errors. The first one is based on the theory of random vibrations and is analytical. The second
approach is the common numerical solution of this set of differential equation using the Runge–Kutta method.
In the first approach, the average value of the meshing stiffness is used in Eqs. (11–17), and in the second
method, the variable meshing stiffness values from finite element method (FEM), and numerical solutions of
Eq. (11) are used. Then, their results will be compared.

Random vibration analysis in the frequency domain needs less calculation time. Moreover, many random
excitations are described by their spectral densities and frequency domain distributions. Therefore, after taking
a Fourier transform, the above equation can be rewritten as:

[−ω2M + ωIC + K
]

⎡

⎢
⎢⎢
⎢⎢
⎣

ÿ1
ÿ2

�1(ω)
�2(ω)
�m(ω)
�b(ω)

⎤

⎥
⎥⎥
⎥⎥
⎦

�

⎡

⎢
⎢⎢
⎢⎢
⎣

−kt−ct Iω
kt+ct Iω

−Rb1[kt+ct Iω]
Rb2[kt+ct Iω]

0
0

⎤

⎥
⎥⎥
⎥⎥
⎦
E(ω) (12)

Then, if Eq. (12) is solved for [X(ω)] � [
Y1(ω) Y2(ω) �1(ω) �2(ω) �m(ω) �b(ω)

]T one obtains

[X(ω)] � [−ω2M + ωIC + K
]−1

[F(ω)] (13)

where [F(ω)] equals to the right-hand side of Eq. (12). Then, the first two elements of [X(ω)] can be
obtained from Eq. (13) as:

Y1(ω) � H1(ω)E(ω) (14)

and

Y2(ω) � H2(ω)E(ω) (15)

They represent the Fourier transform of the lateral vibrations of the bearings in the y direction caused by
static transmission error or, in other words, manufacturing error. Because of the 6 degrees of freedom of the
system, the expressions obtained for frequency–response functions, H1(ω) and H2(ω), are lengthy and are not
written here. If the manufacturing error has a general spectral density of See(ω), the mean square displacement
of the response, caused by that error on the bearing supporting the driving gear, can be obtained from the
following equation [37]:

E
[
y21 (t)

] �
∫ ∞

−∞
|H1(ω)|2See(ω)dω (16)

Equation (16) is used in cases where the frequency of error is not limited to a specific range. In most of
cases, this type of error is assumed to be low-frequency noise with a frequency limit. For a random input with
spectral density of Snb(ω) with an upper bound of ω1, the mean square of the response can be obtained from
the following equation:

E
[
y21 (t)

] �
∫ ω1

−ω1

|H1(ω)|2Snb(ω)dω (17)

Based on Eq. (17), if the spectral density of the error is known, the mean square of the response can be
calculated.
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Table 1 The values of the system parameters

Parameter Value Parameter Value

cg 300 [N.m.s/rad] cp 300 [N.m.s/rad]
cy1 4000 [N.s/m] cy2 4000 [N.s/m]
ct 1000 [N.s/m] Gear module 3 [mm]
I1 0.001 [kg.m2] I2 0.01 [kg.m2]
Ib 0.5 [kg.m2] Im 0.6 [kg.m2]
kp 4e7 [N.m/rad] kg 4e7 [N.m/rad]
ky1 1e7 [N/m] ky2 1e7 [N/m]
kt 2.75e8 [N.m/rad] Backlash 0.04 [mm]
Rb1 87 [mm] Rb2 147 [mm]
m1 0.9 [kg] m2 2.6 [kg]
N1 29 N2 49
Tooth width 20 [mm] Pressure angle 25 [degrees]
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Fig. 3 The variable gear meshing stiffness used in this study

4 Numerical results

As a case study, the numerical values of the system parameters are assumed as given in Table 1. In order to be
able to compare the results, the gear pair analyzed in this section has the same properties as the one analyzed
in [39]. The gears used in the system have parabolic tip relief, and an amplitude of 0.01 mm is assumed for
modification. The numerical values of other parameters of the gearbox are provided in Table 1.

The value of meshing stiffness varies over time, but in the proposed method, the average value of kt over
a cycle of its variation, which is denoted as kt , is substituted into the matrix form of equations of motion [26].
This average value is obtained by averaging the values obtained during a single cycle of variation of meshing
stiffness obtained from a FEM model [39]. A number of these cycles are shown in Fig. 3.

Based on the numerical values provided in Table1, the function H1(ω) is determined. Then, by applying
Eq. (17), the mean square value of the lateral vibrations of the bearing of the driving gear can be obtained for
a random tooth profile error with a known spectral density.

In this section, the effects of different parameters on the resulting vibrations are studied by changing the
numerical values of the parameters and plotting the corresponding values of vibration levels. Before that, the
model equations and the obtained results have to be validated. In order to validate the results of the proposed
method, a Monte Carlo simulation is conducted in Simulink. For that purpose, the equations of motion are
written in the state-space form, and then they are reproduced in Simulink by using gain, summation, and
integrator blocks. For solving the equations in Simulink, the ODE23s solver has been selected, which applies
a variable-step Runge–Kutta method. For conducting the simulations, a model for the random manufacturing
error is also needed. The randommanufacturing error is mainly determined by the quality class of the gears. In
this study, the quality classes are assumed based on the ISO 1328 standard mentioned in [40], where 12 quality
classes are considered for gears. Based on this standard, the standard deviations of the random part of the gear
profile manufacturing error of classes 7 and 9 are 1¯m and 2.5¯m, respectively. A third value of zero error (for
the ideal condition), in addition to these two error values, is considered in our manuscript for the numerical
simulation and comparison. The selected values of standard deviation for this research are of the same order
as 1¯m, 2.24¯m, and 3.16¯m, used in the study conducted in [41]. In that research, the theoretical random error
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Fig. 4 Vibration level of the driving bearing for different values of bearing a damping, and b stiffness

is compared with the measured errors on a gear test setup. The comparison showed good agreement between
them. The assumed errors have similar ranges to the approximate random error assumed in [39], too. Therefore,
the properties of the applied transmission error are considered to be the same as the properties of these profile
errors. Similar to [41], a random model is assumed for the transmission error. It is assumed that the random
manufacturing error is a band-limited white signal and has a uniform power spectral density (PSD) over the
frequency range of zero to 200 Hz.

First, a uniform hypothetical PSD of 10−6
[
m2/(rad/s)

]
over the frequency range of zero to 200 Hz is

assumed for the random manufacturing error to compare the results of the analytical method and the Monte
Carlo simulation. This high value is selected so that the manufacturing error becomes the main source of
excitation in both methods. In Fig. 4, the results of the proposed analytical method andMonte Carlo simulation
are compared for the case of standard deviation ofmanufacturing error PSDof 10−6

[
m2/(rad/s)

]
. In that figure,

the vibration caused by themanufacturing error is shown for different values of bearing stiffness and damping of
the driving gear bearing. They show close agreement for different values of the studied parameters. Therefore,
in the next step, the practical values of manufacturing errors will be applied.

After validating the models, we study the contribution of manufacturing error to the total vibration of
the rotating gears in order to compare it with the baseline level of vibration caused by time variations in
meshing stiffness. As stated before, the vibration caused in gear systems by the variable meshing stiffness is
inevitable; however, the manufacturing quality is a controllable source of vibration. We apply different levels
of manufacturing error in the model, as used in the previous step. A variable meshing stiffness obtained from
FEM is applied using a look-up table in Simulink (Fig. 5a), which is composed of the values of one cycle out
of several cycles shown in Fig. 3, earlier. The number of teeth of the driving and driven gears are 29 and 49,
respectively. Therefore, for an input rotational speed of 1800 RPM, the frequency of stiffness cycles would be
19 × 30 � 570Hz, which is considered in the model.

An input torque of 200 N.m and a loading torque of 326.3 N.m are also applied to keep the teeth loaded
and induce vibrations in the gears during the simulation. First, the vibration level on the bearing of the driving
gear is studied without any manufacturing error. Then, manufacturing errors with the same frequency band but
different standard deviations (SDs) of 1¯m and 2.5¯m are applied. Parts of the generated signals are shown in
Fig. 5b for those two cases.

In Fig. 6a, the bearing vibration in the case of SD � 1¯m for part of the simulation is plotted in the
frequency domain. The first harmonic of the gear mesh frequency (870 Hz) in addition to a natural frequency
of about 80.7Hz is observed in that figure. The undamped natural frequencies of the system can be obtained
by setting the damping and manufacturing error in Eq. (14) to zero. In other words, the natural frequencies
can be calculated by finding the square root of the eigenvalues of M−1K using mass and stiffness matrices
[42] provided in Eq. (11) and the numerical values provided in Table 1. A complete list of the system natural
frequencies is provided in Table 2. The first nonzero natural frequency of the system is obtained as 80.7Hz.
Since the excitation is white noise, the natural frequencies of the system in its frequency band are excited
as what was seen in Fig. 6a. Moreover, because the averaged spectrum is shown in this figure, the expected
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Fig. 6 a The spectrum of vibrations of the bearing of the driving gear in frequency domain for SD� 2.5¯m. b Comparing bearing
vibration signals for three different levels of manufacturing error

Table 2 The system natural frequencies

Natural frequency number 1 2 3 4 5 6

Value [Hz] 0 80.7 381.6 3026.7 10,890.4 32,694.2

background noise caused by the random manufacturing error is mostly canceled out and is not observed in
this figure. The random vibrations are canceled out in almost all the frequencies except for the first natural
frequency of the system and the gear meshing frequencies.

In Fig. 6b, a time span of the steady-state signals (after the transient part is damped out) of bearing
displacement over time are compared in the three mentioned cases. The bearing vibration signal without any
manufacturing errors is plotted in black. Only the vibrations caused by the change in meshing stiffness are
observed in that signal. The blue and also the red signals are obtained by applying band-limited random error.
The first natural frequency is excited and observed as a harmonic component in the time domain as well as the
frequency domain. The random vibrations are also observed in the time signal.

The results of applying different levels of manufacturing error are shown in Table 3. It shows how much
the errors can increase the SD and variance of vibrations on the bearing of the driving gear. It can be seen
how the variance and SD of vibrations change in cases with constant meshing stiffness and the cases with



1460 A. Hajnayeb, Q. Sun

Table 3 The values of errors and system vibrations in cases of variable and constant meshing stiffness

Meshing stiffness SD of manufacturing
error (µm)

Bearing vibration SD
(µm)

Bearing vibration
variance (µm)

Frequency range (Hz)

Variable 0 3.146 9.898 [0, 200]
1 3.217 10.347 [0, 200]
2.5 3.825 14.631 [0, 200]

Constant (average
value)

1 1.171 1.372 [0, 200]
2.5 2.927 8.570 [0, 200]

Fig. 7 Vibration level of the driving bearing for different values of error and bearing stiffness

variable meshing stiffness. The total vibration level in each case is influenced by the variable stiffness and also
manufacturing error.

After validating the initial results, the effects of different system parameters are studied using Eq. (20). A
white signal with a variance of 10−12m2, which is equivalent to a uniform power spectral density (PSD) of
10−12

2π×200

[
m2/(rad/s)

]
with the same frequency range as before, is assumed for the manufacturing error. Based

on this PSD, it is known that the error has a SD of 1¯m. In Fig. 7, the vibration level of the bearing is plotted
for different values of bearing stiffnesses. It shows that in the studied range of values, increasing the bearing
stiffnesses of the driving gear, ky1, can reduce or increase the vibration level of the driving gear bearing, while
increasing the bearing stiffness of the driven gear ky2 increases the vibration level.

In Fig. 8, the vibration level of the same bearing is plotted for different bearing damping values. It shows
decreases in the vibration level by increasing the damping values at either of the bearings, which was to be
expected. Next, the stiffnesses of the shafts between the motor and the driving gear and between the driven
gear and the load are changed, and the results are shown in Fig. 9. This figure shows that the vibration level
for most of that range of stiffness values is not noticeably sensitive to these shaft stiffnesses.

5 Conclusions

In this research work, a simplified model of a gear pair was used to study the vibrations caused by random
manufacturing errors in the tooth profiles of gears. The transfer functions between the excitation source,
which is the manufacturing error, and the common measurement locations were obtained. The equations for
obtaining the mean square of translational vibrations of a point on the bearing of one of the gears in the case
of a limited-frequency random error were extracted as an example. The results were validated by comparing
them with Monte Carlo simulation results. Then, the total vibration level was studied for different severities of
manufacturing error. The comparison between the vibration levels in these cases verified the contribution of
the manufacturing error to total vibration of the system. Finally, the faster computational speed of the proposed
method made it possible to conduct a study on the effect of changing system parameters on the vibrations. The
vibrations caused by the manufacturing error were also predicted for different values of system parameters,
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Fig. 8 Vibration level of the driving bearing for different values of damping in gear bearings

Fig. 9 Vibration level of the driving bearing for different values of input and output shafts stiffnesses

which showed that the overall vibration levels were sensitive to changes in the values of system parameters.
The results can be used for designing gearboxes and predicting the normal vibration levels of machines for
vibration trending and condition monitoring in cases where random noticeable manufacturing errors may be
present. This method can easily be used to study the effect of random manufacturing error on the torsional
vibrations of the system using the related transfer functions. Compared to the simulations based on numerical
solutions of equations of motion, the proposed approach reduces the computational time of simulations in the
design process significantly.
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