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Abstract We derive analytical solutions for the uniaxial extension problem for the relaxed micromorphic
continuumand other generalized continua. These solutionsmay help in the identification ofmaterial parameters
of generalized continua which are able to disclose size effects.

Keywords Generalized continua · Uniaxial extension · Uniaxial extension stiffness · Characteristic length ·
Size effect · Micromorphic continuum · Cosserat continuum · Couple stress model · Gradient elasticity ·
Micropolar · Relaxed micromorphic model · Micro-stretch model · Micro-strain model · Micro-void model ·
Bounded stiffness

1 Introduction

In this paper we continue our investigation of analytical solutions for the isotropic relaxedmicromorphicmodel
(and other isotropic generalized continuum models). It follows our recent exposition of analytical solutions
for the simple shear [28], bending [25], and torsion problem [13,27]. Here, we consider the uniaxial extension
problem, which, in classical isotropic linear elasticity, allows to determine the size-independent longitudinal
modulus Mmacro = λmacro + 2μmacro.

Here, we show the genealogy tree of the generalized continuum models:
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Fig. 1 Sketch of an infinite stripe of thickness h subjected to uniaxial extension boundary conditions

classical micromorphic

min
u,P

[
W (Du, P,DP)

]

micro-strain (P = S)

min
u,S

[
W (Du, S,DS)

]

strain gradient (S = sym Du)

min
u

[
W (Du,D (sym Du))

]

relaxed micromorphic

min
u,P

[
W (Du, P,CurlP)

]

micro-stretch (P = A + ω1)

min
u,A,ω

[
W (Du, A, ω1,Curl (A + ω1))

]

Cosserat (P = A)

min
u,A

[
W (Du, A,Curl A)

]

couple stress (A = skew Du)

min
u

[
W (Du,Curl (skew Du))

]

skew symmetric couple stress

min
u

[
W (Du, skew Curl (skew Du))

] modified couple stress

min
u

[
W (Du, sym Curl (skew Du))

]

micro-void (P = ω1)

min
u,ω

[
W (Du, ω,Curl (ω1))

]

u : � ⊂ R
3 → R

3 ,

P : � ⊂ R
3 → R

3×3 ,

A : � ⊂ R
3 → so(3) ,

S : � ⊂ R
3 → Sym(3) ,

ω : � ⊂ R
3 → R ,

second gradient (P = Du)

min
u

[
W
(
Du,D2u

) ]

The strain gradient theory and second gradient theory are equivalent [1,17] and contain additionally the couple
stress theory as a special case. Using the Curl as primary differential operator for the curvature terms allows a
neat unification of concepts.

For some of the traditional models, uniaxial extension gives still rise to size effects in the sense that
thinner samples are comparatively stiffer which can also be found experimentally [34–36]. In that case, the
inhomogeneous response is triggered by the boundary conditions for the additional kinematic fields which are
applied at the upper and lower surface. We refer the reader to the introduction of [25,27,28,32] concerning the
relevance of the scientific question as well as its importance for the determination of material parameters for
generalized continua [33]. Indeed, the obtained analytical formulas can be used to determine size-dependent
and size-independent material parameters. The notation follows that of [25,27,28]. We recapitulate shortly.

The paper is now structured as follows. We start with a recapitulation of the uniaxial extension problem in
the classical linear elasticity. The solution is homogeneous and uniquely determines the longitudinal modulus
Mmacro = λmacro + 2μmacro. Then, we consider the isotropic relaxed micromorphic continuum. The boundary
conditions for the additional nonsymmetric micro-distortion field P derive from the so-called consistent
coupling conditions

Du(x) × ν = P(x) × ν, x ∈ � , (1)

where ν is the normal unit vector to the upper and lower surface. It turns out that for zero Poisson modulus
on the micro- and meso-scale, νmicro = νe = 0, respectively, the solution remains homogeneous and no size
effects are observed. In the case with arbitrary νmicro, νe ∈ [−1, 1/2] the solution will be inhomogeneous and
size effects appear. The limiting stiffness as the ratio between the thickness and the characteristic length tends
to zero (h/Lc → 0) is given by M = Me Mmicro

Me+Mmicro
which is both smaller than Mmicro = λmicro + 2μmicro and Me

as well greater than Mmacro = λmacro + 2μmacro.
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1.1 Notation

We define the scalar product 〈a, b〉:=∑n
i=1 ai bi ∈ R for vectors a, b ∈ R

n , the dyadic product
a ⊗ b:= (ai b j

)
i, j=1,...,n ∈ R

n×n and the Euclidean norm ‖a‖2:=〈a, a〉. We define the scalar product

〈P, Q〉:=∑n
i, j=1 Pi j Qi j ∈ R and the Frobenius-norm ‖P‖2:=〈P, P〉 for tensors P, Q ∈ R

n×n in the

same way. Moreover, PT :=(Pji )i, j=1,...,n denotes the transposition of the matrix P = (Pi j )i, j=1,...,n ,
which decomposes orthogonally into the skew-symmetric part skew P := 1

2 (P − PT ) and the symmetric
part sym P := 1

2 (P + PT ). The identity matrix is denoted by 1, so that the trace of a matrix P is given

by trP :=〈P,1〉, while the deviatoric component of a matrix is given by dev P :=P − tr(P)
3 1. Given this, the

orthogonal decomposition possible for a matrix is P = dev sym P + skew P + tr(P)
3 1. The Lie-algebra of

skew-symmetric matrices is denoted by so(3):={A ∈ R
3×3 | AT = −A}, while the vector space of symmetric

matrices Sym(3):={S ∈ R
3×3 | ST = S}. The Jacobian matrix Du and the curl for a vector field u are defined

as

Du =
⎛
⎝
u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3

⎞
⎠ , curl u = ∇ × u =

⎛
⎝
u3,2 − u2,3
u1,3 − u3,1
u2,1 − u1,2

⎞
⎠ . (2)

where × denotes the cross-product inR3. We also introduce the Curl and the Div operators of the 3× 3 matrix
field P as

Curl P =
⎛
⎝

(curl (P11, P12, P13)T )T

(curl (P21, P22, P23)T )T

(curl (P31, P32, P33)T )T

⎞
⎠, Div P =

⎛
⎝
div (P11, P12, P13)T

div (P21, P22, P23)T

div (P31, P32, P33)T

⎞
⎠ . (3)

The cross-product between a second-order tensor and a vector is also needed and is defined row-wise as follows

m × b =
⎛
⎝

(b × (m11,m12,m13)
T )T

(b × (m21,m22,m23)
T )T

(b × (m31,m32,m33)
T )T

⎞
⎠ = m · ε · b = mik εk jh bh , (4)

where m ∈ R
3×3, b ∈ R

3, and ε is the Levi-Civita tensor. Using the one-to-one map axl : so(3) → R
3 we

have

A b = axl(A) × b ∀ A ∈ so(3) , b ∈ R
3. (5)

The inverse of axl is denoted by Anti: R3 → so(3).

2 Uniaxial extension problem for the isotropic Cauchy continuum

The strain energy density for an isotropic Cauchy continuum is

W (Du) = μmacro ‖symDu‖2 + λmacro

2
tr2 (Du) , (6)

while the equilibrium equations without body forces are

Div
[
2μmacro symDu + λmacro tr (Du)1

] = 0. (7)

Since the uniaxial extensional problem is symmetric with respect to the x2-axis, there will be no dependence
of the solution on x1 and x3. The boundary conditions for the uniaxial extension problem are (see Fig. 1)

u2(x2 = ±h/2) = ±γ h

2
. (8)
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The homogeneous displacement field solution u2(x2), the gradient of the displacement Du(x2), and the strain
energy W (γ ) for the uniaxial extension problem are

u2(x2) = γ x2 , Du(x2) =
⎛
⎝
0 0 0
0 γ 0
0 0 0

⎞
⎠ ,

W (γ ) =
∫ h/2

−h/2
W (Du) = 1

2
(λmacro + 2μmacro) h γ 2 = 1

2
Mmacro h γ 2 , (9)

where

Mmacro = λmacro + 2μmacro (10)

is the extensional stiffness (or pressure-wave modulus, longitudinal modulus).
Here and in the remainder of thiswork, the elastic coefficientsμi , λi are expressed in [MPa], the coefficients

ai and the intensity of the displacement γ are dimensionless, the characteristic lengths Lc and the height h are
expressed in meter [m].

3 Uniaxial extension problem for the isotropic relaxed micromorphic model

The general expression of the strain energy for the isotropic relaxed micromorphic continuum is

W (Du, P,Curl P) = μe ‖sym (Du − P)‖2 + λe

2
tr2 (Du − P) + μc ‖skew (Du − P)‖2

+ μmicro ‖sym P‖2 + λmicro

2
tr2 (P)

+ μ L2
c

2

(
a1 ‖dev symCurl P‖2 + a2 ‖skewCurl P‖2 + a3

3
tr2 (Curl P)

)
, (11)

and the strictly positive definiteness conditions are1

μe > 0, κe = λe + 2/3μe > 0, μmicro > 0, κmicro = λmicro + 2/3μmicro > 0,

μc > 0, μ > 0, Lc > 0, (a1, a2, a3) > 0 . (12)

where we have the parameters related to the meso-scale, the parameters related to the micro-scale, the Cosserat
couple modulus, the proportionality stiffness parameter, the characteristic length and the three dimension-
less general isotropic curvature parameters, respectively. This energy expression represents the most general
isotropic form possible for the relaxed micromorphic model. In the absence of body forces, the equilibrium
equations are then

Div

σ̃ :=︷ ︸︸ ︷[
2μe sym (Du − P) + λetr (Du − P)1 + 2μc skew (Du − P)

] = 0,

σ̃ − 2μmicro sym P − λmicrotr (P)1

− μ L2
c Curl

(
a1 dev symCurl P + a2 skewCurl P + a3 tr (Curl P)

) = 0 . (13)

The ansatz for the micro-distortion P(x2), the displacement u(x2), and consequently the gradient of the
displacement Du(x2) is

u(x2) =
⎛
⎝

0
u2(x2)

0

⎞
⎠ , P(x2) =

⎛
⎝

P11(x2) 0 0
0 P22(x2) 0
0 0 P33(x2)

⎞
⎠ ,

Du(x2) =
⎛
⎝
0 0 0
0 u2,2(x2) 0
0 0 0

⎞
⎠ . (14)

1 Note that the model has a unique solution including the case of a Cosserat couple modulus μc = 0.
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It is important to underline that, given subsequent ansatz (14), it holds that tr (Curl P) = 0. This reduces
immediately the number of curvature parameters appearing in the uniaxial extension solution.

The boundary conditions for the uniaxial extension are

u2(x2 = ±h/2) = ±γ h

2
, P11(x2 = ±h/2) = 0 , P33(x2 = ±h/2) = 0 . (15)

Here, the constraint on the components of P is given by the consistent coupling boundary condition

P × ν = Du × ν ,

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠ =

⎛
⎝

0 0 P11
0 0 0

−P33 0 0

⎞
⎠ , (16)

where ν is the normal unit vector to the upper and lower surface.
After substituting ansatz (14) into equilibrium equation (13) we obtain the following four differential

equations

Me
(
u′′
2(x2) − P ′

22(x2)
)− λe

(
P ′
11(x2) + P ′

33(x2)
) = 0 ,

1

2
μ L2

c

(
(a1 + a2)P

′′
11(x2) + (a2 − a1)P

′′
33(x2)

)

−(Me + Mmicro)P11(x2) − (λe + λmicro)(P22(x2) + P33(x2)) + λeu
′
2(x2) = 0 ,

−(Me + Mmicro)P22(x2) + Meu
′
2(x2) − (λe + λmicro)(P11(x2) + P33(x2)) = 0 ,

1

2
μ L2

c

(
(a2 − a1)P

′′
11(x2) + (a1 + a2)P

′′
33(x2)

)

−(Me + Mmicro)P33(x2) − (λe + λmicro)(P11(x2) + P22(x2)) + λeu
′
2(x2) = 0 , (17)

where Me = λe + 2μe and Mmicro = λmicro + 2μmicro. Being careful of substituting the system of differential
equationwith one inwhichEq. (17)2 andEq. (17)4 are replacedwith their sum and their difference, respectively,
we have

Me
(
u′′
2(x2) − P ′

22(x2)
)− λe f

′
p(x2) = 0 ,

a2 μ L2
c f ′′

p (x2) − (Me + λe + Mmicro + λmicro) f p(x2) − 2(λe + λmicro)P22(x2) + 2λeu
′
2(x2) = 0 ,

−(Me + Mmicro)P22(x2) + Me u
′
2(x2) − (λe + λmicro) f p(x2) = 0 ,

a1 μ L2
c f ′′

m(x2) − (Mmicro + Me − λe − λmicro) fm(x2) = 0 , (18)

where f p(x2):=P11(x2) + P33(x2) and fm(x2):=P11(x2) − P33(x2). It is highlighted that Eq. (18)4 is a
homogeneous second-order differential equation depending only on fm(x2) with homogeneous boundary
conditions Eq. (15).

The fact that Eq. (18)4 is an independent equation has its meaning in the symmetry constraint of the uniaxial
extensional problem in the direction along the x2- and x3-axis, which requires that P11(x2) = P33(x2). From
Eq. (18) it is possible to obtain the following relation between P22(x2) and u2(x2)

P22(x2) = Me u′
2(x2) − (λe + λmicro) f p(x2)

Me + Mmicro
, (19)

which, after substituting it back into Eq. (18), allows us to obtain the following system of three second-order
differential equations in u2(x2), P22(x2), and f p(x2)

z1 f ′
p(x2) + z2 u

′′
2(x2) = 0 ,

a2 μ L2
c f ′′

p (x2) − z3 f p(x2) − 2z1 u
′
2(x2) = 0 ,

a1 μ L2
c f ′′

m(x2) − (Me + Mmicro − λe − λmicro) fm(x2) = 0 , (20)
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where

z1:=Meλmicro − λeMmicro

Me + Mmicro
, z2:= MeMmicro

Me + Mmicro
,

z3:= (Me − λe + Mmicro − λmicro) (Me + 2λe + Mmicro + 2λmicro)

Me + Mmicro
. (21)

It is highlighted that due to positive definiteness conditions (12), (z2, z3) > 0 and z1 = 0 if and only if
λmicro = λe = 0 (zero Poisson’s ratio case which is studied in Sect. 3.1) and Mmicro

Me
= λmicro

λe
. If z1 is zero, Eq.

(20) uncouples completely into three independent differential equations in u2, fp, and fm, respectively.
After applying boundary conditions Eq. (15), the solution in terms of u2(x2), P11(x2), P22(x2), and P33(x2)

of system Eq. (20) is2

u2(x2) =
2x2
h − 4z21

f1z2z3
sech

(
f1h
2Lc

)
sinh

(
f1x2
Lc

)
Lc
h

1 − 4z21
f1z2z3

tanh
(

f1h
2Lc

)
Lc
h

γ h

2
,

P22(x2) =
Me + 2 z1

z3
(λe + λmicro) − z1

z3

(
Me

2z1
z2

+ 2 (λe + λmicro) cosh
(

f1h
Lc

)
sech

(
f1h
2Lc

))

(Me + Mmicro)

(
1 − 4z21

f1z2z3
tanh

(
f1h
2Lc

)
Lc
h

) γ ,

P11(x2) = P33(x2) =
z1
z3

(
sech

(
f1h
2Lc

)
cosh

(
f1x2
Lc

)
− 1
)

1 − 4z21
f1z2z3

tanh
(

f1h
2Lc

)
Lc
h

γ , f1:=
√
z2 z3 − 2z21

μ a2 z2
. (22)

In the above expressions all the quantities are real and well defined due to positive definiteness conditions Eq.
(12). Indeed, since the coefficients z1, z2, and z3 may be rewritten in terms of the meso- and micro-bulk and
shear modulus as

z1:= 6κmicroμe − 6κeμmicro

3κe + 3κmicro + 4(μe + μmicro)
, z2:= (3κe + 4μe)(3κmicro + 4μmicro)

9κe + 9κmicro + 12(μe + μmicro)
,

z3:= 18(κe + κmicro)(μe + μmicro)

3κe + 3κmicro + 4(μe + μmicro)
,

we can write the expression of f1 as follows

f1:=
√
6κe κmicro(μe + μmicro) + 8μe μmicro(κe + κmicro)

μ a2(κe + 4
3μe)(κmicro + 4

3μmicro)
, (23)

showing that the positive definiteness of energy (11) implies that f1 is a strictly positive real number.Moreover,

the function g : (0,∞) → R, g(x) := 1 − 4z21
z2z3

1
x tanh

x
2 has the asymptotic behavior

lim
x→0

g(x) = 1 − 2 z21
z2z3

= f 21 > 0, lim
x→∞ g(x) = 1 (24)

and it is monotone increasing since its first derivative is given by

g′(x) = 4z21
z2z3

sinh x − x

x2(cosh x + 1)
(25)

which it is positive for all x ∈ (0,∞). Hence, it follows that due to the positive definiteness of the elastic
energy

g(x) > 0 ∀ x > 0, (26)

2 sech(x) = 1/cosh(x).
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Fig. 2 Relaxed micromorphic model. (left) Extensional stiffness Mw while varying Lc. The stiffness is bounded as Lc → ∞
(h → 0). The values of the parameters used are:μ = 1, λe = 1, Me = 2, λmicro = 3, Mmicro = 4, a2 = 1/5; (right) Displacement
profile across the thickness of the dimensionless u2 = u2/ (γ h) for different values of Lc = {0, 0.014, 0.03, 0.1}. The values
of the other parameters used in order to maximize the nonhomogeneous behavior are μ = 1, λe = 1, Me = 1, λmicro = 0.001,
Mmicro = 0.056, a2 = 0.3

which implies that

1 − 4z21
f1z2z3

tanh

(
f1h

2Lc

)
Lc

h
> 0 ∀ Lc > 0 (27)

which completes our proof that all the quantities from (22) are real and well-defined.
The strain energy associated with this solution is

W (γ ) =
∫ h/2

−h/2
W (Du, P,Curl P)

=1

2

[ μ a2
(

f1z1
z3

)2 (
1
f1
sinh

(
f1h
Lc

)
Lc
h − 1

)

(
1 − 4z21

f1z2z3
tanh

(
f1h
2Lc

)
Lc
h

)2

cosh2
(

f1 h
2Lc

) +
cosh2

(
f1h
2Lc

)
− z21

z2z3

(
3
f1
sinh

(
f1h
Lc

)
Lc
h − 1

)

(
1 − 4z21

f1z2z3
tanh

(
f1h
2Lc

)
Lc
h

)2

cosh2
(

f1 h
2Lc

)

× z2
z3

(
Me + Mmicro + λe + λmicro − 2λ2e

Me
− 2λ2micro

Mmicro

)]
h γ 2 = 1

2
Mw h γ 2 . (28)

The plot of the extensional stiffness Mw while varying Lc is shown in Fig. 2.
The values of Mmacro and Mmicro are

Mmacro = lim
Lc→0

Mw = M2
e Mmicro + Me

(−2λ2micro + M2
micro + Mmicro(λe + λmicro)

)− 2λ2eMmicro

(Me − λe − λmicro + Mmicro)(Me + 2(λe + λmicro) + Mmicro)

= κe κmicro

κe + κmicro
+ 4

3

μe μmicro

μe + μmicro
= κmacro + 4

3
μmacro = Mmacro ,

M = lim
Lc→∞ Mw = Me Mmicro

Me + Mmicro
<

{
Mmicro

Me
, (29)

where Mi = κi + 4
3μi and λi = κi − 2

3μi with i = {macro,micro, e}.3
It is highlighted that the structure (•)e (•)micro

(•)e+(•)micro
is applicable to evaluate the macro coefficients only for

the shear and bulk modulus because of the orthogonal energy decomposition “sym dev/tr” of which they are
related, and especially here it would be a mistake to use this structure for the coefficient Mmacro since it will
give the value at the micro-scale. For more details about lim

Lc→∞ Mw see Appendix A.

3 For the sake of completeness are reported here also the relations between the Young’s modulus Ei and the Poisson’s ratio
νi in terms of κi and μi : Ei = 9κi μi

3κi+μi
and νi = 3κi−2μi

2(3κi+μi )
with i = {macro,micro, e}.
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3.1 Uniaxial extension problem for the isotropic relaxed micromorphic model with νe = νmicro = 0

A vanishing Poisson’s ratio at the meso- and micro-scale (νe = νmicro = 0) corresponds to a vanishing first
Lamé parameter (λe = λmicro = 0). It is easy to see from Eqs. (21) and (22) that these conditions correspond
to

λe = λmicro = 0 ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

z1 = 0 ,

z2 = Me Mmicro

Me + Mmicro
= 2μe μmicro

μe + μmicro
,

z3 = Me + Mmicro = 2 (μe + μmicro) ,

(30)

with Mi = λi + 2μi = 2μi with i = {micro, e}. Since the nonlinear terms in solution Eq. (22) vanish, we
retrieve

u2(x2) = γ x2 , P22(x2) = μe

μe + μmicro
γ , P11(x2) = P33(x2) = 0 , (31)

which is a homogeneous elastic solution satisfying the equilibrium equation in the case of a constant micro-
distortion tensor P (see Appendix D of [27] for further details)

P = μe

μe + μmicro

(
1

|�|
∫

�

Du dV
)

. (32)

The strain energy associated with this solution is

W (γ ) =
∫ h/2

−h/2
W (Du) = 1

2

2μe μmicro

μe + μmicro
h γ 2 = 1

2
Mmacro h γ 2 , (33)

where Mmacro = 2μmacro + λmacro = 2μmacro = 2μe μmicro
μe+μmicro

is the macro-extensional stiffness, since λmacro =
νmacro = 0.

4 Uniaxial extension problem for the isotropic micro-stretch model in dislocation format

In the micro-stretch model in dislocation format [5,15,20,22,30], the micro-distortion tensor P is devoid from
the deviatoric component dev sym P = 0 ⇔ P = A + ω1, A ∈ so(3), ω ∈ R. The expression of the strain
energy for this model in dislocation format can be written as [20]:

W (Du, A, ω,Curl (A − ω1))

= μmacro ‖dev symDu‖2 + κe

2
tr2 (Du − ω1) + μc ‖skew (Du − A)‖2 + 9

2
κmicro ω

2

+ μ L2
c

2

(
a1 ‖dev symCurl A‖2 + a2 ‖skewCurl (A + ω1)‖2 + a3

3
tr2 (Curl A)

)
, (34)

since Curl (ω1) ∈ so(3). The equilibrium equations, in the absence of body forces, are then

Div

σ̃ :=︷ ︸︸ ︷[
2μmacro dev symDu + κetr (Du − ω1)1 + 2μc skew (Du − A)

] = 0 ,

2μc skew (Du − A)

− μ L2
c skewCurl

(
a1 dev symCurl A + a2 skewCurl (A + ω1) + a3

3
tr (Curl A)1

)
= 0 ,

tr

[
2μmacro dev symDu

+ κetr (Du − ω1)1 − κmicrotr (ω1)1 − μ L2
c a2 Curl skewCurl (ω1 + A)

]
= 0 . (35)
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According to the reference system shown in Fig. 1, the ansatz for the displacement and micro-distortion fields
is

u(x2) =
⎛
⎝

0
u2(x2)

0

⎞
⎠ , A(x2) =

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠ ,

Du(x2) =
⎛
⎝
0 0 0
0 u2,2(x2) 0
0 0 0

⎞
⎠ , ω (x2)1 =

⎛
⎝

ω (x2) 0 0
0 ω (x2) 0
0 0 ω (x2)

⎞
⎠ . (36)

The boundary conditions at the free surface are then

u2(x2 = ±h/2) = ±γ h

2
, ω(x2 = ±h/2) = 0 . (37)

Since the ansatz requires A = 0, the micro-stretch model coincides with the micro-void model which will
be presented in Sect. 6.

5 Uniaxial extension problem for the isotropic Cosserat continuum

The strain energy for the isotropic Cosserat continuum in dislocation tensor format (curvature energy expressed
in terms of CurlA) can be written as [3,8,13,14,18,21,25,28,29]

W (Du, A,Curl A) = μmacro ‖symDu‖2 + λmacro

2
tr2 (Du) + μc ‖skew (Du − A)‖2

+ μ L2
c

2

(
a1 ‖dev symCurl A‖2 + a2 ‖skewCurl A‖2 + a3

3
tr2 (Curl A)

)
, (38)

where A ∈ so(3). The equilibrium equations, in the absence of body forces, are therefore the following

Div

σ̃ :=︷ ︸︸ ︷[
2μmacro symDu + λmacrotr (Du)1 + 2μc skew (Du − A)

] = 0 ,

2μc skew (Du − A) − μ L2
c skewCurl

(
a1 dev symCurl A + a3

3
tr (Curl A)1

)
= 0 . (39)

According to the reference system shown in Fig. 1 and ansatz (14), which has to be particularized as
A = skew P ∈ so(3), the ansatz for the displacement field and the micro-rotation for the Cosserat model is

u(x2) =
⎛
⎝

0
u2(x2)

0

⎞
⎠ , Du(x2) =

⎛
⎝
0 0 0
0 u2,2(x2) 0
0 0 0

⎞
⎠ , A(x2) =

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠ . (40)

Since A = 0, the Cosserat model is not able to catch any nonhomogeneous response for the uniaxial extension
problem and classical solution (9) is retrieved.

The couple stress model [10,11,16,19,23], which appears by constraining A = skewDu ∈ so(3) in the
Cosserat model, is also not able to catch a nonhomogeneous response for the uniaxial extension problem since,
due to the ansatz, we would have skewDu = 0 as it can be seen in Eq. (40).

6 Uniaxial extension problem for the isotropic micro-void model in dislocation tensor format

The strain energy for the isotropic micro-void continuum in dislocation tensor format can be obtained from the
relaxed micromorphic model by formally letting μmicro → ∞ (while keeping κmicro finite) and can be written
as [4,28]
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W (Du, ω,Curl (ω1)) = μmacro ‖dev symDu‖2 + κe

2
tr2 (Du − ω1) + κmicro

2
tr2 (ω1)

+ μ L2
c

2
a2 ‖Curl (ω1)‖2 . (41)

Here, ω : R3 → R is the additional scalar micro-void degree of freedom [4]. The equilibrium equations, in
the absence of body forces, are

Div

σ̃ :=︷ ︸︸ ︷[
2μmacro dev symDu + κetr (Du − ω1)1

] = 0,
1

3
tr
[̃
σ − κmicrotr (ω1)1 − μ L2

c a2 Curl Curl (ω1)
] = 0. (42)

and the positive definiteness conditions are

μmacro > 0, κe > 0, κmicro > 0, μ > 0, Lc > 0, a2 > 0 . (43)

According to the reference system shown in Fig. 1, the ansatz for the displacement field and the functionω(x2)
have to be

u(x1, x2) =
⎛
⎝

−x2 x3
x1 x3
0

⎞
⎠ , ω (x2)1 =

⎛
⎝

ω (x2) 0 0
0 ω (x2) 0
0 0 ω (x2)

⎞
⎠ ,

Du(x2) =
⎛
⎝
0 0 0
0 u2,2(x2) 0
0 0 0

⎞
⎠ . (44)

The boundary conditions for the uniaxial extension are

u2(x2 = ±h/2) = ±γ h

2
, ω(x2 = ±h/2) = 0 . (45)

After substituting ansatz (44) into equilibrium equations (42)we obtain the following two differential equations

1

3
(3κe + 4μmacro) u

′′
2(x2) − κe ω′(x2) = 0 ,

2

3
a2 μ L2

c ω′′(x2) + 3κe u
′
2(x2) − 3(κe + κmicro) ω(x2) = 0 . (46)

After applying boundary conditions Eq. (45), the solution in terms of u2(x2) and ω(x2) of system Eq. (46) is

u2(x2) =
x2
h − z1

f1
sech

(
f1h
2Lc

)
sinh

(
f1x2
Lc

)
Lc
h

1 − 2z1
f1

tanh
(

f1h
2Lc

)
Lc
h

h γ , ω(x2) =
z2
(
1 − sech

(
f1h
2Lc

)
cosh

(
f1x2
Lc

))

1 − 2z1
f1

tanh
(

f1h
2Lc

)
Lc
h

γ ,

f1:=
√
4μmacro(κe + κmicro) + 3κeκmicro

2μ a2(3κe + 4μmacro)
, z1:= 3κ2

e

(κe + κmicro)(3κe + 4μmacro)
, z2:= κe

3(κe + κmicro)
.

(47)

where f1 > 0, z1 > 0, and z2 > 0 are strictly positive in order to match positive definiteness conditions Eq.
(43), and the same reasoning applied in the relaxed micromorphic model sections still holds. The strain energy
associated with this solution is

W (γ ) =
∫ h/2

−h/2
W (Du, P,Curl P)

= 1

2

⎡
⎢⎣

μ a2 f 21 z22

(
1
f1
sinh

(
f1h
Lc

)
Lc
h − 1

)

(
1 − 2z1

f1
tanh

(
f1h
2Lc

)
Lc
h

)2
cosh2

(
f1h
2Lc

) +
(
1 + z1 + cosh

(
f1h
Lc

)
− 3 z1

f1
sinh

(
f1h
Lc

)
Lc
h

)

2
(
1 − 2z1

f1
tanh

(
f1h
2Lc

)
Lc
h

)2
cosh2

(
f1h
2Lc

)
(

κeκmicro

κe + κmicro
+ 4μmacro

3

)⎤⎥⎦ h γ 2

= 1

2
Mw h γ 2 . (48)
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Fig. 3 Micro-void model. Extensional stiffness Mw while varying Lc. The stiffness is bounded as Lc → ∞ (h → 0) by Me. The
values of the parameters used are: μ = 1, λe = 1, Me = 2, κmicro = 3, a2 = 1/5

The plot of the extensional stiffness Mw while varying Lc is shown in Fig. 3.
The values of the extensional stiffness Mw for Lc → 0 and Lc → ∞ are

lim
Lc→0

Mw = κe κmicro

κe + κmicro
+ 4

3
μmacro = κmacro + 4

3
μmacro = 2μmacro + λmacro = Mmacro ,

lim
Lc→∞ Mw = κe + 4

3
μmacro = κe + 4

3
μe = 2μe + λe = Me , (49)

where μmacro = μe for μmicro → ∞, according to Eq. (29). We note that the extensional stiffness remains
bounded as Lc → ∞ (h → 0).

7 Uniaxial extension problem for the classical isotropic micromorphic continuum without mixed terms

The expression of the strain energy for the classical isotropic micromorphic continuum [7,17] without mixed
terms (like 〈symP, sym (Du − P)〉, etc.) and simplified curvature expression [25,27] can be written as:

W (Du, P,DP) = μe ‖sym (Du − P)‖2 + λe

2
tr2 (Du − P) + μc ‖skew (Du − P)‖2

+ μmicro ‖sym P‖2 + λmicro

2
tr2 (P)

+ μ L2
c

2

(
ã1 ‖D (dev sym P)‖2 + ã2 ‖D (skew P)‖2 + 2

9
ã3 ‖D (tr (P)1)‖2

))
(50)

while the equilibrium equations without body forces are the following:

Div

σ̃︷ ︸︸ ︷[
2μe sym (Du − P) + λetr (Du − P)1 + 2μc skew (Du − P)

] = 0 ,

σ̃ − 2μmicro sym P − λmicrotr (P)1

+ μL2
c Div

[
ã1 D (dev sym P) + ã2 D (skew P) + 2

9
ã3 D (tr (P)1)

]
= 0 , (51)

where (μe,κe = λe + 2/3μe), (μmicro,κmicro = λmicro + 2/3μmicro), μc, Lc > 0, and (̃a1,̃a2,̃a3)> 0 in order
to guarantee the positive definiteness of the energy. According to the reference system shown in Fig. 1, the
ansatz for the displacement field and the classical micromorphic model is

u(x2) =
⎛
⎝

0
u2(x2)

0

⎞
⎠ , P(x2) =

⎛
⎝

P11(x2) 0 0
0 P22(x2) 0
0 0 P33(x2)

⎞
⎠ ,

Du(x2) =
⎛
⎝
0 0 0
0 u2,2(x2) 0
0 0 0

⎞
⎠ . (52)
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The boundary conditions for the uniaxial extension are assumed to be

u2(x2 = ±h/2) = ±γ h

2
, P(x2 = ±h/2) = 0 . (53)

The calculations are deferred to micro-strain model Sect. 8 since the ansatz, the equilibrium equations, and
the boundary conditions are the same; therefore, the solution will also be the same.

8 Uniaxial extension problem for the micro-strain model without mixed terms

The micro-strain model [9,12,31] is the classical Mindlin–Eringen [7,17] model particular case in which it is
assumed a priori that the micro-distortion remains symmetric, P = S ∈ Sym(3).

The strain energy which we consider is [25,27]

W (Du, S,DS) =μe ‖(symDu − S)‖2 + λe

2
tr2 (Du − S) + μmicro ‖ S‖2 + λmicro

2
tr2 (S)

+ μ L2
c

2

(
ã1 ‖D (dev S)‖2 + 2

9
ã3 ‖D (tr (S)1)‖2

)
. (54)

The chosen 2-parameter curvature expression represents a simplified isotropic curvature (the full isotropic
curvature for the micro-strain model would still count 8 parameters [2]).

The equilibrium equations, in the absence of body forces, are therefore the following

Div

σ̃ :=︷ ︸︸ ︷[
2μe (symDu − S) + λe tr (Du − S)1

] = 0,

2μe (symDu − S) + λe tr (Du − S)1 − 2μmicro S − λmicro tr (S)1

+ μ L2
c symDiv

[
ã1 D (dev S) + 2

9
ã3 D (tr (S)1)

]
= 0 , (55)

where (μe,κe = λe + 2/3μe), (μmicro,κmicro = λmicro + 2/3μmicro), Lc > 0, and (̃a1,̃a3)> 0 in order
to guarantee the positive definiteness of the energy. The boundary conditions for the uniaxial extension are
assumed to be

u2(x2 = ±h/2) = ±γ h

2
, S(x2 = ±h/2) = 0 . (56)

According to the reference system shown in Fig. 1, the ansatz for the displacement field and the micro-
distortion is (which coincides with classical micromorphic model Eq. (52))

u(x2) =
⎛
⎝

0
u2(x2)

0

⎞
⎠ , S(x2) =

⎛
⎝
S11(x2) 0 0

0 S22(x2) 0
0 0 S33(x2)

⎞
⎠ ,

Du(x2) =
⎛
⎝
0 0 0
0 u2,2(x2) 0
0 0 0

⎞
⎠ . (57)

After substituting ansatz (57) into equilibriumequations (55)we obtain the following four differential equations

Me
(
u′′
2(x2) − P ′

22(x2)
)− λe

(
P ′
11(x2) + P ′

33(x2)
) = 0 ,

− 2

9
μ L2

c(3̃a1 + ã3)P
′′
11(x2) + 1

9
μ L2

c(3̃a1 − 2̃a3)
(
P ′′
22(x2) + P ′′

33(x2)
)

+ (Me + Mmicro)P11(x2) + (λe + λmicro)(P22(x2) + P33(x2)) − λeu
′
2(x2) = 0 ,

1

9
μ L2

c

(
(3̃a1 − 2̃a3)P

′′
11(x2) − 2(3̃a1 + ã3)P

′′
22(x2) + (3̃a1 − 2̃a3)P

′′
33(x2)

)

+ (Me + Mmicro)P22(x2) − Meu
′
2(x2) + (λe + λmicro)(P11(x2) + P33(x2)) = 0 ,
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Fig. 4 Micro-strain model. (left) Extensional stiffness Mw while varying Lc. The stiffness is bounded as Lc → ∞ (h → 0)
and converges to Me. The values of the parameters used are: μ = 1, λmacro = 1, Mmacro = 3, λmicro = 9.69, Mmicro = 12,
ã1 = 1/5, ã3 = 1/6; (right) Displacement profile across the thickness of the dimensionless u2 = u2/ (γ h) for different values
of Lc = {0, 3, 5, 10, ∞}. The values of the other parameters used in order to maximize the nonhomogeneous behavior areμ = 1,
λe = 11, Me = 33, λmicro = 1.1, Mmicro = 3.3, ã1 = 1, ã3 = 1/6

1

9
μ L2

c

(
(3̃a1 − 2̃a3)

(
P ′′
11(x2) + P ′′

22(x2)
)− 2(3̃a1 + ã3)P

′′
33(x2)

)

+ (Me + Mmicro)P33(x2) + (λe + λmicro)(P11(x2) + P22(x2)) − λeu
′
2(x2) = 0 . (58)

Being careful of substituting the system of differential equation with one in which Eq. (58)2 and Eq. (58)4 are
replaced with their sum and their difference, respectively, we have

Me
(
u′′
2(x2) − P ′

22(x2)
)− λe f

′
p(x2) = 0 ,

− 1

9
μ L2

c

(
(3̃a1 + 4̃a3) f

′′
p (x2) + 2(2̃a3 − 3̃a1)P

′′
22(x2)

)

+ f p(x2)(Me + λe + λmicro + Mmicro) + 2(λe + λmicro)P22(x2) − 2λeu
′
2(x2) = 0 ,

1

9
μ L2

c

(
(3̃a1 − 2̃a3) f

′′
p (x2) − 2(3̃a1 + ã3)P

′′
22(x2)

)

+ (Me + Mmicro)P22(x2) − Meu
′
2(x2) + f p(x2)(λe + λmicro) = 0 ,

fm(x2)(Me − λe − λmicro + Mmicro) − ã1 L
2
c f ′′

m(x2) = 0 , (59)

where f p(x2):=P11(x2) + P33(x2) and fm(x2):=P11(x2) − P33(x2). It is highlighted that Eq. (59)4 is a
homogeneous second-order differential equation depending only on fm(x2) with homogeneous boundary
conditions Eq. (56).

Also here, the fact that Eq. (59)4 is an independent equation has itsmeaning in the symmetry constraint of the
uniaxial extensional problem in the direction along the x2- and x3-axis, which requires that P11(x2) = P33(x2).

The solution and the measure of the apparent stiffness are too complicated to be reported here, but never-
theless, it is possible to plot how the apparent stiffness behaves while changing Lc (see Fig. 4).

We note that the extensional stiffness remains bounded as Lc → ∞ (h → 0) and converges to Me. The
solution obtained for the micro-strain model for the uniaxial extension problem also holds for the classical
micromorphic problem presented in Sect. 7.

9 Uniaxial extension problem for the second gradient continuum

The strain energy density for the isotropic second gradient with simplified curvature [1,6,17,25,27] is

W
(
Du,D2u

)
= μmacro ‖symDu‖2 + λmacro

2
tr2 (Du)

+ μ L2
c

2

(
ã1
∥∥∥D
(
dev symDu

)∥∥∥
2 + ã2

∥∥∥D
(
skewDu

)∥∥∥
2 + 2

9
ã3
∥∥∥D
(
tr (Du) 1

)∥∥∥
2
)

, (60)



18 G. Rizzi et al.

Fig. 5 Second gradient model. (left) Extensional stiffness Mw while varying Lc. For the second gradient model (solid curve)
the stiffness is unbounded as Lc → ∞ (h → 0), while for the micro-strain model (dashed curve) the stiffness is bounded.
The second gradient model can be obtained from the micro-strain model by formally letting μe, λe → ∞. The values of the
parameters used are:μ = 1,μmacro = 1,λmacro = 2, ã3 = 4; (right)Displacement profile across the thickness of the dimensionless
u2 = u2/ (γ h) for different values of Lc = {0, 0.1, 0.2, 0.35, ∞}. The values of the other parameters used in order to maximize
the nonhomogeneous behavior are μ = 1, λmicro = 1, Mmicro = 1, ã3 = 2

while the equilibrium equations without body forces are the following:

Div

[
2μmacro symDu + λmacrotr (Du)1

− μL2
c

(
ã1 dev sym� (Du) + ã2 skew� (Du) + 2

9
ã3 tr (� (Du))1

)]
= 0 , (61)

where (μmacro, κmacro, μ, ã1, ã3) > 0 in order to guarantee the positive definiteness of the energy. Due to the
uniaxial extension problem symmetry the following structure of u = (0, u2(x2), 0)T has been chosen, which
results in having only the component u2,2 different from zero in the gradient of the displacement Du. The
boundary conditions for the uniaxial extension are (see Fig. 1) assumed to be

u2(x2 = ±h/2) = ±γ h

2
, u′

2(x2 = ±h/2) = 0 . (62)

After substituting the expression of the displacement field in Eq. (61), the nontrivial equilibrium equation
reduces to

(λmicro + 2μmicro) u
′′
2(x2) − 1

3
ã3 μ L2

c u
(4)
2 (x2) = 0 . (63)

After applying the boundary conditions to the solution of Eq. (63), it results that u2(x2) is given by [24,26]

u2(x2) =
2x2
h − 2

f1
sinh

(
f1

x2
Lc

)
sech

(
f1
2

h
Lc

)
Lc
h

1 − 2
f1
tanh

(
f1
2

h
Lc

)
Lc
h

γ h

2
, f1 :=

√
λmacro + 2μmacro

μ ã3/3
. (64)

where f1 > 0 is strictly positive in order to match the positive definiteness conditions and the same reasoning
applied in the relaxed micromorphic model sections still holds. Strain energy (61) becomes then

W (γ ) =
∫ h

0
W
(
Du,D2u

)
= 1

2

⎡
⎢⎢⎢⎣

Mmacro︷ ︸︸ ︷
λmacro + 2μmacro

1 − 2
f1
tanh

(
f1
2

h
Lc

)
Lc
h

⎤
⎥⎥⎥⎦ h γ 2 = 1

2
Mw h γ 2 .

The plot of the extensional stiffness Mw while varying Lc is shown in Fig. 5.
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10 Conclusions

Only the second gradient formulation produces an unbounded apparent stiffness as Lc → ∞ (h → 0),
while for the other models different bounded limit stiffnesses are observed. For the second gradient model,
because of its unboundedness stiffness, it can be more likely to have an instability in the parameters’ fitting
process on real structures: while being at a scale close to the singularity, a small changes in the geometrical
or material properties of the sample may technically cause an arbitrarily large change in the values of the
elastic coefficients. Therefore, the use of the second gradient model (or the classical micromorphic model
in bending or torsional tests [25,27]) should be done with great care as regards the stable identification of
parameters. These problems are avoided for the relaxed micromorphic model. The relaxed micromorphic
model determines M = Me Mmicro

Me+Mmicro
, which is less than Mmicro and Me, while the micro-strain model determines

Me as limit stiffness. The Cosserat model is not able to catch a nonhomogeneous solution and provides no size
effect. The different limit stiffnesses for the relaxed micromorphic model versus the full micromorphic and
micro-strain model approach, respectively, suggest that the meaning of classical experimental tests does not
have an unambiguous deformation and micro-deformation solution field anymore, and this is due to the fact
that we can have different boundary conditions on the components of the micro-distortion tensor depending on
what each model requires to constrain. This allows the existence of different uniaxial extension-like problems
and not just one like for a classical Cauchy material.
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A The limit Lc → ∞ for the relaxed micromorphic model

The limit of the energy, Eq. (11), for Lc → ∞, requires that ‖Curl P‖ = 0, which implies that P = Dζ , for
some ζ : � → R

3. Energy Eq. (11) now becomes

W (Du,Dζ ) = μe ‖sym (Du − Dζ )‖2 + λe

2
tr2 (Du − P) + μmicro ‖symDζ‖2 + λmicro

2
tr2 (Dζ ) , (65)

and that Eq. (13) turns into

Div

σ̃ :=︷ ︸︸ ︷[
2μe sym (Du − Dζ ) + λetr (Du − Dζ )1

] = 0 ,

σ̃ − 2μmicro symDζ − λmicrotr (Dζ )1 = 0 ,

(66)

with consistent coupling boundary condition D u · τ = Dζ · τ . Given Eq. (66)1, Eq. (66)2 reduces to be

Div
[
2μmicro symDζ + λmicrotr (Dζ )1

] = 0 , (67)

which, for the uniaxial extension problem with boundary condition u2 (x2 = ±h/2) = ±γ h/2, is equivalent
to

Dζ =
⎛
⎝
0 0 0
0 a 0
0 0 0

⎞
⎠ , Du =

⎛
⎝
0 γ 0
0 0 0
0 0 0

⎞
⎠ , (68)

http://creativecommons.org/licenses/by/4.0/
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where a is an arbitrary constant. This solution to Eq. (66) is therefore not unique. Inserting Du and Dζ from
Eq. (68) in Eq. (65), the following energy expression is recovered

I (a) = 1

2

(
2a2Mmicro + 2Me(a − γ )2

)
, (69)

which has to be minimized with respect to a in order to remove the nonuniqueness of equilibrium system Eq.
(66), which means that the following relation

∂

∂a

(
a2Mmicro + Me(a − γ )2

) = 2a(Me + Mmicro) − 2γ Me = 0 (70)

has to be satisfied. The solution of Eq. (70) is amin = Me

Me + Mmicro
γ . Finally it is possible to substitute amin

into Eq. (68) obtaining

Dζ =
⎛
⎜⎝
0 0 0

0
Me

Me + Mmicro
γ 0

0 0 0

⎞
⎟⎠ , Du =

⎛
⎝
0 γ 0
0 0 0
0 0 0

⎞
⎠ . (71)

Solution Eq. (71) satisfies the equilibrium equations, the boundary conditions, and the minimum energy
requirement. The expression of the energy now becomes

W (γ ) =
∫ h/2

−h/2
W (Du,Dζ ) = 1

2

Me Mmicro

Me + Mmicro
h γ 2 = 1

2
Mh γ 2 , (72)

with M = Me Mmicro

Me + Mmicro
the extensional stiffness for the relaxed micromorphic when Lc → ∞.
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