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Abstract We investigate themodel of controlledmotion of a pendulum-actuated spherical robot on a horizontal
plane, taking rolling resistance into account. We derive equations of motion and obtain partial steady-state
solutions. We present algorithms for designing elementary maneuvers (gaits) which ensure transition between
two steady motions of the system. These gaits correspond to the acceleration along a straight line and to the
turn through a given angle.

Keywords Spherical robot · Control · Nonholonomic constraint · Rolling resistance · Gait · Steady-state
solutions

1 Introduction

This paper investigates one of the modifications of the spherical robot moving by displacing its center of mass,
a robot of pendulum type which is a spherical shell with an axisymmetric spherical pendulum fastened at its
center.

Spherical robots are mobile robotic systems with enhanced performance: the spherical shell is completely
symmetric and cannot fall or topple over, but the system can autonomously move in space. The internal
structure by means of which the spherical robot moves in space can be totally enclosed to protect the internal
electromechanical systems against adverse environmental conditions.

In addition, the spherical robot (as a system with rolling) is an interesting system for modeling and testing
of various motion models. Different internal mechanisms can be used. A detailed overview of existing internal
structures of spherical robots and the history of development of this area of robotics can be found in the
dissertation by Ylikorpi [1] and in Refs. [2–9].

The dynamics of a spherical robot of pendulum type has been investigated previously in Refs. [10–16].
The authors obtained steady-state solutions of free motion on horizontal and inclined planes and analyzed their
stability. For the case of controlled motion, explicit algorithms for the control of motion along a prescribed
trajectory, including those with feedback, were obtained and elementary maneuvers involved in controlling
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(a) (b)

Fig. 1 aA schematic model of a spherical robot with an axisymmetric pendulum drive, b a prototype of the spherical robot which
was developed at the Laboratory of nonlinear analysis and new types of vehicles (Udmurt State University)

gaits were presented which allow acceleration (deceleration) during straight-line motion and enable rotation
through a given angle.

The motion planning problem for a spherical robot driven by a pendulum with two degrees of freedom is
considered in Ref. [17]. The proposed algorithm constructs a path consisting of straight-line segments, and
then the movement along each segment is designed based on the dynamic model of the robot.

In Refs. [10–16] it was assumed that the spherical shell rolls without slipping (subject to the nonholonomic
constraint) and that there is no dissipation. In this case, the system without control has additional linear
integrals of motion and an invariant measure (see also [18,19]) and is integrable. But, as is well known, such
an approximation corresponds to a point contact, which is not the case in a natural experiment.

The influence of friction during rolling arising on the contact area is a complicated problem which is yet
to be solved. To date, multiparameter friction models [20–24], based on Contensou’s model [25], have been
developed and used in some systems with rolling. But these models, on the one hand, require considerable
computational costs, on the other hand, they are not always in agreement with experiment (see [26–28] and
references therein). In addition, such systems should consider the possibility of transition between rolling and
slipping [29]. The reader is also referred to [30–32], where the authors introduce a precession nonlinear model
of the controlled motion of a pendulum-driven ball robot along a straight line.

In this paper, we explore the dynamics of a pendulum-driven spherical robot, taking into account the linear
model of viscous rolling friction [33–35]. According to this model, the spherical robot is acted upon by the
torque of rolling resistance which is proportional to the angular velocity of the spherical shell of the system.
The model is relatively simple; nevertheless, there are experimental studies [36–38,42] which confirm the
adequacy of the friction model with very good accuracy.

We present equations of motion which describe the rolling of a spherical robot on a horizontal plane,
taking the torque of rolling resistance into account. In this work, we find steady-state solutions which represent
motions with constant velocity along a straight line. In this case, the pendulum is deflected through a constant
angle from the vertical axis under constant control action. In what follows, using the motion model under
consideration, we propose an algorithm for designing elementary maneuvers which ensures transition between
two steady motions of the system.

2 Equations of motion of a pendulum-driven spherical robot on a horizontal plane with rolling
resistance present

The spherical robot is a spherical shell of radius Ro (Fig. 1) at whose center an axisymmetric 3-DOF pendulum
(Lagrange’s top) is fastened. In what follows, wewill refer to the pendulum as a top. The system is set in motion
by forced oscillations of the pendulum. In this paper, we address a model problem in which it is assumed that
the device actuating the pendulum generates control torque Q, applied at the point C of attachment of the
pendulum.

To describe the dynamics of the spherical robot, we define a fixed (inertial) coordinate system Oxyz with
unit vectors e1, e2, e3 in such a way that the plane Oxy coincides with the surface on which the spherical robot
rolls. The axis Oz is directed vertically downwards (Fig. 1).

Here and below the vectors and the matrices are denoted in boldface font. The vectors projected onto units
vectors e1, e2, e3. The normal vector to the surface of rolling is denoted as γ = (0, 0, −1).
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The position and configuration of the system are completely defined by the coordinates of the center of the
sphere, r = (x, y,−Ro) ∈ R

2, and by two orthogonal matrices of rotation of the shell, Ss ∈ SO(3), and the
top, St ∈ SO(3), relative to the fixed coordinate system.

The kinetic energy of the system has the form [10,15]

T = 1

2
MV 2 + 1

2
(�, I�) + 1

2
mv2 + 1

2
(ω, i0 ω), (1)

where M , I = IE are the mass and the central tensor of inertia of the shell, E is the identity matrix, m, i0 =
diag(i, i, i + j) are the mass and the central tensor of inertia of the top, V = (ẋ, ẏ, 0) and � = (�x , �y, �z)
are the velocity of the center of mass and the angular velocity of the shell, and v and ω are the velocity of the
center of mass and the angular velocity of the pendulum, respectively.

The change in the angularmomentum relative to the center of the spherical shell and in the linearmomentum
of the shell can be written as

I �̇ = RoNo × γ − Q + M f ,

M V̇ = No + N t + M g,
(2)

where No, N t are the reaction forces acting on the shell at the contact point P and at the point of attachment
of the top C , respectively, M f is the torque of rolling resistance acting on the shell from the plane, Q is the
control torque, and g = (0, 0, g) is the vector of free-fall acceleration.

We will assume that the torque of rolling resistance is proportional to the horizontal component of the
angular velocity of the shell and has the form

M f = −μγ × (� × γ), (3)

where μ is the constant coefficient. The choice of this model of viscous resistance is motivated by the results
of investigating the model problems of rigid bodies rolling on horizontal surfaces, such as a tippe top, a Celtic
stone, disks, which allowed, in addition to experimental validation, a qualitatively explanation of the complex
dynamic phenomena accompanying their motion: inversion, turn, retrograde motion [39–42]. In this paper, we
neglect the spinning resistance, because the spinning resistance is negligibly small in the case of point contact

The equations of motion for the top relative to its center of mass have the form

d

dt
(iω + j (ω, n)n) = Rtn × N t + Q,

mv̇ = mg − N t ,

(4)

where n is the vector directed along the symmetry axis of the pendulum, and Rt is the distance from the center
of the spherical shell to the center of mass of the pendulum (see Fig. 1).

The velocity of the center of mass of the top is defined from the condition that the velocities of the center of
the shell and the suspension point of the pendulum be the same, which is expressed by a (holonomic) constraint
of the form

v = V + Rtω × n. (5)

The velocity of the center of the shell, V , is related to the angular velocity of the shell, �, by the condition
that there be no slipping at the contact point P:

V = Ro� × γ, (6)

Eliminating the reaction forces No, N t from (2) and (4) taking (3), (5) and (6) into account, and adding
an evolution equation for the vector n, we obtain a reduced system of equations for the controlled motion on
a horizontal plane of a spherical shell with an axisymmetric top fastened at the geometric center of the shell:

J�̇ + mRoRtγ × (ω̇ × n)
= −mRoRtγ × (ω × ṅ) − Q − μγ × (� × γ),

i0ω̇ + j0(ω̇ · n)n + mRoRtn × (�̇ × γ)
= mRtn × g − j0(ω · n)ω × n + Q,
ṅ = ω × n,

(7)

where J = diag(I0, I0, I ), I0 = I + (M + m)R2
o, i0 = i + mR2

t , j0 = j − mR2
t .

To completely describe the system dynamics in absolute space, we need to supplement Eqs. (6) and (7)
with kinematic relations for matrices Ss and St .
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Fig. 2 Definition of the angles θ and ϕ

3 Steady-state solutions

To find steady-state solutions to the system of interest, we equate the derivatives �̇, ω̇, ṅ in (7) to zero and
obtain the system of equations

Q + μγ × (� × γ) = 0,
mRtn × g + Q = 0,
ω × n = 0.

(8)

This yields the following statement.

Proposition 1 The system (7) admits the family of steady-state solutions

� = mRt

μ
n × g + �γ γ,

ω = ωnn,
n = (sin θ cosϕ, sin θ sin ϕ, cos θ) ,

(9)

where �γ , ωn, θ, ϕ are the parameters of the family, with the control action

Q = −mRtn × g, (10)

The statement is easy to prove using an explicit solution to the system (8).
The parameters ωn and �γ define the angular velocity of rotation of the pendulum about its symmetry axis

and of the spherical shell about the normal to the plane, respectively. The angles θ and ϕ completely define
the position of the pendulum in space: θ is the angle of deflection of the pendulum from the vertical and ϕ is
the angle between the axis Ox and the plane of the pendulum’s oscillation (Fig. 2).

The system admits two types of motion corresponding to steady-state solutions: motions of a robot in a
straight line with constant velocity such that the pendulum is tilted at a constant (arbitrary) angle relative to
the vertical, and the rotation of the spherical robot through a given angle ψ about the vertical by rotating the
pendulum about its symmetry axis with angular velocity ωn .

Corresponding to the solutions (9) is the motion of the center of mass along a straight line in the direction
defined by the angle ϕ, with constant angular velocity of the shell, �, and with constant velocity of the center
of mass of the system

|V | = mgRoRt sin θ

μ
. (11)

It follows from (11) that the velocity of motion with the solutions (9) is bounded

|V | � mgRoRt

μ
. (12)

The stability analysis of the partial solution (9) is an open question, which we will not consider in this
paper.



Control of a pendulum-actuated spherical robot 141

4 Control using gaits

In this section, we consider control using gaits. We define a gait as elementary controlled motion of a system
(acceleration or rotation through a given angle) which ensures transition from one steady motion (9) to another
in a given time interval T .

Let us formulate the problem of the controlled motion of a spherical robot using gaits as follows.
Let the initial and final states of the system (7) correspond to the steady-state solutions (9)with the following

parameter values:

t = 0 : �γ = �(1)
γ , ωn = ω(1)

n , θ = θ1, ϕ = ϕ1, (13)

t = T : �γ = �(2)
γ , ωn = ω(2)

n , θ = θ2, ϕ = ϕ2. (14)

Can a control action Q(t) be chosen so as to ensure transition between given steady-state solutions in the
time interval T ?

This problem can also be formulated in the form of a boundary-value problem for a system of differential
equations.

To do this, we first add up the first two equations of (7), thereby eliminating the control Q from the system.
We obtain a system of six differential first-order equations in the variables n, �, ω. Supplementing these
equations with boundary conditions which follow from (9), (13) and (14), we obtain

J�̇ + mRoRt
(
γ × (ω̇ × n) + n × (�̇ × γ)

)

+i0ω̇ + j0(ω̇ · n)n = mRtn × g − μγ × (� × γ)

− j0(ω · n)ω × n − mRoRt
(
(ω · n)γ × ω − ω2γ × n)

)
,

ṅ = ω × n,

(15)

n(0) = n1, ω(0) = ω
(1)
n n1, �(0) = mRt

μ
n1 × g + �

(1)
γ γ, (16)

n(T ) = n2, ω(T ) = ω
(2)
n n2, �(T ) = mRt

μ
n2 × g + �

(2)
γ γ, (17)

where n1 = n(θ1, ϕ1), n2 = n(θ2, ϕ2).

Remark 1 Equations (15) have a redundant number of unknown functions (nine in six equations). Therefore, in
solving the posed boundary-value problemwe can define some three functions in the form of explicit functions
of time in such a way that equations (15) and the boundary conditions (16), (17) are satisfied.

4.1 The algorithm of gaits design

In this section we solve the posed boundary-value problem and consider the algorithm of gaits design.
Step 1. Define the vectors n(t), ω(t) in the form of explicit functions of time depending on the parameters and
satisfying the equation for ṅ (15) with the corresponding boundary conditions (16), (17). In the general case,
this can be done by defining three functions θ(t), ϕ(t), ωn(t) which satisfy the following conditions:

θ(0) = θ1, θ̇ (0) = 0, ϕ(0) = ϕ1, ϕ̇(0) = 0, ωn(0) = ω(1)
n ,

θ(T ) = θ2, θ̇ (T ) = 0, ϕ(T ) = ϕ2, ϕ̇(T ) = 0, ωn(T ) = ω(2)
n .

(18)

In this case, the vectors n and ω will depend on these functions as follows:

n(t) = (
sin θ(t) cosϕ(t), sin θ(t) sin ϕ(t), cos θ(t)

)
,

ω(t) = n(t) × ṅ(t) + ωn(t)n(t).
(19)

Remark 2 The boundary conditions for the derivatives θ̇ (t) and ϕ̇(t) follow from the boundary conditions for
the angular velocities ω and the equation for ṅ (15).
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In this paper, we choose the functions θ(t), ϕ(t) and ωn(t) in the form

θ(t, α, T ) = α sin2
(

π t

T

)
+ (θ2 − θ1) sin

2
(

π t

2T

)
+ θ1,

ϕ(t) = (ϕ2 − ϕ1) sin
2
(

π t

2T

)
+ ϕ1,

ωn(t) = ωn = const.

(20)

where α is a still unknown parameter defining the oscillation amplitude of the top, T is the time of one
maneuver, and the angles θ1, θ2, ϕ1, ϕ2 are the parameter values of the steady-state solutions (13), (14) at the
initial and final times.

The choice of the form of the functions θ(t) and ϕ(t) is based on the analysis of the possibility of technical
implementation and their maximal simplicity. In the general case, such gaits can be formed using arbitrary
functions satisfying condition 18. As a justification of the choice of a specific form of functions one can
formulate various optimality criteria, however, these investigations are beyond the scope of this paper due to
their complexity.

Remark 3 It follows from (19) that for given n2 the parameters θ2 and ϕ2 are defined up to the change of
variables

1. θ → −θ, ϕ → ϕ + (2k + 1)π, k ∈ Z,
2. θ → θ + 2πn, ϕ → ϕ + 2πk, n, k ∈ Z.

(21)

It also follows from (20) that different values of n and k correspond to different dependences n(t) under the
same boundary conditions (16), (17), i.e., by changing the values of n and k one can perform a countable
number of maneuvers enabling transition between the same steady-state solutions.

Remark 4 The functions (20) generalize the control used to accelerate the spherical robot along a straight line
in a nonholonomic setting (without dissipation, μ = 0) [13]. We recall that a stable steady-state solution in
the absence of rolling resistance is rolling motion along a straight line with constant velocity, in which case
the pendulum is in the lower position and can rotate about its symmetry axis with constant velocity ωn .

Step 2. Substitute (19) and (20) into the first equation of (15).We obtain a nonautonomous system of differential
first-order equations for defining the angular velocity of the shell:

�̇ = f (�, t), (22)

where f is a function linear in �.

Integrating the system (22) with the initial conditions (16) gives the function �
(
t, α, θ2, ϕ2, ωn, �

(2)
γ

)
.

We require that at the final time t = T the angular velocity �(t = T ) satisfies the boundary condition (17),
i.e.,

�
(
T, α, θ2, ϕ2, ωn, �

(2)
γ

)
= mRt

μ
n2(α, θ2, ϕ2) × g + �(2)

γ γ. (23)

Solving Eq. (23) for the control parameters α, ωn and/or part of the boundary conditions θ2, ϕ2,�
(2)
γ , we

obtain an explicit form of control (20).
As we will see below, particular gaits will require that only part of the boundary conditions (16), (17)

be satisfied, and the solution to the system (23) will reduce to solving one or two equations relative to the
projections of the angular velocity � onto the axes of the coordinate system Oxyz.
Step 3. Substitute the control parameters thus found into Eq. (22) and integrate it. Use the resulting function
�(t) to define the control torques Q(t) from (7) in explicit form.
Step 4. To construct the trajectory of motion, it is necessary to substitute the function �(t) into Eq. (6) and to
integrate it with initial conditions corresponding to the position of the center of the shell of the spherical robot
at the initial time (for example, x(0) = 0, y(0) = 0).

We consider the above algorithm for two gaits: acceleration of the ball to a given velocity in the case of
motion along a straight line and rotation through a given angle.
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4.2 Acceleration along a straight line

Let us define the control Q(t) which causes the center of mass of the spherical robot to accelerate from some
(physically realizable) velocity V1 to velocity V2 in a given time T and to move without changing its direction,
for example, along the axis Ox . Assume that the pendulum does not rotate about its symmetry axis.

The values of the parameters of the functions (20) corresponding to the gait considered have the form

sin θ1 = μV1
mgRoRt

, sin θ2 = μV2
mgRoRt

,

ωn = 0, ϕ1 = 0, ϕ2 = 0.
(24)

We note that the first equation of (15), taking into account (19) and (20) with parameters (24), admits an
invariant manifold given by

�x = 0, �z = const. (25)

This manifold corresponds to rolling of the spherical shell along the axis Ox with variable angular velocity.
On the manifold (25) the boundary conditions (16), (17) for �z take the form �z(0) = �z(T ) = �

(1)
γ =

�
(2)
γ = const. For simplicity we will assume that this constant is zero.
Thus, on the invariant manifold (25) the boundary-value problem (15) reduces to one differential first-order

equation for the projection�y of the angular velocity of the shell onto the axis Oy with the following boundary
conditions:

�̇y = −μ�y + i0θ̈ + mRoRt (θ̇
2 sin θ − θ̈ cos θ) + mgRt sin θ

I0 − mRoRt cos θ
,

�y(0) = − V1
Ro

, �y(T ) = − V2
Ro

,

(26)

where θ , θ̇ , θ̈ are explicit functions of time and parameters α and T (20) and depend on V2, see (24).
To solve the boundary-value problem (26), we integrate the resulting differential equation with the initial

condition �y(0) and plot a curve of the final angular velocity �y(T ) as a function of α. The intersection of
this curve with the straight line −V2/Ro corresponds to the value of α at which the boundary conditions of the
problem (26) are satisfied.

As an example, Fig. 3 shows graphs of the function�y(T ) (26) versus α, which correspond to acceleration
of the spherical robot from rest (θ1 = 0) to velocity V2 = 0.72 m/s (θ2 = 0.258 rad) in the time intervals
T = 1 s and T = 2 s, with the friction coefficient μ = 0.001 kg ·m2/s.

The simulationwas performed using the followingmass-geometric parameters corresponding to the param-
eters of the full-scale specimen (see Fig. 1b), with the mass expressed in kg, the distance in m and the moment
of inertia in kg·m2:

m = 0.32, M = 0.06, Ro = 0.06, Rt = 0.015,

i = j = 0.2244 · 10−3, I = 0.144 · 10−3.
(27)

In this example, during the gait the projection �y of the angular velocity onto the axis Oy of the shell
decreases from zero to the value−V2/Ro = −12 rad/s. The intersection of the function�y(T )with the straight
line −V2/Ro for T = 2 s corresponds to the value α0 = 0.34 rad (see Fig. 3b).

Next, following the algorithm described above, we substitute the value α = α0 into Eq. (26) and integrate
it. The resulting function �y(t) can now be used to define the control torques Q = (Qx , Qy, Qz) from (7):

Qx = 0,

Qy = mRoRt cos θ
(
μ�y(t) + mRoRt (θ̇

2 sin θ − θ̈ cos θ)
)

I0 − mRoRt cos θ

+ I0(i0θ̈ + mgRt sin θ)

I0 − mRoRt cos θ
,

Qz = 0.

(28)

The graphs of the angle θ , velocity V , control Qy and the angular velocity of the pendulum, ωy , versus
time for the example considered are shown in Fig. 4. It can be seen that during the gait the velocity of the



144 T. B. Ivanova et al.

(a) (b)

Fig. 3 aGraphs of the function�y(T ) (26) of α for different values of T and equal other parameters (27). bAn enlarged fragment
of a, α0 = 0.34 rad—the value of α which satisfies the boundary-value problem (26) for T = 2 s

(a) (b)

(c) (d)

Fig. 4 Graphs of the angle θ , velocity V , control Qy , the projection ωy of the angular velocity of the pendulum onto the axis Oy,
plotted versus time, in the case of acceleration from rest to velocity V2 = 0.72 m/s during one gait for α0 = 0.34 rad

(a) (b)

Fig. 5 Velocity V and control Qy , plotted versus time, in the case of acceleration from rest to velocity V2 = 0.72 m/s during one
gait for α0 = 3.73 rad

center of the spherical shell, V , increases monotonically, and the projection of the angular velocity at the final
time instant takes values corresponding to the steady-state solutions (9).

Remark 5 Figure 3 shows that in the example considered the equation �y(T ) = −V2/Ro has two roots. For
the second root α0 = 3.73 rad the velocity V during a gait changes nonmonotonically (see Fig. 5).

If there are several roots, then the choice of one of them which will be used in the future to develop
a maneuver can be made based on the technical limitations of the torque and angular velocity of the drive
motors.
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Fig. 6 Trajectory of the contact point of the spherical robot rotating through the angle ψ = π/3 in the time interval T = 2 s

4.3 Motion with changing direction

Consider a gait used to turn the spherical robot through a given angle.
Let the spherical robot move at an initial time instant (in accordance with the steady-state solution (9))

along the axis Ox with constant velocity V1. As before, we assume that during the maneuver the pendulum
does not rotate about its symmetry axis. In addition, at the initial time instant the shell of the spherical robot
does not rotate about the vertical axis.

Thus, we define part of the parameters (18) of the pendulum’s motion and choose initial conditions for the
angular velocity of the shell

ϕ1 = 0, sin θ1 = μV1
mgRt

, ωn = 0, (29)

�x (0) = 0, �y(0) = −V1/Ro, �z(0) = 0. (30)

Let us require that, as a result of the maneuver, the spherical robot turn through a given angle ψ and move
along a straight line in the direction of the vector

τ = (cosψ, sinψ, 0) (31)

in accordance with the steady-state solution (7). This requirement imposes a restriction on the final position
of the pendulum: ϕ2 = ψ, and defines the boundary conditions for the angular velocity of the shell at the end
of the maneuver

�x (T ) − mgRt

μ
sin θ2 sinψ = 0,

�y(T ) + mgRt

μ
sin θ2 cosψ = 0,

(32)

where θ2 is a still undefined parameter of the maneuver which defines the final position of the pendulum and
the velocity of the spherical robot.

Remark 6 In this case, we impose no restriction on the angular velocity of rotation of the shell about the
vertical at the end of the maneuver �z(T ). This is due to the fact that, at any value of �z(T ), the final motion
will be the steady-state solution (7).

In accordance with the above algorithm, we solve the problem (22) with the boundary conditions (30), (32).
For this we substitute the solution of the system (22) for �x , �y with the initial condition (30) into conditions
(32). We obtain a system of two equations in the parameters of the maneuver, α and θ2. Solving this system
numerically, we obtain parameter values at which the required maneuver can be performed.

Figure 6 gives an example of the trajectory of the contact point of the spherical robot with parameters (27)
for rotation through the angle ψ = π/3 in the time interval T = 2. The robot rolls with the initial velocity
V1 = 0.12 m/s and the friction coefficient μ = 0.001 kg·m2/s. The corresponding graphs of controls Q(t) are
shown in Fig. 7. The parameters of the maneuver are θ2 = −0.025 rad, α = −0.076.

Interestingly, in the above example, θ2 < 0. Consequently, after the maneuver the spherical robot moves
along a straight line turned through the angle ψ = π/3 relative to the axis Ox , but in the direction opposite to
the vector τ (see Fig. 6). This is due to the fact that the functions θ(t) and ϕ(t) are defined up to the change
of variables (21), see Remark 3.

We also note that the system of Eq. (32) can have several roots (θ2, α). If θ2 > 0, then the trajectory of the
contact point of the spherical robot at the end of the maneuver is directed along the vector τ .
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Fig. 7 Graphs showing the projections of the vector of controls Q versus time for rotation through the angle ψ = π/3 in the
time interval T = 2 s

(a) (b)

Fig. 8 a Trajectory of the contact point of the spherical robot and b the corresponding vertical projection of the angular velocity
for rotation in the time interval T = 2 through the angle ψ = 7π/3

(a) (b)

Fig. 9 (a) Trajectory of the contact point of the spherical robot and (b) the corresponding vertical projection of the angular velocity
for rotation in the time interval T = 2 through the angle ψ = −2π/3

As an illustration of this statement, we give two more examples. In the first case, for the value ψ = 7π/3
we have θ2 = 0.018 > 0 (see Fig. 8), and at the end of the maneuver, the spherical robot moves along the
vector τ . In the second case, for the value ψ = −2π/3, we have θ2 = −0.024 < 0 (see Fig. 9), and at the end
of the maneuver, the spherical robot moves in a direction similar to that of the first case, but opposite to the
vector τ (31).

Remark 7 During the gait the vertical projection of the angular velocity changes nonmonotonically, and at
time t = T it takes a nonzero value (see Figs. 8b, 9b). Thus, the rotation is accompanied by changes in the
velocity of spinning of the shell of the spherical robot about the vertical axis.

4.4 Discussion

In this section we discuss the question of the necessity of incorporating friction into models describing the
controlled motion of systems with rolling.

In Ref. [13], the controlled motion of a pendulum-driven spherical robot in a nonholonomic setting without
dissipation was considered. Algorithms for calculating the control actions required to perform various gaits,
including acceleration and rotation through a given angle, were developed. The trajectory of the spherical robot
obtained according to this algorithm for rotation through the angleψ = π/3 with the initial velocity of motion
V1 = 0.4 m/s is shown in Fig. 10a (solid line). We denote the corresponding control by Qnh .

If one uses the control Qnh for maneuvering using the model with friction, then the result of the maneuver
does obviously not coincide with the planned result. For example, the dotted line in Fig. 10a indicates the
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(a) (b)

Fig. 10 a Trajectory of motion of the contact point of the spherical robot during rotation through the angle ψ = π/3 in the time
interval T = 2 in the nonholonomic model [11] (solid line, μ = 0), and with the same control (Qnh) on a “rough” surface (dotted
line). b The angle of rotation versus the friction coefficient during motion with a control corresponding to the nonholonomic
model on a “rough” surface (with friction). For μ = 0, the angle of rotation is ψ = π/3

trajectory of the spherical robot obtained using the model with rolling friction (7) and with model control Qnh .
The figure shows that the direction of rotation at the end of the gait does not correspond to the planned direction.
Moreover, in an environment with friction, the spherical robot stops predictably after control is turned off.

To estimate the influence of the friction coefficient on the angle of rotation, we present a graph (see Fig.
10b) of the angle ϕ(T ) at which the spherical robot moves after the gait Qnh versus the friction coefficient.
It can be seen that, as the value of μ increases, the deviation of the trajectory from the required direction
ψ = π/3 increases.

As the friction coefficient μ∗ exceeds some critical value, the direction of motion after the maneuver
becomes constant. Such a dependence is due to the fact that at large friction coefficients the initial velocity of
the spherical robot (in the direction of the axis Ox) decays in a time interval smaller than the duration of the
maneuver. As a result, the final direction of motion is influenced only by the direction in which the pendulum
is deflected with control Qnh . In the chosen example, this direction coincides with the axis Oy, and hence
ϕ(T ) takes the value π/2.

Thus, even at small values of the friction coefficient, control using the nonholonomic model can lead to
fairly large errors in the final position or in the direction of motion. As the friction coefficient exceeds a critical
value, control using nonholonomic gaits is impossible in principle.

5 Experimental validation of the model

To test the proposed algorithm for controlling the spherical robot and to estimate the chosen friction model,
experimental investigations for the prototype (see Fig. 1b) described above have been conducted. In the course
of the experiments, the velocity and the trajectory of the spherical robot were recovered using a marker-based
motion capture system Vicon. The prototype is a transparent spherical shell inside which a one-degree-of
freedom pendulum is placed belowwhich a rotor is mounted. In practice, this design allows the implementation
of only one maneuver, which is described in Sect. 4.2, namely, the motion along a straight line. The transparent
shell of the prototype of the spherical robot makes it possible to place inside the robot markers of the motion
capture system for recovering the motion parameters.

The shell of the spherical robot is made of PET material, and acrylic sheet was used as the underlying
surface. The value of the coefficient of viscous rolling friction for this pair of materials was μ = 0.002, and
was defined using the method tested to describe the free motion of spherical bodies [38,42]. In the course of the
experiments the spherical robot moving from rest along a straight line on a horizontal plane was to accelerate
up to 0.25 m/s for time T = 2 s.

For the the initial conditions, the parameters of the function θ(t) are defined by the solution toEq. (23) taking
the mass and geometric parameters of the spherical robot (27). For implementation of the above-mentioned
maneuver, the functions defining the maneuver have the following form:

θ(t) = 0.1182 sin2
(

π t

2

)
+ 0.178 sin2

(
π t

4

)
,

ϕ(t) = 0, ωn(t) = 0.
(33)
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(a) (b)

Fig. 11 a Trajectories of motion of the spherical robot for control action (33) in experiment (solid line) and simulation (dotted
line). b The velocities of spherical robots obtained from experimental data (solid line) and in simulations(dotted line)

In the experiments, the angle of rotation of the pendulum about the vertical was specified and maintained
by the robot control system using the function (33).

Figure 11 shows trajectories and the corresponding velocities of the spherical robot performing this maneu-
ver. The solid lines are the graphs obtained in the experiments, and the dotted lines indicate the simulation
results. A video of the experiment can be found at https://youtu.be/yq30Ksm-pr0.

The deviations of the trajectory and the velocity of the spherical robot performing a maneuver in the
experiments from the simulation results are due to nonideality of the geometry and measurement errors of the
mass and inertia parameters of the prototype. But even despite this fact, the results of the experiment are in
good quantitative agreement with the simulation results within the framework of the model of viscous rolling
resistance.

6 Conclusion

In this paper, the model of the controlled motion of a spherical robot with an axisymmetric pendulum drive is
considered taking rolling resistance into account.

It is shown that the system admits steady-state solutions only under constant control action, and the
center of mass of the system moves uniformly along a straight line. Much of the focus of the paper is on
designing elementary maneuvers (gaits) which ensure transition between two steady-state motions of the
system: acceleration along a straight line and rotation through a given angle. These gaits can serve as a basis
for designing algorithms for controlled motion along an arbitrary trajectory. Themore general motion planning
problem for driving a spherical robot from an initial to the desired configuration can be considered as a task
for representing the trajectory of motion as a sequence of sections of straight lines and rotations between them.
Then the proposed algorithm can be implemented.

The steady-state solutions obtained can be used in the future to construct models of the controlled motion
of a spherical robot with feedback [14,43–46]. The question of the stability of partial solutions (9) of the
system considered remains also open.

The results of the experimental investigations confirm the adequacy of the proposed model of viscous
rolling resistance and the possibility of using it to form control actions for the spherical robot. It would also
be of interest to perform an experimental validation of the motion model used for more complicated controls.
The proposed model of viscous rolling resistance can be easily implemented both for describing the rolling
dynamics of free bodies and for developing of control for actuated rolling robots. But this model cannot
be implemented when sliding arises. If sliding is difficult to eliminate, then other friction models should be
investigated and applied.

We note that in this paper we have analyzed motion and defined control relative to a fixed coordinate
system. On the other hand, controlled motion is in practice often implemented using a control action defined
relative to the shell of the spherical robot (see, e.g., [7,36,44]). Generalization of the results obtained to the
case of this (more realistic) model of a controlled spherical robot is also an open problem.
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