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Abstract Structures that are difficult to maintain and access need to have an efficient and robust process
for continuous monitoring. Such monitoring through damage detection and identification studies is present
in several engineering applications as it allows that corrective measures be applied in order to guarantee the
structural safety of a given structure, machine or equipment. In particular, laminated composite materials,
often used in aeronautical structures, have a complex failure mechanism where delamination or cracks in these
materials are often not visible on the surface. Thus, the use of optimization methods for the characterization of
damages in these materials becomes relevant. In this study, both the metaheuristic sunflower optimization, the
artificial neural networks and the response surface method were used to solve an inverse crack identification
problem. The crack was modeled as a thin elliptical hole in a rectangular laminated plate numerically modeled
using the finite element method. As a result of the methods used, different approaches to the problem were
obtained that present reliable shape, size and position identification of a crack sized between 3 and 30 mm.
The results showed substantial and promising results in the uses of both metaheuristic techniques and artificial
neural networks. However, neural networks have a certain competitive advantage over optimization techniques
as long as the data that feeds the model present a certain level of quantity and quality. Results obtained were
able to identify all damage parameters (location, extension and orientation), with errors less than 1%.

Keywords Damage detection · Structural health monitoring · Optimization · Artificial neural network ·
Cracks

List of symbols

K Stiffness matrix
ω j jth natural frequency of interest
M Mass matrix
φ(i, j) Modal shift of the ith node in the jth mode of interest
φ̂(i, j) Modal shift of the ith node in the jth normalized mode of interest
Qi Amount of heat received by the ith plant
P Source power
ri Distance between the sun and the ith plant
�si Plant direction toward the sun
X* Best individual parameter vector
Xi Parameter vector of the ith plant
di Step of the ith plant
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λ Constant value that defines an “inertial” displacement of the plants
Pi Probability of reproduction of the ith plant
Xmax Upper limit of the parameter vector
Xmin Lower limit of the parameter vector
Npop Number of plants
�X(i, j) ITh plant in the jth generation
vk K Neuron linear combination factor
wk j Synapse weight between k and j neurons
φ Activation function
bk Neuron k trend
Yi ITh response predicted by the artificial neural network
Ŷi ITh response expected by the artificial neural network
γ Regularization factor
Ex Young’s modulus in the x direction
Ey Young’s modulus in the y direction
νxy Poisson’s ratio in the xy plane
Gxy Shear modulus in the xy plane
xo Position of the center of the ellipse at x
yo Y Ellipse center position
a Larger radius of the ellipse
b Minor radius of the ellipse
θ Inclination angle of the ellipse’s largest radius in relation to the x axis
fi Ith natural frequency of interest (in Hz)
t Parameter independent of the parametric equation of the ellipse
xe X rectangular enclosure size
ye Y rectangular enclosure size
φh(i, j) Modal shift of the ith plate node without damage in the jth mode
φd(i, j) Modal shift of the ith node of the damaged plate in the jth mode
�φ̂(i, j) Difference between modal shift of the ith node of the real structure in the jth mode of interest and

the undamaged structure
�φ(i, j) Difference between modal shift of the ith node in the jth mode
φh(i,j) Modal shift of the ith plate node without damage in the jth mode
φd(i, j) Modal shift of the ith plate node with damage to the jth mode of interest
J Objective function

1 Introduction

Structures in general subject to cyclic loading are subject to the appearance of structural cracks, which can
propagate and eventually lead to sudden failure of the structural component or equipment.Methods of detecting
these cracks in an "embryonic" stage, in order to avoid sudden failure, have been the focus of several studies
[11]. This process of damage detection and identification is known as structural health monitoring (SHM).

In particular, structures made of composite materials or simply laminated structures have a complex failure
mechanism [15], and these are often difficult to visualize on the surface. Therefore, for these structures, the
application of the SHM is more relevant. These materials are increasingly present in the industry stand out for
having exceptional strength and rigidity, low relative density, low maintenance cost and flexibility to adjust
mechanical properties in the preliminary stages of complex structure design [15].

Equally important, methods for property identification based on vibration response assume that modal
responses, such as natural frequencies, mode shapes and modal damping, are a function of the physical
properties of the structure: mass, stiffness and damping [5]. Therefore, it is possible to identify characteristics
that alter such physical properties through modal response. Vibration-based damage identification is a diverse
theme and has shown consistent results. Hassiotis et al. [12] proposed a solution to identify reduction in
stiffness of beam structures based on natural frequencies. Owolabi et al. [22] proposed a similar analysis using
natural frequencies and amplitude of frequency response function.

Regarding laminated composite structures, some studies could be highlighted. The studies of Hu et al.
[14], which proposed a solution for detecting damage in a plate of laminated composite material based on the
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strain energy calculated through modal displacements, and Gomes et al. [11], which proposed a method of
identifying the parameters of a circular damage in a plate of laminated composite material based on natural
frequencies, through an inverse method of optimization.

According to Gomes et al. [9] the development of an efficient structural monitoring technologies aims
to provide safety and cost savings. However, the number of practical applications of these technologies is
still finite. This is mainly due to the complexity of possible damage scenarios and the high-performance
requirements of the identification methods employed.

In general, damage identification problems can be solved through inverse problems and computational
intelligence. The methods most discussed in the literature in relation to inverse methods in general are (1)
methods based onoptimization, (2)methods based on artificial intelligence and (3)metamodelingmethodology.

Optimization-based methods generally employ modeling in two or more steps. A direct model, usually
numerically modeled in FEM or BEM, is used considering the parameterization of the induced damage. In a
later step some specific optimization algorithm (usuallymetaheuristic) is used in order tominimize an objective
function that can be composed of different structural responses.

Regarding the optimization-based damage identification, an approach based on an improved particle swarm
optimization (PSO) algorithm is proposed by Wei et al. [32] for structural damage detection in this study. The
authors verified both the feasibility and the robustness of a modified PSO considering three different test
structures (beam, truss and plate). The results show that the method is efficient and effective for structural
damage identification when measurement noise is considered.

In the same research field, Khatir et al. [17] proposed an eXtended isogeometric analysis (X-IGA) com-
bined with PSO for crack identification in two-dimensional linear elastic problems based on inverse problem.
The objective function minimized the error between the calculated and measured structural displacements.
Convergence studies at various positions of crack on the plate are calculated, and the results show that the
proposed technique can detect damage with minimum accuracy 95%. Correspondingly, Pereira et al. [24]
developed a numerical identification and characterization of crack propagation through the use of a new opti-
mizationmetaheuristics called Lichtenberg optimization (LA). The authors showed substantial results on crack
identification in plates-like structures using the (LA) based only in strain fields. In the same way,

Recently, Fathi et al. [6] presented a new geometry-based crack detection approach for plate structures
based on the integration of a dynamic extended finite elementmethod (xFEM) and a physics-based optimization
algorithm called enhanced vibrating particles system (EVPS). The study indicates the efficiency of the proposed
XFEM-EVPS method in detecting crack location.

Optimization-based methods are known as robust methods since an algorithm will minimize the error
between model and experiment. This error tends to zero and so the damage is accurately detected or identified.
The efficiency of this strategy basically occurs by the correct modeling of the damage, the sensitivity of the
structural response (stress, deformation, vibration, etc.) and also by the capacity of the optimization algorithm
to deal with the multimodal function. Furthermore, despite the accuracy of these methods, the disadvantage is
due to the computational cost or simulation time due to the use of metaheuristic techniques.

One of the alternatives for these inconveniences is the use of artificial intelligence or, more specifically,
artificial neural networks. The strategy in using ANN is based on feeding the model with a database with
information regarding the damage in question. From this point on, the algorithm will perform training in order
to learn from the data and then generate a complex model that may or may not present significant accuracy.

An inverse analysis based on the ANN technique is introduced for effective identification of crack damage
in aluminum plates by Lu et al. [19]. The authors discussed the capability of the inverse approach considering
by two crack cases from experiments. Results show substantial accuracy regarding the damage parameter
prediction (central position, size, and orientation). Furthermore, Saeed et al. [26], presented an ANN for crack
identification based on modal response considering damaged beams. The authors located the damage with
satisfactory accuracy, even if the input data are corrupted with various level of noise. In like manner, Oliver
et al. [21] presented an ANN for damage identification in laminated composite structures considering the
natural frequency shifts. The obtained results from numerical examples indicate that the proposed approach
can detect true damage locations and estimate damagemagnitudes with satisfactory accuracy for this particular
geometry, even under high measurement noise.

ANN have the advantage of reduced computational time to identify or detect damage compared to
optimization-based techniques. On the other hand, accuracy can only be achieved if a database with a signif-
icant sampling is available. Fine-tuning the ANN parameters also significantly contributes to the quality of
the results. In order to get around the problem of number of points, sampling and experiments, metamodeling
techniques are considered.
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Fig. 1 Plate with: a an arbitrary void and b a crack modeled as ellipse

To the best of the authors’ knowledge, there are no (or very few) studies in the literature investigating the
performance of both the optimization, ANN and metamodeling strategies for crack identification in plate-like
structures. The objective of this work is to propose a solution for the identification of cracks in a plate of lam-
inated composite through these three different methods. The major contribution in this is study could be listed
as (1) the use of a response surface methodology (RSM) for direct problem modeling and model evaluation,
(2) the use of the Sunflower Optimization (SFO) optimization algorithm to obtain the crack parameters from
the modal response obtained through the direct problem, iii) an artificial neural network (ANN) to identify the
parameters of the crack from the modal response obtained through the direct problem and then (4) conduct a
comparative study between the proposed methods.

2 Backgrounds

2.1 Cracks in laminated composites structures

Cracks in composite laminates subjected to mechanical loads can be classified as interlaminar cracks aligned
to the fibers in the layers, interlaminar cracks generated by the separation of the layers and rupture of the fibers
[28] apud [30].

Due to the complex fault mechanism, special precautions should be taken into account to avoid failures
in structures manufactured from composite laminates. These are subject to the appearance of barely visible
damage (BVD), such damage can be internal cracks due to low-speed impacts suffered by the structure during
its operation or manufacture or even due to moisture trapped inside the material that expands and contracts
due to variations in temperature.

In particular, the aerospace industry, which benefits from the good mechanical properties that is obtained
combined with the specific low density, is especially sensitive to such problems since the structures used in
this sector are subject to severe conditions of cyclic mechanical stress and high temperature variations.

The crack can be characterized as a reduction in the stiffness of the structure in the place where it is
located. Several studies address different ways of defining this reduction of stiffness. A frequently used form
is to modify the geometry by inserting a through hole into the desired format for crack representation.

For the direct problem solved by finite element analysis (FEA), it is necessary to choose a method for
modeling a crack in the structure, several studies address different ways of doing so. Gomes et al. [10] and
Waisman & Berger-Vergiat [31] adopted the method of modeling the limits of the crack as a circumference
in a two-dimensional structure, where the position of the center of the circumference on the x and y axes, as
well as the radius of this are the parameters of the crack. The study of Chatzi et al. [4] and Liang et al. [18]
proposed a more sophisticated modeling in the form of an ellipse, parameterized by the position of its center in
x and y, the smaller and larger rays and the angle of inclination of the larger radius in relation to the horizontal.
Agathos et al. [1] used a similar approach, but in three-dimensional space. Figure 1 illustrates a simple crack
damage modeled as an ellipse.
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2.2 Damage identification based on modal analysis

The main advantage in the use of the vibration/modal analysis for the damage identification process is that it
does not require the sensors to be positioned close to the damage for it to be identified [3], which allows the
application of the method in large or difficult-to-access structures.

The evaluation of the existence of damage in any structure consists simply in the comparison of the
structural responses obtained through a vibration test in this with the structural response of an equal structure
not damaged (obtained experimentally or numerically through modal analysis). Once the existence of damage
is discovered, the knowledge of the number of existing damages, the spatial disposition of these in the structure
and its characteristics become relevant (in a crack, for example, its size and orientation).

The detection of damage parameters is based on the generation of structural damage responseswith different
parameters and the comparison of its structural response in vibration with the structural response obtained in
the original structure. At this stage, experimental analysis is, in most cases, unfeasible and modal analysis
becomes the best alternative.

Modal analysis consists of a technique used to obtain the natural frequencies andmode shapes of a structure
through Eq. 1.

[K − ω · M]φ � 0 (1)

The eigenvector φ is evaluated only for n natural frequencies in them nodes of interest, thus obtaining an n
dimension vectors (1×m), these must be normalized in the nodes of interest according to Eq. 2 so that a single
response can be obtained that can be compared with other modal analyses and with experimental results.

φ̂( j) � φ( j)

||φ( j)|| (2)

being φ̂( j) is the normalized autovector evaluated in the nodes of interest and in the jth mode. To simplify the
notation, φ( j) will be used for the normalized autovector instead of φ̂( j). Natural frequencies are calculated by
Eq. 3, in Hertz units.

f( j) � ω( j)

2π
(3)

2.3 Response surface methodology

The response surface method (RSM) consists of a set of statistical techniques for constructing an empirical
model that can associate an output variable with a series of input variables [27].

y � F(x1, x2, . . . , xk) + ε (4)

where y is the response, xi the variables and ε the error.
For the adjustment function F, it is common to use first- or second-order polynomials, according to Eqs. 5

and 6, respectively, obtained in Mukhopadhyay et al. [20]. The parameter β in both equations is calculated in
such a way as to better adjust a set of points.

y � βo +
k∑

i�1

βi xi +
k∑

i�1

k∑

j>i

βi j xi x j + ε (5)

y � βo +
k∑

i�1

βi xi +
k∑

i�1

k∑

j>i

βi j xi x j +
k∑

i�1

βi i x
2
i + ε (6)
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Fig. 2 Composite central design representation for 2 and 3 input variables

2.3.1 Composite central design

One of the methods of obtaining points through Design of Experiments (DoE) is the use of the composite
central design, which consists of a set of points arranged as in Fig. 2.

It α determined so that the model obtained presents certain characteristics [20]. The schema represented
in Fig. 2 can be extrapolated to the specified number of input variables. The total number of points in this
configuration will be given by Eq. 7.

ns � 2k + 2k + no (7)

being ns the total number of experiments, not the number of experiments at the center point, k the number of
input variables.

2.3.2 Model quality check

The quality of the model should be verified for future predictions according to the R2 criterion according to
Eqs. 8, 9 and 10.

R2 � SSR
SST

� 1 − SSE
SST

(
0 ≤ R2 ≤ 1

)
(8)

R2
adj � 1 −

SSE
/
(ns − p)

SST
/
(ns − 1)

� 1 − ns − 1

ns − p

(
1 − R2) (

0 ≤ R2
adj ≤ 1

)
(9)

R2
pred � 1 − PRESS

SST

(
0 ≤ R2

pred ≤ 1
)

(10)

where SST, SSE, SSR and PRESS are the total sum of squares, due to the model, residual error and predicted
residual error, respectively, and p � k + 1.

It is desired to have R2 close to 1, however, in order to use the model for future predictions must meet the
criterion of difference between Radj

2 and Rpred
2 less than or equal to 0.2, according to Mukhopadhyay et al.

[20].

2.4 Sunflower optimization method

The Sunflower Optimization (SFO) method, proposed by Gomes et al. [9] is a metaheuristic optimization
method that is based on the flower pollination process proposed by Yang [33] with the addition of a movement
of plants toward the sun, which increases the convergence speed of the method, in relation to its predecessor.

A population of Npop plants containing parameters between a specified lower and upper limit is randomly
created. The sun is assumed to be the best plant among those generated. At the beginning of each iteration m
(%) of the plants will die and give way to new plants generated randomly, p (%) of the plants will pollinate
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A random population begins with n plants

Find the sun (Individual aiming closer to zero) 

while (k< Maximum number of iterations)

 p (%) of plants pollinate each other 

 m (%) of the plants are removed and new random plants will be generated 

Or remaining plants will pollinate around the sun

 Evaluates new individuals 

if (New individual is better than its predecessor)

  The new individual is stored in place of the old 

end if

if (New individual is a great overall)

  Updates the sun 

end if

end while

Best solution found 

Fig. 3 SFO pseudocode

each other and give rise to the new plants according to Eq. 11. In addition, Fig. 3 shows the pseudocode of the
SFO algorithm [7, 8].

�X(i, j+1) � �X(i+1, j) + rand
( �X(i, j) − �X(i+1, j)

)
(11)

The random function multiplies the vector, term-to-term by a random value between 0 and 1 generated
evenly.

The rest of the plants will take steps toward the sun. The direction of plants in the sun will be the second
displayed in Eq. 12.

�si � X∗ − Xi

‖X∗ − Xi‖ , i � 1, 2, . . . , Npop (12)

The step of each plant will be calculated according to Eq. 13 and the maximum step is calculated in Eq. 14.

di � λ × Pi (‖Xi + Xi−1‖) × ‖Xi + Xi−1‖ (13)

dmax � ‖Xmax − Xmin‖
2 × Npop

(14)

Finally, the new plantation will be calculated by Eq. 15.

�X(i, j+1) � �X(i, j) + di × �si (15)

2.5 Artificial neural networks

Artificial neural networks (ANN) are based on the mechanism of functioning of neurons. Just as organic neural
networks learn from their environment and control the behavior of the organism according to the stimuli they
receive, ANNs receive data sets and, from these, learn to predict the response of future inputs they may receive
[2, 13]. The equations that define the output of a k neuron from n inputs are given in Eqs. 16 and 17.

vk �
n∑

j�1

wk j · x j (16)
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Table 1 Material properties

Property Value Unit

Young’s modulus in x direction (Ex) 88.80 GPa
Young’s modulus in y direction (Ey) 6.30 GPa
Poisson ratio in xy (υxy) 0.32 –
Shear modulus (Gxy) 8.37 GPa
Mass density (ρ) 1408.80 kg/m3

yk � ϕ · (vk + bk) (17)

where xj is the input signals, wkj the weights of the synapses between j and k, vk is the linear combination
factor of neuron k, bk is the tendency of neuron k, φ is the activation function and yk is the output of neuron k.

An ANN consists of the arrangement of neurons described in layers, neurons of the first layer, called input,
receives the input signals xn and send signals to the first hidden layer, in which neurons of a layer receive
signals from neurons of the previous layer and send signals to neurons of the next layer, neurons of the last
layer, called output, produce the yk-output signals.

The ANN described must go through a training process consisting of optimizing wki weights from an
optimization function, also called a training function, associated with an error function to evaluate network
performance after each iteration of the training.

The error function used was mean squared normalized error (MSE) according to Eq. 10 was used to
evaluate the performance of ANN. In cases where there were few samples, the mean squared normalized error
regularized (MSEREG) function was used to improve the generalization capacity of the network according to
Eq. 20.

MSE � 1

N

N∑

i�1

(
Yi − Ŷi

)2
(18)

MSW � 1

n

n∑

j�1

(
w j

)2 (19)

MSEREG � γ · MSW + (1 − γ ) · MSE (20)

where Yi are the output signals of the network, Ŷi are the output signals provided to the network for training,
and γ is the regularization factor.

3 Methodology

The methodology considered in this study consists in the development of the direct problem to obtain the
modal response to a plate with a crack and later on the development of the inverse problem that is based on
the structural modal response of the laminated and the use of the responses obtained by the direct problem.
The inverse problem is divided into three fronts: (1) using optimization algorithm SFO, (2) using ANN and
(3) using RSM.

3.1 Direct problem and damage modeling

The structure chosen for analysis was a plate of dimensions 30×30 cm2 of symmetrical laminate [0/90]3S.
Each layer has a thickness of 0.18 mm with properties according to Table 1, the plate is free of boundary
conditions, therefore, free to move and rotate in space in all directions, causing in 6 free body modes that will
be discarded for analysis, the natural frequencies will therefore be numbered from the first frequency that is
not associated with a free body mode.

The natural frequencies of interest will be 1, 2, 3 and 6, according to the Analysis of the RSM performed
presented later, the nodes of interest are the nodes located in the sensors shown in Fig. 4 the mesh created for
the calculation of the structural response by the finite element method is shown in Fig. 5. The generic problem



Crack identification in laminated composites based on modal responses 4397

Fig. 4 Plate geometry and sensor positioning, dimensions in mm (legend: blue circle sensors)

Fig. 5 Undamaged plate mesh considering shell elements

of identifying damage is to deduce the existence of damage to a structure through measurements made on
sensors distributed in specific locations. It is known that the quality of these measurements, that is, the quality
of structural monitoring, is largely dependent on where the sensors are located in the structure [10]. In this
study, no specific study on the sensor placement optimization (SPO) problem has been carried out. However,
for operational practice it was decided to use 8 sensors. These sensors were placed symmetrically at the ends of
the laminated plate in question (Fig. 4). The choice of sensors at the edges of the plates is justified by the type
of damage addressed (crack). Thus, the position of sensors on voids is avoided (if the crack position coincides
with the sensor position).

The mode shapes of the undamaged structure are shown in Table 2 considering an induced damage in an
arbitrary position. It is observed that natural frequencies 4 and 5 have very close values and practice shows
that these vary considerably in different tests, therefore, the mode shape 4 could be confused with 5 and vice
versa, which would cause a problem of discontinuity in the structural response that would be harmful to the
methods of identification of applied damages.

If it is a roughly two-dimensional structure, the representation of the crack as an elliptical through hole is
adequate. The vector of parameters required to define the damage will be defined as X as shown in Eq. 21.

X � [xo, yo, a, θ, b/a] (21)

The parametric definition of the ellipse perimeter is made according to Eq. 22 and its graphic representation
is Fig. 6.

{
x � xo + a · cos(t) · cos(θ) − b · sin(t) · sin(θ)
y � yo + a · cos(t) · sin(θ) + b · sin(t) · cos(θ)

; t � (0, 2π) (22)
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Table 2 Damage influence on modal response (mode shape and natural frequency)

Pristine plate Damage #1 Damage #2
Mode fi (Hz) Mode shape fi (Hz) Mode shape fi (Hz) Mode shape

1 62.69 65.12 65.11

2 128.74 130.19 129.74

3 160.77 139.20 139.71

4 179.97 183.66 182.82

5 203.47 185.72 184.70

6 326.70 322.24 320.82

Fig. 6 Graphic representation of the parametric equation of the ellipse

Simply perform the Boolean operation of subtracting the inner area to the ellipse over the original geometry
to obtain the geometry of the damaged structure. In order to obtain higher mesh quality, a rectangular casing
was created around the three of dimensions that conforms Eqs. 23 and 24, within which a more refined mesh
was generated (Fig. 7). The final mesh obtained is represented in Fig. 8.

xe � 0.006 ∗ ceil

⎛

⎜⎜⎜⎜⎜⎜⎝

max

⎡

⎣
0.024

2 · a · cos(θ)
2 · b · sin(θ)

⎤

⎦

0.006

⎞

⎟⎟⎟⎟⎟⎟⎠
(23)
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Fig. 7 Parameterization of the elliptical crack and casing

Fig. 8 Plate mesh with elliptical crack

ye � 0.006 ∗ ceil

⎛

⎜⎜⎜⎜⎜⎜⎝

max

⎡

⎣
0.024

2 · b · cos(θ)
2 · a · sin(θ)

⎤

⎦

0.006

⎞

⎟⎟⎟⎟⎟⎟⎠
(24)

The process adopted to solve the direct problem can be described in four main steps. These steps are
described as follows:

Step 1: Using modal analysis and FEM, the normalized mode shapes of the chosen plate for analysis in the
nodes and natural frequencies of interest φh and the natural frequencies of interest f h are stored.

Step 2: The normalized mode shapes of the damaged plate φd, natural frequencies and nodes of interest
and the natural frequencies of interest f d.

Step 3: A reference direction is adopted for each vibrate mode obtained. The reference direction was
assumed from a reference node chosen arbitrarily and performing the operation given in Eq. 25.

φ( j) � sign(φ(r, j))�φ( j) (25)

sign(x) �
⎧
⎨

⎩

−1, if x < 0
0, if x � 0
1, if x > 1

(26)
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The reference nodes chosen must be the same in all analyses made so that the answers can be compared
between them.

Step 4: The structural responses of the damaged plate �f and �φ are calculated by:

� f( j) � fd( j) − fh( j) (27)

�φ(i j) � φd(i j) − φh(i j) (28)

The described process results in a structural response (�f, �φ) unique for each set of crack parameters,
and ideally for an undamaged plate, it assumes a value (�f, �φ) � (0, 0).

3.1.1 Direct problem modeling as a response surface

Themodeling of the direct problemas a response surfacewas initially developedwith the objective of producing
a precise numerical model that eliminates the need to use the FEM at each direct problem evaluation, but it was
found that this objective was not achieved with the model created. However, the results were used to obtain a
better understanding of the characteristics of the problem in order to identify the structural parameters most
relevant to the method.

Therefore, wewant to obtain a response surface capable of estimating structural responses from the damage
parameters, so the input and output variables will be given, respectively, by Eqs. 29 and 30.

X � [xo, yo, a, θ, b/a] (29)

Y � [� f, �φ] (30)

where �f � [�f (1), �f (2),…, �f (6)] the natural frequencies from 1 to 6 and �φ the vibration amplitudes
normalized in each of the 8 nodes of interest and in the 6 natural frequencies.

The data needed to generate the response surface is obtained using the central DoE method composed with
α � 1. The points are translated into the damage parameters through Eq. 31.⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

xo � 150 + 104 x1 [mm]
yo � 150 + 104 x2 [mm]
a � 16.5 + 13.5 x3 [mm]
θ � 90 x4 [◦]
b/a � 0.2 + 0.1 x5 [−]

(31)

The data are adjusted by a second-order polynomial. A total of 54 quadratic surfaces are generated, which
model the output values.

3.2 Inverse problem modeling

The inverse problem simply consists in identifying the crack using the answers obtained through the direct
process. The methods applied will be RSM, SFO and ANN.

3.2.1 Modeling of sunflower optimization

The parameters used to solve the inverse problem by the SFOmethod are shown in Table 3. The choice of SFO
control parameters is based on the best configuration that results in a perfect balance of exploration–exploitation
[7]. For all evaluated cases, the stopping criterion was defined as the maximum number of generations. The
lateral boundaries in the identification problem define a minimum and maximum size that the problem can
handle. It is known that very small damages are not able to significantly alter themodal response [9]. Therefore,
a minimum acceptable damage of 3mm in length was defined, which can already be considered a small damage
in a large-scale structure.

The objective function chosen was the one that seeks to penalize the difference between the vibration
amplitudes of a plate with the damage induced to the plate with any damage, in which the function is evaluated.
Such amplitudes are evaluated in only frequencies and nodes of interest. Equation 32 represents the objective
function J described.

J �
∑

i�1,2,3,6

⎛

⎝
8∑

j�1

∣∣∣�φ̂(i, j) − �φ(i, j)

∣∣∣

⎞

⎠ (32)
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Table 3 Parameters used in the SFO

Variable Value

Number of flowers 50
Number of generations (stop criteria) 100
Pollination rate 0.10
Mortality rate 0.10
Survival rate 0.80
Lower search limit (46 mm; 46 mm; 3 mm; − 90°; 0.10)
Upper search limit (254 mm; 254 mm; 30 mm; 90°; 0.30)

Fig. 9 ANN architecture

Table 4 Parameters used in ANN

Variable Value

Total number of samples 5000
% of samples used for training 70
Training function Levenberg–Marquardt
Activation function Log-sigmoid
Maximum desired error (stop criterion) 10–3

Number of hidden neurons 64
Learning rate 0.10
Maximum number of iterations 2000

3.2.2 Modeling of the artificial neural network

The artificial neural network proposed to solve the inverse problem has as input the modes of vibration of
interest and as a result the parameters of damage, according to Eqs. 33 and 34.

X � (�φ(1,1), �φ(2,1), . . . , �φ(8,1), �φ(1,2), �φ(2,2), . . . ,

�φ(8,2), �φ(1,3), �φ(2,3), . . . , �φ(8,3), �φ(1,6), �φ(2,6), . . . , T t�φ(8,6)) (33)

Y � (xo, yo, a, θ, b/a) (34)

Input and output values are mapped between− 1 and 1 before being inserted into the network so that equal
weight is given to variations of the different signals.

The architecture represented in Fig. 9 called Feed Forward, which was proposed for this problem contains
32 input neurons, 32 neurons in the first hidden layer, 16 in the two subsequent hidden layers, and 5 in the
output. The choice of the type of architecture and the number of neurons was based on trial and error until an
ANN was obtained that could well represent the problem. The parameters used in the network are shown in
Table 4.
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Table 5 R2 of the models for the first six modes

Y R2 Radj
2 Rpred

2 Radj
2–Rpred

2 Y R2 Radj
2 Rpred

2 Radj
2–Rpred

2

1st �f (1) 0.95 0.90 0.77 0.13 �φ(51) 0.97 0.93 0.85 0.08
�φ(11) 0.97 0.93 0.86 0.07 �φ(61) 0.92 0.84 0.66 0.18
�φ(21) 0.93 0.86 0.69 0.17 �φ(71) 0.97 0.93 0.86 0.07
�φ(31) 0.97 0.93 0.85 0.08 �φ(81) 0.97 0.94 0.87 0.07
�φ(41) 0.97 0.93 0.86 0.07

2nd �f (2) 0.97 0.94 0.86 0.09 �φ(52) 0.97 0.94 0.86 0.08
�φ(12) 0.95 0.90 0.78 0.12 �φ(62) 0.94 0.87 0.69 0.18
�φ(22) 0.83 0.64 0.24 0.40 �φ(72) 0.96 0.92 0.81 0.11
�φ(32) 0.98 0.96 0.90 0.06 �φ(82) 0.93 0.87 0.68 0.19
�φ(42) 0.95 0.91 0.76 0.15

3rd �f (3) 0.88 0.76 0.49 0.27 �φ(53) 0.86 0.71 0.38 0.33
�φ(13) 0.97 0.93 0.83 0.10 �φ(63) 0.96 0.93 0.82 0.11
�φ(23) 0.97 0.93 0.83 0.10 �φ(73) 0.95 0.90 0.79 0.11
�φ(33) 0.99 0.97 0.92 0.05 �φ(83) 0.96 0.92 0.83 0.09
�φ(43) 0.95 0.90 0.77 0.13

4th �f (4) 0.96 0.93 0.82 0.11 �φ(54) 0.89 0.77 0.52 0.25
�φ(14) 0.96 0.93 0.82 0.11 �φ(64) 0.77 0.53 0.00 0.53
�φ(24) 0.88 0.76 0.48 0.28 �φ(74) 0.87 0.73 0.41 0.32
�φ(34) 0.83 0.64 0.23 0.41 �φ(84) 0.87 0.72 0.41 0.31
�φ(44) 0.84 0.67 0.30 0.37

5th �f(5) 0.92 0.83 0.63 0.20 �φ(55) 0.94 0.87 0.71 0.16
�φ(15) 0.87 0.74 0.44 0.30 �φ(65) 0.86 0.71 0.38 0.33
�φ(25) 0.82 0.63 0.20 0.43 �φ(75) 0.86 0.71 0.38 0.33
�φ(35) 0.83 0.65 0.25 0.40 �φ(85) 0.85 0.69 0.34 0.35
�φ(45) 0.92 0.84 0.66 0.18

6th �f(6) 0.96 0.92 0.81 0.11 �φ(56) 0.98 0.95 0.89 0.06
�φ(16) 0.96 0.91 0.82 0.09 �φ(66) 0.96 0.92 0.82 0.10
�φ(26) 0.97 0.95 0.88 0.07 �φ(76) 0.97 0.93 0.86 0.07
�φ(36) 0.97 0.94 0.87 0.07 �φ(86) 0.97 0.94 0.82 0.12
�φ(46) 0.97 0.93 0.84 0.09

4 Numerical results and discussion

4.1 RSM results

The models generated by The RSM were evaluated according to the criterion of the difference between Radj
2

and Rpred
2 less than or equal to 0.20. Table 5 presents this analysis and highlight in italic the modal answers

in which the criterion is reached and in bold in which it is not reached.
It is noted that the worst results are obtained in natural frequencies 4 and 5, which shows that they present a

more complex behavior than the other ones, thus justifying the elimination of these responses in the proposals
to solve the inverse problem developed in this work.

4.2 SFO results

Gomes et al. [11] and Gomes and Almeida [7] described a newmetaheuristic algorithm based on the biological
process of orientation of the sunflowers toward the sun and by pollination and generation of new flowers
(individuals in a population). The cycle of these plants is unique and always the same: every day, they wake
up and follow the sun like the hands of a clock, resembling a radar tracking the target. At night, they travel in
the opposite direction to wait again for their departure the next morning.

Considering the damage identification strategy through the inverse optimization method, several optimiza-
tion algorithms are available in the literature.Metaheuristic techniques are known to have superior performance
and are recommended to deal with the complexity of this problem. Most traditional metaheuristic algorithms
are used such as Genetic Algorithm (GA), Particle SwarmOptimization (PSO). Other metaheuristic techniques
have also been developed and have shown substantial performance compared to more traditional techniques,
such as: Colliding bodies optimization (CBO) [16], Gravitational Search Algorithm (GSA) [25], Lichtenberg
Algorithm [23] and many others.
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Table 6 Inverse crack identification using SFO algorithm considering multiple runs

x0 (m) y0 (m) a (m) θ (°) a/b (−) J

Objective 0.1054 0.1878 0.0186 − 62.1377 0.1232 0.0000
1 0.1063 0.1865 0.0177 − 62.8683 0.2967 0.0293
2 0.1006 0.1869 0.0185 − 54.1208 0.2190 0.0274
3 0.1034 0.1868 0.0186 − 62.4935 0.1116 0.0028
4 0.1032 0.1867 0.0182 − 61.9178 0.1022 0.0041
5 0.1031 0.1867 0.0189 − 55.4504 0.2883 0.0224
6** 0.1037 0.1778 0.0146 − 60.3107 0.2188 0.1015
7* 0.1034 0.1867 0.0183 − 62.2153 0.1000 0.0030
8 0.1035 0.1867 0.0182 − 60.8253 0.1439 0.0053
9 0.1033 0.1867 0.0177 − 57.2275 0.2979 0.0234
10 0.1034 0.1867 0.0183 − 61.7824 0.1084 0.0038
11 0.1035 0.1867 0.0183 − 62.6205 0.1000 0.0033
12 0.1000 0.1868 0.0177 − 55.2995 0.1030 0.0290
Mean 0.1031 0.1860 0.0177 − 59.7210 0.1741 0.0213
Error (%) 2.1664 0.9718 3.6738 3.8249 41.3555 2.1300
SD 0.0016 0.0026 0.0011 3.2782 0.0841 0.0277

*Best and **worst result

Table 6 shows the result of damage identification (of the crack parameters) considering 12 different runs
of the SFO algorithm. It is noteworthy that this study does not aim to compare or discuss the efficiency of the
SFO metaheuristic in relation to other metaheuristics. The SFO algorithm was chosen as the optimizer due to
its superior and significant performance when applied to identification and damage problems [7, 9]. There is
no metaheuristic technique superior to another (No Free Lunch Theorem), but techniques that have superior
performance to solve a certain type of problem.

Damage was induced with parameters X � {0.1054; 0.1878; 0.0186; − 62.1377; 0.1232}. Table 6 shows
that the damage was identified with excellent accuracy. In general, the results for the different runs show
small variability and this variability is due to the stochastic nature of the metaheuristic. In general, for crack
identification problems, the θ parameter is considered as one of the most difficult to identify parameters.
Furthermore, the result shows that the a/b ratio also presented a certain level of error in relation to the goal of
0.1232.

The results obtained are presented in Figs. 10 and 11 for one specific run. Figure 10 shows the evolution of
the crack found by the SFO method in each generation shown and Fig. 11 presents the evolution of parameters
over generations. In Fig. 10, the global best is the induced damage with known parameters (X). The current
best is the best individual of each generation. In addition, the entire population of diaries is displayed in the
physical space of the laminated CFRP plate.

4.3 ANN results

The second damage identification strategy concerns the use of ANN. The previous section addressed the use of
metaheuristics for damage identification and excellent results were obtained regarding the accuracy of crack
identification. However, the optimization methodology can be slow, as each identification process requires
a relatively high number of objective function evaluations. In order to get around this inconvenience, ANN
models are considered. Once the ANN is well trained, the model can predict the position and extent of damage
(crack) instantly.

The ANN architecture and parameters were discussed in the previous sections. Table 7 shows the overall
model error results in relation to the damage variables. Figure 12 shows an example of themodel result obtained
by ANN after the training phase. Random and unknown damages of the model were chosen (they were not
part of the training phase). Substantial identification results can be observed. In all examples, the predicted
damage was close to the induced damage as well as its extent (crack size). It is also noteworthy that the θ
variable (more difficult to interpret in the identification process) was accurately identified by the ANNmodel.
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Fig. 10 Cracks identified, induced and population throughout the iterations of the SFO (legend: blue line current best, red line
global best and gray line individuals). (Color figure online)

Fig. 11 Graph of the evolution of the parameters of the crack and the objective function (legend: yellow line target and blue line
calculated). (Color figure online)
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Table 7 Summary of the results obtained by ANN

Average error Error standard deviation

xo (mm) 0.2000 15.400
yo (mm) − 0.1000 11.600
a (mm) 0.0000 2.500
θ (°) 1.1000 25.700
b/a (−) − 0.0026 0.052

Fig. 12 ANN results for 6 different cracks (legend: red line induced and blue line predicted damages). (Color figure online)

4.4 Comparison of results

Finally, the last results section discusses the comparison of the studied methods for crack identification in
laminated plates. As discussed previously, the quadratic model using RSM was not able to model the problem
due to its complexity. On the other hand, both models using SFO and ANN were able to identify the induced
damage with substantial accuracy.

The strategy of gradually increasing the number of problem evaluations (population×generations) until
obtaining a substantial result was considered. Figures 13 through 16 show the graphical damage identification
results for values of 100, 1000, 2000 and 5000 objective function ratings, respectively. It is observed that even
for a small number of assessments, ANN is able to predict the damage position relatively well. Results using
SFO have the advantage of being able to better accurately identify the orientation variables (θ). However, with
the addition of the number of samples (database for ANN), the result is similar to the result obtained by the
SFO. In addition, Tables 8 and 9 show the errors associated with each method.
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Fig. 13 Comparison between ANN and SFO with 100 direct problem evaluations (legend: blue line calculated, red line induced
damage and gray line individuals). (Color figure online)

Fig. 14 Comparison between ANN and SFO with 1000 direct problem ratings (legend: blue line calculated, red line induced
damage and gray line individuals). (Color figure online)

Fig. 15 Comparison between ANN and SFO with 2000 direct problem ratings (legend: blue line calculated, red line induced
damage and gray line individuals). (Color figure online)

5 Conclusions

The results of the SFO and ANN methods created showed that both methods are reliable for obtaining the
crack parameters, within a continuous set, and can be used to estimate the location, size and orientation of a
crack in laminated composite plates. Numerical analysis, shows that, given a sufficient number of evaluations
of the direct problem, the associated errors can be reduced according to the need of the desired application.

The SFO method differs from ANN in terms of the field of application, since the SFO requires little time
for implementation, but a longer time to generate a substantial reliable result, since it requires the evaluation
of the problem direct to each new individual evaluated. ANN, on the other hand, requires a longer time for
its generation, taking into account the time to obtain a consistent set of samples, but presents a short, almost
instantaneous time to present the results.
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Fig. 16 Comparison between ANN and SFO with 5000 direct problem ratings (legend: blue line calculated, red line induced
damage and gray line individuals)

Table 8 SFO results with different parameters

Population Error

Iterations Evaluations xo (mm) yo (mm) a (mm) θ (°) b/a (−) Best goal

50 2 100 33.2 − 23.5 − 5.2 − 30.0 0.0975 0.4398
50 20 1000 8.2 2.3 − 4.0 − 20.0 − 0.1231 0.1005
50 40 2000 3.5 2.7 − 1.7 − 13.1 − 0.1892 0.0492
50 100 5000 − 0.3 − 0.3 − 1.4 − 6.8 − 0.1820 0.0289

Table 9 ANN results with different sample numbers

Number of samples Error (average; standard deviation)

xo (mm) yo (mm) a (mm) θ (°) b/a (−)

100* (− 3.4; 40.5) (5.8; 55.5) (2.8; 7.8) (− 3.7; 61.2) (0.0165; 0.0937)
1000* (− 0.2; 20.3) (− 0.5; 20.5) (− 0.4; 4.2) (− 2.8; 36.0) (− 0.0101; 0.0655)
2000 (0.3; 16.1) (0.5; 13.0) (− 0.4; 4.4) (− 0.3; 39.2) (0.0018; 0.0603)
5000 (0.2; 15.4) (− 0.1; 11.6) (0.0; 2.5) (1.1; 25.7) (− 0.0026; 0.0520)

*Due to the small number of samples regularization γ � 0.10 was used

The results presented indicate that the RSM model, although inadequate to adjust the structural responses,
proved useful for the verification of the best structural responses for use in the inverse problem and allowed
the generation of the objective function and the creation of the artificial neural network in order to obtain
substantial results.
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