
Archive of Applied Mechanics (2022) 92:183–198
https://doi.org/10.1007/s00419-021-02049-2

ORIGINAL

Weilei Wu · Bin Tang

Analysis of a bio-inspired multistage nonlinear vibration
isolator: an elliptic harmonic balance approach

Received: 30 April 2021 / Accepted: 14 September 2021 / Published online: 4 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract Recently, studies on isolation of low- and ultra-low-frequency micro-vibrations have been gaining
attention to protect sensitive components, improve operating comfort, and enhance control accuracy. In this
study, a modified elliptic harmonic balance method (EHBM) was used to investigate the transmissibility
characteristics of a bio-inspired multistage nonlinear vibration isolation system. After decoupling the stiffness
and damping matrix of the multistage nonlinear isolator, which has both stiffness and damping nonlinearities,
the equation of motion can be established in a matrix form. The force equilibrium relationship at each stage
of the isolator was analysed when it was at steady-state. Using Jacobi elliptic functions, we analyse the
relationship between the excitation frequency and the Jacobi elliptic frequency and modulus during the steady-
state response of the system. The modified stiffness and damping force components, as well as the amplitude
and phase differences of each force component at each stage, are presented as vectors in an orthogonal
relationship. A three-stage isolator, which is a simple case of a multistage nonlinear isolation system, and a
twelve-stage nonlinear isolation system, representing twelve cervical vertebrae in birds, are chosen as examples.
The EHBM and the first-order harmonic balance method (HB1) were used to obtain the force and displacement
transmissibilities of these two systems. The EHBM can maintain the same number and form of balancing
equations as the HB1 but delivers better accuracy within the resonance regimes.

Keywords Jacobi elliptic function · Harmonic balance method · Bio-inspired isolator · Transmissibility

1 Introduction

Bio-inspired isolators that imitate the special structures of livingorganisms, such as animal limbs andbird necks,
have become the focus of investigation with the aim of improving the performance of engineering systems.
These isolation systems have favorable geometrical nonlinearities [1–4] that have led researchers to study the
effect of these nonlinearities with added geometric nonlinear stiffness [5–8] and nonlinear damping [9–16]. For
example, an X-shaped vibration isolation mount has desirably weak nonlinearities and structural parameters.
The addition of an oblique spring can ensure good stability, loading capacity, and adjustable isolation. The
negative stiffness effect of the X-shaped structure can be eliminated by the vertical positive stiffness resulting
from the contact stiffness of the oblique spring [1]. Abbasi et al. [17] investigated the optimal design of
asymmetric high-static-low-dynamic-stiffness (HSLDS) suspensions to mitigate the vibration of a symmetric
rotating system excited by an unbalanced force. Zhang et al. [18] analysed the dynamic characteristics of a
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quasi-zero stiffness (QZS) system with geometric nonlinear damping, friction, and inertia of the connection
rods. Dai et al. [19] proposed a novel bio-inspired anti-impact manipulator that offers high efficiency and
anti-impact performance; moreover, the manipulator can be adjusted with respect to different targets. Feng
et al. [3] and Jing et al. [20] proposed a novel passive human body-inspired anti-vibration structure (HBIAVS)
and an HBIAVS with a coupled nonlinear inertia (HBIAVS-NI) design [4], which can be easily realised, both
in terms of size and loading capacity. Gatti [2] presented an analytical insight into the elastic performance
of a bio-inspired nonlinear spring, which consists of four linear mechanical springs arranged in a K-shaped
configuration to achieve a specific form of nonlinearity. Recently, multi-layer structures with geometrical
nonlinearities have been established to provide new advantages, such as anti-vibration capability [21, 22].
Jiang et al. [21] studied a unique bio-inspired multi-joint leg-like or limb-like vibration isolation structure
by mimicking the skeleton and joint structures of animal legs; and achieved the desired vibration isolation
performance, including the resonant frequency, loading capacity, and effective vibration displacement range.
By imitating the structure of a bird neck and the gazing stability of the head, Deng et al. [22] investigated
a multi-layered QZS nonlinear isolator with high-performance isolation for low- and ultra-low-frequency
vibrations.

In the aforementioned studies, the harmonic balance method (HBM) was applied to solve the equations
of motion for single-layer and two-layer nonlinear systems. However, increasing the number of system layers
solved by the HBM increases the number of harmonic components included, which increases the complexity
of balancing equations resulting in a comparatively large truncation error, which is induced by neglecting
high-order harmonic components [23–25]. To improve the accuracy of the HBM, modified methods, such as
the two-timescale HBM [26], incremental HBM (IHBM) [27], linearisation of the governing equation with
the HBM [28], and a combination of Newton’s iteration with HBM [29], have been presented. Moreover, von
Wagner and Lentz presented the methods of harmonic balance and slowly changing phase and amplitude to
solve simple and modified Duffing oscillators [30]. Zhou et al. [31] proposed a new analytical approximate
technique by combining system linearisation with the HBM. Donmez et al. [32] utilised the HBM, which
transforms the nonlinear differential equations of motion into a set of nonlinear algebraic equations to solve
the steady-state response of a QZS isolator with dry friction damping. Furthermore, to obtain accurate results
for high-dimensional systems or systems with complex nonlinearities, the high-dimensional harmonic balance
method is relatively simple despite the complexity of the nonlinearities; however, it may produce spurious
solutions in addition to the physically meaningful ones [33]. Using linear equations, Khodaparast et al. [34]
controlled the nonlinear restoring function of multiple-degree-of-freedom nonlinear dynamic systems using
an extended HBM.

Jacobi elliptic functions have been widely used to obtain accurate results by assuming the general solutions
of several nonlinear dynamical system responses to be in the form of Jacobi elliptic functions [23, 35–38].
Okabe et al. [39] improved the averaging method using the Jacobi elliptic sine, cosine, and delta functions,
as well as the delta and zeta functions [40], to obtain highly accurate periodic solutions for highly nonlinear
dynamical systems. The approximation solutions of conservative oscillators with a non-negative real power
restoring force were derived using Jacobi elliptic functions [41, 42]. Recently, Jacobi elliptic functions were
used to obtain the exact closed-form solutions of several oscillatory systems that contain pure cubic stiffness
nonlinearity [43] and to achieve the desired response by tuning the external excitation [44]. However, when the
EHBM is used to solve the equations of motion of two- or multi-degrees of freedom (DOF) nonlinear oscillator
systems, the number of balancing equations is not equal to that of the unknowns [45]. To address this issue in
two-DOF systems, Chen and Liu [45] extended the EHBM for an analysis using an additional equation prior to
initial harmonic balancing. By transforming the sinusoidal driving function into its corresponding equivalent
Jacobian elliptic function form, Elias-Zuniga and Beatty [46] obtained the solution of a system of two coupled
nonhomogeneous undamped ordinary differential equations with a cubic nonlinear and sinusoidal driving
force. Using a combination of a Jacobi elliptic function and a trigonometric function as the analytical solution,
Cveticanin proposed an approximate method for solving coupled highly nonlinear differential equations with
small nonlinearities based on the Krylov–Bogolubov procedure [47]. Wu and Tang modified the harmonic
components of the geometric nonlinear damping and nonlinear stiffness force of single- and two-DOFnonlinear
vibration isolation systems using Jacobi elliptic functions, which perform well in resonance regimes [48, 49].

In this study, the isolation characteristics of a bio-inspired multistage nonlinear vibration isolator were
analysed using a modified elliptic harmonic balance method (EHBM). As detailed in Sect. 2, by imitating
the structure of a bird neck, a bio-inspired multistage isolator with both geometric stiffness and damping
nonlinearities, which are incorporated in each stage of the configuration, was realised. Simultaneously, by
imitating the space-fixed gazing stability of the bird head, a large mass was used in the first stage of the
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multistage configuration. The equations ofmotion for both force excitation and base excitationwere established
in amatrix form after decoupling the stiffness and dampingmatrix of themultistage nonlinear isolator. Section 3
discusses how the dynamic equilibrium force at each steady-state stage is obtained. The relationship between
the excitation frequency and Jacobi elliptic frequency and modulus was analysed. The modified stiffness and
damping force components were obtained to improve the solution accuracy of the amplitude–frequency results.
The amplitude and phase relationship of the excitation, damping, stiffness, and inertia force components are
presented as vectors with an orthogonal relationship. Further, as detailed in Sect. 4, the force and displacement
transmissibilities of themultistage nonlinear vibration isolation systemare solved using thefirst-order harmonic
balance method (HB1) and EHBM. The results of a three-stage isolation system, which is a simple multistage
system, and a twelve-stage isolation system, such as that of twelve cervical vertebrae in birds, are compared
with the numerical solutions.

2 A bio-inspired multistage nonlinear isolation system

The bird neck not only performs a variety of demanding tasks, such as feeding, manipulation of the head,
and combat behaviour [50], but also performs the stable gazing action of the head and helps control flight
and stabilisation of vision [51]. Normally, 8–25 vertebrae in bird necks are connected by a complex network
of tendons and muscles; the low-frequency vibrations are isolated to protect the bird organs that have lower
resonance frequencies [22]. A multistage nonlinear isolation system, shown in Fig. 1a, was used to imitate the
multi-vertebral structure of a bird neck. The bio-inspired isolation system with HSLDS property may realise
the isolation of low- and ultra-low-frequency vibrations. For simplicity, we focused on the motion along the
neck direction and neglected the motion in the transverse direction of the bird neck. When the connection
between the concave and convex structures of the bird’s vertebrae is considered, the forces of the tendons and
muscles that are in the horizontal direction, are modelled by horizontal springs and dampers. The muscles
and tendons that provide the forces in the vertical direction are simplified to vertical springs and dampers.
Each adjacent vertebra of the neck, connected by muscles and tendons, is modelled by a stage of the nonlinear
vibration isolation system. For the ith stage of the isolator shown in Fig. 1b, xi is the displacement, ms(i) is the
equivalent mass, kv(i) and kh(i) are the stiffness values of the vertical and horizontal springs, and cv(i) and ch(i)
are the damping coefficients of the vertical and horizontal dampers, respectively; xe is the displacement of the
base, and 1 ≤ i ≤ N . The vertical dampers and springs are orientated in the direction of the displacement;
the horizontal dampers and springs, which induce nonlinear geometric characteristics, are orientated in the
perpendicular direction of the displacement.

In this study, we investigate the displacement and force transmissibilities of a bio-inspired multistage
nonlinear vibration isolator. A displacement excitation is induced to imitate the bio-inspired case in which the
bird neck isolates the low-frequency motion of the body and maintains the gazing stability. When the base
displacement is zero and the excitation force is not zero, the force excitation case is also investigated to provide
further insight into the potential engineering applications of the bio-inspired multistage nonlinear vibration
isolator.

When the base displacement is xe � 0 and the excitation force is fe(t) � Fe cos(ωet), where f e(t) is the
excitation force added to ms(1), the equation of motion in the matrix form is given by

M ¨X + Ct ˙X +KtX � Fe, (1)

where M �

⎡
⎢⎢⎣

ms(1) 0 · · · 0
0 ms(2) · · · 0
...

...
. . .

...
0 0 · · · ms(N )

⎤
⎥⎥⎦

N×N

, Ct �

⎡
⎢⎢⎢⎣

ct(1) −ct(1) · · · 0

−ct(1) ct(1) + ct(2)
. . .

...
...

. . .
. . . −ct(N−1)

0 · · · −ct(N−1) ct(N−1) + ct(N )

⎤
⎥⎥⎥⎦

N×N

,

Kt�

⎡
⎢⎢⎢⎣

kt(1) −kt(1) · · · 0

−kt(1) kt(1) + kt(2)
. . .

...
...

. . .
. . . −kt(N−1)

0 · · · −kt(N−1) kt(N−1) + kt(N )

⎤
⎥⎥⎥⎦

N×N

, Fe � [
Fe cos(ωet) 0 · · · 0 ]T1×N , X �

[
x1 x2 · · · xN

]T
1×N , kt(i) � kv(i) + 2kh(i)

(
1 − l0(i)

/√
(xi − xi+1)2 + l2i

)
,ct(i) � cv(i) +
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(a) (b)

Fig. 1 Simple model of a bio-inspired multistage isolation system: a overall model; b ith stage

2ch(i)(xi − xi+1)2
/(

l2i + (xi − xi+1)2
)
, 1 ≤ i ≤ N , and Fe and ωe are the amplitude and frequency of

the excitation force, respectively.
The transmitted force of the ith stage is given by

ft(i)(zi , żi ) � cv(i) żi + 2ch(i)
z2i

z2i + l2i
żi + kv(i)zi + 2kh(i)

⎛
⎝1 − l0(i)√

z2i + l2i

⎞
⎠zi , (2)

where zi � xi − xi+1 is the relative displacement between ms(i) and ms(i+1) for 1 ≤ i ≤ N − 1, zN � xN − xe
is the relative displacement betweenms(N) and the base, li is the length of the horizontal springs of the ith stage
in the state of rest, and l0(i) is the unstretched length of the horizontal springs of the ith stage.

If zi is sufficiently small and |zi | < 0.2li , then the transmitted force f t(i), as shown in Eq. (2), can be
approximated using the series expansion to the third-order for zi as follows:

ft(i)(zi , żi ) � fd(i) + fs(i) ≈ cv(i) żi + 2ch(i)

(
zi
li

)2

żi + ki zi + kc(i)z
3
i , (3)

where f d(i) is the approximate damping force when z2i
/(

z2i + l2i
) ≈ (

zi
/
li
)2, and f s(i) is the approximate spring

force when kv(i)zi + 2kh(i)

(
1 − l0(i)

/√
z2i + l2i

)
zi ≈ ki zi + kc(i)z3i where ki � kv(i) − 2kh(i)

(
l0(i)

/
li − 1

)

and kc(i) � kh(i)l0(i)
/
l3i .
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The base displacement xe � 0, xi �
N∑
j�i

z j can be obtained. The equations of motion of the force-excited

vibration isolation system are given by

MUZ̈ + (Cv+Ch)Ż +K1Z+KcZ(3)�Fe +
[
0 0
0 (Cv+Ch)(N−1)×(N−1)

][
0

Ż(N−1)×1

]

+

[
0 0
0 K1(N−1)×(N−1)

][
0

Z(N−1)×1

]
+

[
0 0
0 Kc(N−1)×(N−1)

][
0

Z(3)
(N−1)×1

]
, (4)

where U �

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
0 1

. . .
...

...
. . .

. . . 1
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

N×N

, Cv �

⎡
⎢⎢⎢⎢⎣

cv(1) 0 · · · 0

0
. . .

. . .
...

...
. . . cv(N−1) 0

0 · · · 0 cv(N )

⎤
⎥⎥⎥⎥⎦

N×N

, Ch �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ch(1)z21
l21

0 · · · 0

0
. . .

. . .
...

...
. . . 2ch(N−1)z2N−1

l2N−1
0

0 · · · 0
2ch(N )z2N

l2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

,

K1 �

⎡
⎢⎢⎢⎣

k1 0 · · · 0

0
. . .

. . .
...

...
. . . kN−1 0

0 · · · 0 kN

⎤
⎥⎥⎥⎦

N×N

, Kc �

⎡
⎢⎢⎢⎣

kc(1) 0 · · · 0

0
. . .

. . .
...

...
. . . kc(N−1) 0

0 · · · 0 kc(N )

⎤
⎥⎥⎥⎦

N×N

, Z � [
z1 · · · zN−1 zN

]T
1×N ,

Z(3) � [
z31 · · · z3N−1 z3N

]T
1×N . The matrices, (Cv+Ch)(N−1)×(N−1), K1(N−1)×(N−1), and Kc(N−1)×(N−1) are

the first N − 1 rows and the first N − 1 columns of Cv+Ch , K1, and Kc; Z(N−1)×1 and Z
(3)
(N−1)×1 are the first

N − 1 rows of Z and Z(3), respectively.
Considering the multi-vertebral structure of the bird neck, we assumed that l0(1) � l0(2) � · · · � l0(N ) and

l1 � l2 � · · · � lN . The non-dimensional form of Eq. (4) can be expressed as follows:

µUẐ′′ + F̂t �
[
F̂e cos(�τ)

F̂t(N−1)×1

]
, (5)

where µ �

⎡
⎢⎢⎣

μ1 0 · · · 0
0 μ2 · · · 0
...

...
. . .

...
0 0 · · · μN

⎤
⎥⎥⎦, F̂t � [

f̂t(1) · · · f̂t(N−1) f̂t(N )

]T
1×N

, F̂t(N−1)×1 are the first N − 1 rows of F̂t,

Ẑ � [
ẑ1 · · · ẑN−1 ẑN

]T
1×N , and the corresponding non-dimensional variables are defined by xs �

√
l20(i) − l2i ,

ẑi � zi
/
xs , l̂ � li

/
l0(i), τ � ωnt , ωn �

√
kv(1)

/
ms(1), � � ωe

/
ωn , F̂e � Fe

/
kv(1)xs , μi � ms(i)

/
ms(1),

ζv(i) � cv(i)
/
2ms(1)ωn , ζh(i) � ch(i)

/
2ms(1)ωn , ζn(i) � ζh(i)

(
1 − l̂2

)/
l̂2,�2

i � ki
/
kv(1), γi � kc(i)x2s

/
kv(1),

f̂t(i) � f̂d(i) + f̂s(i), f̂d(i) � 2
(
ζv(i) + 2ζn(i) ẑ2i

)
ẑ′i , f̂s(i) � �2

i ẑi + γi ẑ3i .
From Eq. (5), the transmitted force of the ith stage can be expressed as

f̂t(i) � f̂d(i) + f̂s(i) � F̂e cos(�τ) −
i∑

k�1

⎛
⎝μk

N∑
j�k

ẑ′′j

⎞
⎠. (6)

When the excitation force is fe � 0 and the base displacement is xe � Xe cos(ωet), Xe and ωe are the base
excitation amplitude and frequency, respectively. The equation of motion in matrix form for the base-excited
system is given by

[
M 0

][ Ẍ
ẍe

]
+
[
Ct ct(N )

][ Ẋ
ẋe

]
+
[
Kt kt(N )

][ X
xe

]
� 0. (7)

where ct(N ) � [
0 · · · 0 −cv(N )

]T
1×N and kt(N ) � [

0 · · · 0 −kt(N )

]T
1×N .
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As shown in Fig. 1, when the base displacement is xe � Xe cos(ωet) and the excited force is fe(t) � 0,

xi � xe +
N∑
j�i

z j can be obtained, where 1 ≤ i ≤ N . Equation (7) can be rewritten as follows:

(8)

MUZ̈ + (Cv+Ch) Ż +K1Z+KcZ(3) + ẍeMI1 �
[
0 0
0 (Cv+Ch)(N−1)×(N−1)

] [
0

Ż(N−1)×1

]

+

[
0 0
0 K1(N−1)×(N−1)

] [
0

Z(N−1)×1

]
+

[
0 0
0 Kc(N−1)×(N−1)

] [
0

Z(3)
(N−1)×1

]
,

where I1 � [
1 · · · 1 1

]T
1×N . The non-dimensional form of Eq. (8) can be expressed as follows:

µUẐ′′ + F̂t �
[

0
F̂t(N−1)×1

]
+ µI1 X̂e�

2 cos(�τ ), (9)

where X̂e � Xe
/
xs . From Eq. (9), the transmitted force of the ith stage can be expressed as

f̂t(i) �
i∑

k�1

μk

⎛
⎝X̂e�

2 cos(�τ ) −
N∑
j�k

ẑ′′j

⎞
⎠. (10)

3 Elliptic harmonic balance method

3.1 Harmonic balance method

The first-order solution of Eq. (6) is assumed to be

ẑi � Ẑi cos(�τ + φi ), (11)

where Ẑi is the non-dimensional amplitude of ẑi , and φi is the phase difference between the relative displace-
ment ẑi and excitation force.

Assume that the non-dimensional damping and stiffness force can be written as f̂d(i) ≈ α̃i

(
Ẑ i

)
sin

(�τ + φi ) and f̂s(i) ≈ β̃i

(
Ẑ i

)
cos(�τ + φi ), respectively, where α̃i and β̃i are the harmonic components

of the first-order series expansion of f̂d(i) and f̂s(i) at steady-state, and can be expressed as follows:

α̃i

(
Ẑ i

)
≈ �

π

∫ 2π
�

0
f̂d(i)

(
Ẑ icos(�τ + φi ), −Ẑ i�sin(�τ + φi )

)
sin(�τ + φi )dτ, (12a)

β̃i

(
Ẑ i

)
≈ �

π

∫ 2π
�

0
f̂s(i)

(
Ẑ icos(�τ + φi ), −Ẑ i�sin(�τ + φi )

)
cos(�τ + φi )dτ. (12b)

Substituting Eq. (11) into Eq. (6), the equations for the harmonic components of sin(�τ + φi ) and cos
(�τ + φi ) are obtained as follows:

−
�2∑i

k�1

(
μk
∑N

j�k

(
Ẑ j sin

(
φ j − φi

)))

�Ẑi
ẑ′i (τ ) + f̂d(i) � − F̂e sin(φi )

�Ẑi
ẑ′i (τ ), (13a)

∑i
k�1

(
μk
∑N

j�k

(
Ẑ j cos

(
φ j − φi

)))

Ẑi
ẑ′′i (τ ) � − f̂s(i) +

F̂e cos(φi )

Ẑi
ẑi (τ ), (13b)

where ẑ′i (τ ) � −�Ẑi sin(�τ + φi ) and ẑ′′i (τ ) � −�2 Ẑi cos(�τ + φi ). The equilibrium relationship given in
Eq. (3), is shown in Fig. 2.

By combining Eqs. (12) and (13), the amplitude–frequency equations of Eq. (6) are given by

α̃i ≈ F̂e sin(φi ) − �2
i∑

k�1

⎛
⎝μk

N∑
j�k

(
Ẑ j sin

(
φ j − φi

))
⎞
⎠, (14a)

β̃i ≈ F̂e cos(φi ) + �2
i∑

k�1

⎛
⎝μk

N∑
j�k

(
Ẑ j cos

(
φ j − φi

))
⎞
⎠. (14b)
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(a) (b)

Fig. 2 Dynamic equilibrium force on ms(i) at steady-state response

3.2 Jacobi elliptic function solutions

The steady-state responses of Eqs. (6) can be represented by the Jacobi elliptic functions as follows:

ẑi (τ ) � Ẑi cn(ψi |mi ), ẑ′i (τ ) � −Ẑiωi sn(ψi |mi )dn(ψi |mi ), (15)

where ψi � ωiτ + ϕi is the complete phase, mi is the square of the elliptic modulus, ωi is the Jacobi elliptic
frequency, and ϕi is the Jacobi phase of the corresponding displacement response of the ith stage system.
∂cn(ψi |mi )

/
∂ψi � −sn(ψi |mi )dn(ψi |mi ) was used to derive Eq. (15). Following a procedure similar to that

in [48], the second derivative of the relative displacement ẑi can be expressed as follows:

ẑ′′i (τ ) � −ω2
i (1 − 2mi )ẑi (τ ) − 2miω

2
i ẑi (τ )3

Ẑ2
i

. (16)

Substituting Eq. (15) and Eq. (16) into Eq. (13b), the equations of the cosine harmonic component become

(17)

i∑
k �1

(
μk

N∑
j�k

(
Ẑ j cos

(
φ j − φi

)))

Ẑi

(
ω2
i (1 − 2mi ) ẑi (τ ) +

2miω
2
i ẑi (τ )

3

Ẑ2
i

)

�
(

�2
i − F̂e cos (φi )

Ẑi

)
ẑi (τ ) + γi ẑi (τ )

3 .

Equating the coefficients of ẑi (τ ) and ẑi (τ )3 of Eq. (17) gives

ω2
i �

�2
i − F̂e cos(φi )

Ẑi
+ γi Ẑ2

i

i∑
k�1

(
μk

N∑
j�k

(
Ẑ j cos

(
φ j − φi

))) Ẑi , mi � γi Ẑ2
i

2
(
�2

i − F̂e cos(φi )
Ẑi

+ γi Ẑ2
i

) . (18)

For the ith stage of the nonlinear vibration isolation system shown in Fig. 1b, where �2
i > 0 and γi > 0,

the excited frequency � equals the Jacobi elliptic frequency ωi with the same period, which can be expressed
as follows:

� � πωi

2K (mi )
, (19)

where K (mi ) is the complete elliptic integral of the first type when 0 < mi < 1
/
2.



190 W. Wu and B. Tang

3.3 Modified stiffness force component

Because the high-order harmonic components are truncated in Eq. (12), both the damping force component
α̃i and stiffness force component β̃i are approximate terms. To improve the accuracy of the solutions of the
amplitude–frequency characteristics, the stiffness force component β̃i is first modified using Jacobi elliptic
functions.

Using Eq. (19) and φi � πϕi
/
2K (mi ), Eq. (12b) can be rewritten as follows:

β̃i ≈ ωi

2K (mi )

∫ 4K(mi )
ωi

0
f̂s(i)

(
ẑi , ẑ

′
i

)
cos

(
πψi

2K (mi )

)
dτ. (20)

Substituting the first Fourier series expansion of cn(ψi |mi ) ≈ ci cos
(
πψi

/
2K (mi )

)
into Eq. (20), where

πψi
/
2K (mi ) is the approximate phase of the relative displacement ẑi , the modified stiffness component

becomes

β̃e(i) ≈ 1

2ci K (mi )

∫ 4K (mi )

0
f̂s(i)

(
ẑi , ẑ

′
i

)
cn(ψi |mi )dψi , (21)

where ci � 2π
√
qi
/√

mi K (mi )(1 + qi ) and qi � exp
(−πK (1 − mi )

/
K (mi )

)
.

3.4 Modified damping force component

To improve the accuracy of the damping force components α̃i in Eq. (12a), following a procedure similar to
that described in Sect. 3.3, Eq. (12a) can be expressed as

α̃i ≈ ωi

2K (mi )

∫ 4K(mi )
ωi

0
f̂d(i)

(
ẑi , ẑ

′
i

)
sin

(
πψi

2K (mi )

)
dτ. (22)

Substituting the first Fourier series expansion of sn(ψi |mi )dn(ψi |mi ) ≈ ai sin
(
πψi

/
2K (mi )

)
into Eq.

(22), the modified damping component becomes

α̃e(i) ≈ 1

2ai K (mi )

∫ 4K (mi )

0

(
f̂d(i)

(
ẑi , ẑ

′
i

))
sn(ψi |mi )dn(ψi |mi )dψi , (23)

where ai � π2√qi
/√

mi K 2(mi )(1 + qi ).

3.5 Elliptic harmonic balance method (EHBM)

When the modified stiffness force component given in Eq. (21) and the modified damping force component
given in Eq. (23) are obtained, the HBM given in Eq. (14) can be rewritten as follows

α̃e(i) ≈ F̂e sin(φi ) − �2
i∑

k�1

⎛
⎝μk

N∑
j�k

(
Ẑ j sin

(
φ j − φi

))
⎞
⎠, (24a)

β̃e(i) ≈ F̂e cos(φi ) + �2
i∑

k�1

⎛
⎝μk

N∑
j�k

(
Ẑ j cos

(
φ j − φi

))
⎞
⎠. (24b)

Using Eqs. (14a, b) and (24a, b), the orthogonal relationship of the non-dimensional force components on
ms(i) determined using HB1 and EHBM is shown in Fig. 3, where the stiffness and damping force components
on ms(i) are shown on the horizontal and vertical coordinates, respectively. The phase difference between the
excitation force F̂e, indicated by the green vector in Fig. 3, and the horizontal coordinate is φi . The inertia force
components are indicated by orange vectors; the vector of the inertia force on ms(j) is termed as vector-jth,
where 1 ≤ j ≤ N . The phase difference between vector-jth and the horizontal coordinates is φi − φ j , and the

amplitude of vector-jth is
∑ j

k�1 μk�
2 Ẑ j when 1 ≤ j ≤ i − 1 and

∑i
k�1 μk�

2 Ẑ j when i ≤ j ≤ N . Note
that the phase difference between the vector-ith ( j � i) and horizontal coordinates is π

/
2. The improvement

in EHBM is shown in Fig. 3.
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Fig. 3 Orthogonality relationship of force components on ms(i)

4 Force and displacement transmissibilities

In this section, the force and displacement transmissibilities of the bio-inspired nonlinear vibration isolation
system are solved using HB1 and EHBM, and the results are discussed.

4.1 Amplitude–frequency characteristics

By considering the motion equation provided in Eq. (6), α̃i and β̃i can be obtained from Eqs. (12a, b). The
amplitude–frequency solution obtained using HB1 can be expressed as follows:

−Ẑ i�
(
2ζv(i) + ζn(i) Ẑ

2
i

)
� F̂e sin(φi ) − �2

i∑
k�1

⎛
⎝μk

N∑
j�k

(
Ẑ j sin

(
φ j − φi

))
⎞
⎠, (25a)

�2
i Ẑ i +

3γi Ẑ3
i

4
� F̂e cos(φi ) + �2

i∑
k�1

⎛
⎝μk

N∑
j�k

(
Ẑ j cos

(
φ j − φi

))
⎞
⎠. (25b)

The relative displacement amplitudes and phases were determined for each excitation frequency using
Newtonmethods, which can be simply achieved using theMathematica function,FindRoot [52]. Subsequently,
the amplitude–frequency curve can be plotted.
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Integrating Eqs. (21) and (23), the non-dimensional nonlinear stiffness force f̂s(i) � �2
i Ẑicn(ψi |mi ) + γi(

Ẑicn(ψi |mi )
)3

and the non-dimensional nonlinear damping force f̂d(i) �
(
2ζv(i)+4ζn(i)

(
Ẑicn(ψi |mi )

)2)

(
−Ẑiωi sn(ψi |mi )dn(ψi |mi )

)
, respectively, gives

α̃e(i) ≈ −4Ẑiωi

ai

(
ζv(i)Ra(i) + 2ζn(i) Ẑ

2
i Rb(i)

)
, (26a)

β̃e(i) ≈ 2Ẑi

ci

(
�2

i Rc(i) + γi Ẑ
2
i Rd(i)

)
, (26b)

where,

Ra(i) �
∫ 4K(mi )

0
sn(ψi |mi )

2dn(ψi |mi )
2dψi

/
4K (mi )

�[(1 − mi )K (mi ) + (2mi − 1)E(mi )]
/
3mi K (mi ),

Rb(i) �
∫ 4K(mi )

0
cn(ψi |mi )

2dn(ψi |mi )
2sn(ψi |mi )

2dψi

/
4K (mi )

�[2(m2
i − mi + 1

)
E(mi ) − (

m2
i − 3mi + 2

)
K (mi )

]/
15m2

i K (mi ),

Rc(i) �
∫ 4K (mi )

0
cn(ψi |mi )

2dψi

/
4K (mi )

�((mi − 1)K (mi ) + E(mi ))
/
mi K (mi ),

Rd(i) �
∫ 4K (mi )

0
cn(ψi |mi )

4dψi

/
4K (mi )

�(2(2mi − 1)E(mi ) + (mi − 1)(3mi − 2)K (mi ))
/
3m2

i K (mi ),

E(m) is the complete elliptic integral of the second type.
By substituting Eq. (26a) into Eq. (24a), and combining Eq. (19), the amplitude Ẑi and phase φi of the

steady-state response of the bio-inspired nonlinear vibration isolator, as indicated by Eq. (6) can be numeri-
cally solved using theMathematica function, FindRoot [52]. Subsequently, the amplitude–frequency solutions
obtained by the EHBM can be calculated.

Three-stage and twelve-stage nonlinear vibration isolation systems were chosen as the basic causes of the
bio-inspired multistage vibration isolation system. The values of the related parameters were studied in [22],
and the non-dimensional parameters were given by μ1 � 1, μi � 0.05 (i �� 1), ζv(i) � 0.02, ζh(i) � 0.2,
kv(i)

/
kv(1) � 1, kh(i)

/
kv(1) � 2, l̂ � 0.8, and F̂e � 0.001, where 1 ≤ i ≤ 3, which are used for the three-

stage isolation system, and 1 ≤ i ≤ 12 are used for the twelve-stage isolation system. Both HB1 and EHBM
can calculate the displacement response for each stage. The amplitude–frequency solutions of each stage of
the three-stage nonlinear isolation system are shown in Fig. 4, and for simplicity, the amplitude–frequency
solutions of the 3rd-, 6th-, 9th- and 12th-stage of the twelve-stage nonlinear isolation system are shown in
Fig. 5. The results of the EHBM exhibit better performance than those of HB1 within the peak region.

4.2 Force transmissibility

The force transmissibility of the bio-inspired N-stage nonlinear vibration isolator is given by

|TF | � 20log10

(
F̂N

F̂e

)
, (27)

where the non-dimensional force from ms(N) transmitted to the base by the springs and dampers is given by

f̂t(N )

(
ẑN , ẑ′N

) � 2
(
ζv(N ) + 2ζn(N ) ẑ

2
N

)
ẑ′N + �2

N ẑN + γN ẑ
3
N , (28)
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Fig. 4 Amplitude–frequency curves of a relative displacement between ms(1) and ms(2), b relative displacement between ms(2)
and ms(3), and c displacement of ms(3), of the three-stage nonlinear vibration isolation system when μ1 � 1, μ2 � μ3 � 0.05,
ζ v(i) � 0.02, ζ h(i) � 0.2, kv(i)/kv(1) � 1, kh(i)/kv(1) � 2, where 1≤ i ≤3, l̂ � 0.8, and F̂e � 0.001. Dashed line, HB1; red solid
line, EHBM; filled black dot, numerical results

When the amplitude of the first-order component F̂N is obtained using Eq. (28), the force transmissibility
can be obtained as follows:

|TF | � 1

F̂e

√√√√(−�ẐN

(
2ζv(N ) + ζn(N ) Ẑ2

N

))2
+

(
�2

N Ẑ N +
3γN Ẑ3

N

4

)2

, (29a)

|TF | � 1

F̂e

√√√√
(

−4ωN ẐN

aN

(
ζv(N )Ra(N ) + 2ζn(N ) Ẑ2

N Rb(N )

))2

+

(
2ẐN

cN

(
�2

N Rc(N ) + γN Ẑ2
N Rd(N )

))2

,

(29b)

which are the results obtained by HB1 and EHBM, respectively.
After obtaining the numerical solution to Eq. (5), the force transmissibility can be solved using Eqs. (29a,

b), as shown in Fig. 6. The performance of EHBM was better than that of HB1 compared with the numerical
solutions.
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Fig. 5 Amplitude–frequency curves of the relative displacement between a ms(3) and ms(4), b ms(6) and ms(7), c ms(9) and ms(10),
and d ms(12) and base, of the twelve-stage nonlinear vibration isolation system when μ1 � 1, μi � 0.05 (i ��1), ζ v(i) � 0.02, ζ h(i)

� 0.2, kv(i)/kv(1) � 1, kh(i)/kv(1) � 2, where 1≤ i ≤12, l̂ � 0.8, and F̂e � 0.001. Dashed line, HB1; red solid line, EHBM; filled
black dot, numerical results

4.3 Displacement transmissibility

The solution of Eq. (10) can be assumed as follows: Eq. (11) or Eq. (15). Following a similar procedure to solve
the case of force excitation given in Sect. 3, the amplitude–frequency equations of the bio-inspired N-stage
nonlinear vibration isolation system with base excitation obtained using HB1 are given by

α̃i ≈ �2
i∑

k�1

⎛
⎝μk

⎛
⎝X̂e sin(φi ) −

N∑
j�k

(
Ẑ j sin

(
φ j − φi

))
⎞
⎠
⎞
⎠, (30a)

β̃i ≈ �2
i∑

k�1

⎛
⎝μk

⎛
⎝X̂e cos(φi ) +

N∑
j�k

(
Ẑ j cos

(
φ j − φi

))
⎞
⎠
⎞
⎠, (30b)

where α̃i and β̃i are the same as those in Eqs. (25a, b).
Substituting α̃e(i) and β̃e(i), which are given in Eqs. (26a, b), into Eqs. (30a, b), respectively, the EHBM

results were obtained. The square of the elliptic modulus and Jacobi frequency functions are given by

mi � γi Ẑ2
i

/
2
(
�2

i + γi Ẑ2
i

)
and ω2

i �
(
�2

i + γi Ẑ2
i

)
Ẑi

/
i∑

k�1

(
μk

(
X̂e cos(φi ) +

N∑
j�k

(
Ẑ j cos

(
φ j − φi

))))
,

respectively. Using � � πωi
/
2K (mi ) and Eq. (30a), the amplitude Ẑi and phase φi of
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Fig. 6 Force transmissibility whenμ1 � 1,μi � 0.05 (i �� 1), ζ v(i) � 0.02, ζ h(i) � 0.2, kv(i)/kv(1) � 1, kh(i)/kv(1) � 2, l̂ � 0.8, and
F̂e � 0.001. a Three-stage nonlinear isolation systemwhere 1≤ i≤3, b twelve-stage nonlinear isolation systemwhere 1≤ i≤12.
Dashed line, HB1; red solid line, EHBM; filled black dot, numerical results

the steady-state response when 1 ≤ i ≤ N can be solved using the EHBM. The rel-
ative displacement and absolute displacement transmissibilities can be determined by |Tr | �
∣∣x̂1 − x̂e

∣∣/X̂e �
∣∣∣∣
N∑
i�1

ẑi

∣∣∣∣
/

X̂e �
√(

N∑
i�1

Ẑi sin(φi )

)2

+

(
N∑
i�1

Ẑi cos(φi )

)2/
X̂e and |Td |�

∣∣x̂1
∣∣/X̂e �

∣∣∣∣
N∑
i�1

ẑi + x̂e

∣∣∣∣
/

X̂e�
√(

N∑
i�1

Ẑi sin(φi )

)2

+

(
N∑
i�1

Ẑi cos(φi ) + X̂e

)2/
X̂e, respectively. The relative displace-

ment and absolute displacement transmissibilities of the three-stage and twelve-stage nonlinear vibration
isolation systems are shown in Fig. 7. EHBM improved the accuracy of the displacement transmissibility
solutions within the resonance regimes.

5 Conclusions

In this study, an elliptic harmonic balance method (EHBM) was used to analyse the isolation performance of a
bio-inspired multistage vibration isolator. The bio-inspired isolator has both geometric stiffness and damping
nonlinearities, which are incorporated in each stage of the configuration by imitating the structure of a bird
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Fig. 7 a, c Relative displacement transmissibility, and b, d absolute displacement transmissibility for (a) and (b) three-stage
geometrically nonlinear isolation system with 1≤ i ≤3 and X̂e � 0.08, and c, d twelve-stage geometrically nonlinear isolation
system with 1≤ i ≤12 and X̂e � 0.12, when μ1 � 1, μi � 0.05 (i �� 1), ζ v(i) � 0.02, ζ h(i) � 0.2, kv(i)/kv(1) � 1, kh(i)/kv(1) � 2,
and l̂ � 0.8. Dashed line, HB1; red solid line, EHBM; black filled dot, numerical results

neck and the space-gazing stability of a bird head. The equation of motion and the analysis of the dynamic force
equilibrium of each stage were conducted in the steady-state. Using the relationship between the excitation
frequency and the Jacobi elliptic frequency and modulus, EHBM can improve the accuracy of the stiffness and
damping force components, which are obtained using the first-order harmonic balance method (HB1). The
force components at each stage are presented in an orthogonal vector plot. Using the EHBM andHB1, the force
and displacement transmissibilities of a three-stage and twelve-stage nonlinear isolation system are obtained
and comparedwith the numerical solutions.With the same form and number of balancing equations asHB1, the
EHBM can reduce the truncation error induced by neglecting the high-order harmonic components and obtain
better results for the amplitude–frequency response and transmissibility than that of the HB1. Furthermore,
nonlinear systems with polynomial-type nonlinearities can be analysed using the proposed procedure.
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