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Abstract The damage of materials is the progressive or unexpected deterioration of mechanical strength
because of loadings, thermal or chemical effects. The micromechanical damage process of ductile materials is
generally studied by the continuum damage mechanics (CDM). One of the most well-known damage models
is the Lemaitre’s ductile damage criterion. This model only requires one material-dependent parameter to
represent damage evolution. In this investigation first, a novel numerical approach is proposed to determine
the Lemaitre’s ductile damage parameter. Then, a user-defined material subroutine founded on the Lemaitre’s
ductile damage model is developed. Following, numerical results are achieved for a standard round tensile test
specimen. Finally, to validate the suggested method, experimental tests are carried out and compared with the
numerical results. The comparison reveals a good agreement and excellent correlation between the numerical
and practical results. Hence, it is concluded that the offered numerical approach can accurately determine the
Lemaitre’s ductile damage parameter as well as the damage behavior of ductile metals.

Keywords New numerical approach - Lemaitre’s ductile damage parameter - Bulk metal forming processes -
Continuum damage mechanics (CDM)

Abbreviations

A Total cross section area of RVE

Ap Damaged area of RVE

D Damage variable

Dic Critical damage parameter in tension
e,  Elongation

Young’s modulus

Effective elasticity modulus

Yield surface function

Shear modulus

Second-order identity tensor
Hardening coefficient

Bulk modulus

Hardening power

Hydrostatic stress

Lemaitre’s ductile damage parameter
Isotropic hardening function
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Lemaitre’s damage power parameter
Deviatoric stress tensor

Poisson’s ratio

Damage strain energy release rate
Strain tensor

Deviatoric strain tensor

Elastic strain tensor

eP  Plastic strain

&P Plastic strain tensor

Volumetric strain

geq  Equivalent plastic strain

epa  Threshold plastic strain

&P Plastic strain rate tensor

y Plastic consistency parameter

n Stress triaxiality

0 Density

o Stress tensor of virgin material

o

O¢

~< wne

Effective stress tensor

¢  Yon Mises equivalent stress
or  Fracture stress
o0,  Ultimate stress
o Initial yield stress
v Potential dissipation function
¥p Damage component of potential dissipation function
Yp  Plastic component of potential dissipation function

1 Introduction

During various types of loading like plastic deformations, chemical, and thermal, mechanical properties degrade
due to damage accumulation and growth that most often leads to failure. This progressive physical process
is observed in a wide range of materials such as ductile, brittle, composite, ceramic, concrete, and wood. In
ductile materials, the load increasing stops dislocations by microstress concentration. Therefore, it results in
nucleation, coalescence, growth, and propagation of microvoids or microcracks usually called ductile damage
[1]. Employing a measurable damage variable that denotes material deterioration is highly valuable. The
damage variable increases through plastic forming processes and reaches a critical value near macroscopic
cracks. In the continuum damage mechanics (CDM), modeling a representative volume element (RVE) at the
mesoscale level, damage evolution is taken into account. Therefore, the onset of rupture can be detected.

Applying the concept of one-dimensional surface damage, Kachanov primarily established material damage
variable and studied rupture time in a single creep test [2]. Then, the effective stress concept was introduced
by Rabotnov to add the damage variable into the constitutive equations as an internal variable [3]. Utilizing
the strain equivalence principle, Lemaitre inferred that substituting the effective stress for the usual stress in
any strain constitutive equation of undamaged material, the strain constitutive equation is similarly derived for
the damaged material [1].

In the last decades, the study of ductile damage behavior and predicting the maximum formability of
ductile metals has enabled design engineers to postpone fracture and produce safe parts. A large number
of researchers have proposed damage criteria and also modeled the damage behavior of ductile materials.
Based on the growth of cylindrical voids, McClintock stated a new ductile damage model to clarify the ductile
fracture of materials [4]. Cockcroft and Latham examined the accumulated plastic strain in ductile materials
to investigate ductility and the workability of metals [5]. Rice and Tracey conducted a capable model for the
enlargement of spherical voids in stress triaxiality fields [6]. Gurson applied the continuum theory of ductile
rupture conjugated with void nucleation and growth to predict local damage in uniaxial and biaxial tests [7].
The concept of effective plastic strain and the cumulative strain damage model was tried by Wilkins et al. for
ductile fracture of materials [8]. Tvergaard focused on localization in ductile materials with spherical voids [9]
and ductile fracture by cavity nucleation effect between larger voids [10]. Moreover, Needleman and Tvergaard
developed the origin Gurson’s model and founded the famous Gurson-Tvergaard—Needleman (GTN) criterion
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[11]. The GTN damage model could successfully follow the damage of materials. However, an expensive
machine test was needed to identify the many material-dependent damage parameters by measuring voids
evolution at necking and instability zones. Chaboche noticed the damage modeling for anisotropic creep test
in the CDM framework [12]. Furthermore, a new and efficient ductile damage criterion combined with the
concept of the equivalent strain principle and thermodynamics laws was formulated by Lemaitre [13].

On the other hand, Johnson and Cook extended a damage criterion including the stress triaxiality, plastic
strain rate, and temperature terms [14]. Their model relied on five material-dependent damage parameters to
estimate damage initiation and evolution in high strain rate deformations. Regarding the irreversible thermo-
dynamics process, Benallal et al. provided an integration algorithm for the fully coupled elastoplastic damage
equations [15]. Besides, Steinmann et al. compared various finite deformation inelastic damage models inside
the multiplicative elastoplasticity framework for ductile materials [16]. Doghri numerically implemented sev-
eral metal plasticity models in conjunction with ductile damage [17]. Dhar et al. expressed a CDM model
for void growth and microcracks initiation [18]. Referring to the finite strains with linearization aspects, an
efficient computational algorithm for the fully coupled elastoplastic damage model was derived by De Souza
Neto and Peric [19]. La Rosa et al. obtained a significant correlation between the stress triaxiality factor and
logarithmic plastic strain by several CDM models [20].

In the recent century, upgrading the computers and numerical methods such as the finite element method
(FEM), extensive researches were quickly performed in the CDM framework. In the absence of kinematic
hardening, De Souza Neto simplified the general form of Lemaitre’s ductile damage model consisting of 14
nonlinear coupled equations to only one nonlinear scalar equation [21]. Using the irreversible thermodynamics,
Briinig offered an anisotropic ductile damage model by the stress triaxiality and the Lode angle parameter
effect [22]. Hooputra et al. constructed a comprehensive ductile damage criterion to simulate crashworthiness
failure of extruded aluminum parts [23]. A nonlinear damage model in terms of multiaxial stress state was
suggested by Bonora et al. [24] for ductile metals. Bai and Wierzbicki assessed a new 3D asymmetric fracture
locus with six calibration parameters in the space of the equivalent fracture strain, stress triaxiality, and Lode
angle parameter [25]. Based on difference minimization of analytical static and measured displacements, new
2D and 3D algorithms were invented by Rezaiee-Pajand et al. [26]. Zhai et al. paid attention to the damage
and dynamic response of reticulated dome subjected to blast loading [27]. Mehditabar and Rahimi considered
the cyclic response of functionally graded pipes under thermo-mechanical loads by Chaboche’s continuum
damage model [28].

It should be emphasized that the above-mentioned damage models depend on a few material-dependent
damage parameters, which are determined by a series of experimental tests. The Lemaitre’s ductile damage
model is known as a simple efficient criterion for accurate predicting of ductile damage and just requires one
material-dependent damage parameter. The Lemaitre’s ductile damage parameter is generally extracted from
practical tests like variations of the elasticity modulus and microhardness methods. In the present study, the
main objective is to propose a quick and easy approach for numerical determination of the Lemaitre’s ductile
damage parameter. Compared with the conventional experimental tests, the current method is simpler, cheaper,
and less time-consuming.

2 The standard Lemaitre’s ductile damage model

At the microscale level, load increasing leads to breakage of atomic bonds and plastic growth of microcavities,
consequently the creation of discontinuities and the onset of damage. At the mesoscale level, the stiffness
degradation can be evaluated by an internal variable called damage. This dimensionless variable is simply
defined by the ratio of the area of defects to the nominal area of RVE. Assuming the homogeneous distribution
of microcavities, the damage variable D is given for a simple one-dimensional loading situation as:

D==2 (1)

Ap and A, respectively, are the damaged area and total cross section area of the RVE. Therefore, the scalar
damage variable D is limited between O for undamaged or virgin material and 1 for fractured or fully broken
material.



4166 A. R. Shamshiri et al.

Replacing the stress tensor o with the effective one in any constitutive equation of virgin material, the con-
stitutive equation for damaged material can be easily attained [13]. The effective stress tensor o is represented
by:

o
1-D

o= 2)
In the absence of reverse loading, the kinematic hardening effect can be ignored in the standard Lemaitre’s
ductile damage model and only the isotropic hardening effect is mainly noticed. The potential dissipation yr

describes the evolution of internal variables as a scalar convex function of the state variables and is decomposed
into the plastic ¥ p and damage {yp components:

r _y s+1
¢=¢P+¢D=f+m<7) 3)

where r and s are the Lemaitre’s ductile damage material-dependent parameters. Regarding the published
experimental results of Lemaitre [13], the parameter s is equal to 1 for ductile metals. f and Y correspondingly
are the yield surface function and the damage strain energy release rate:

O¢
F(o.ely. D) = 0 (o0 + R(ely)] =0 )
—Y—i[g(l+v)+3(l—2v) 2] (5)
T 2E(1-D)2|3 7
R (©)
Ocq

where o, is the von Mises equivalent stress, o;) is the initial yield stress, R is the radial growth of the

yield surface (isotropic hardening function), and 8é’q is the equivalent plastic strain. Meanwhile, E, v, 1, and
p, respectively, are Young’s modulus of virgin material, Poisson’s ratio, stress triaxiality ratio, and hydrostatic
stress. The plastic strain rate tensor &” is expressed in terms of the deviatoric stress tensor S by the hypothesis
of generalized normality:

oy 3 5 3.8

. p . . .

& = _— = _—_— = =Y — 7
Yoo V2 sl T 27 0ug )

Additionally, the evolution laws for the internal variables are derived as [1]:

éeq:_)}ﬁ:? (®)
s 1 (=YY
b==rvy = 1—D<r> ®

y is the plastic consistency parameter in the so-called Kuhn—Tucker loading/unloading conditions:
y=0,f=<0,yf=0 (10)

Based on the standard elastic predictor/plastic corrector (return mapping) algorithm, earlier introduced by
Simo and Hughes [29], De Souza Neto simplified the Lemaitre’s ductile damage model to only one scalar
nonlinear equation. In this efficient algorithm, a typical Gauss point of the finite element mesh within a time
interval [t,, t,,+1] with the known values ofo &} ,85(1,”, D, at time t, is selected. By numerically solving the
constitutive equations, the unknown values ofo 41 ,ef: +1 ,85 g+l D,,;1 are calculated at the end of the interval,
timet,+1. The complete details of the fully coupled elastoplastic damage integration algorithm are available in
[21], which are explicitly summarized in Table 1.
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Table 1 Elastic predictor/plastic corrector (return mapping) algorithm [21]

Step 1- Elastic predictor: for a given strain increment of Ag and the state of variables at the time ¢,

, compute:
etrial _ _e ptrial _ p _
E41 T &n + Ag geq,n+1 - Eeq,n ) Dn+1 - Dn
Strial =s, +2G AEd , ptrial =p, + K AgY

Step 2- Check the plastic consistency conditions:

ial _ 3 ||st‘rial|| »
ferial _ f B2 [o3 + R(ely )]
if ftrial <0 then Elastic step: update  (#),4, = (#)7@

On+1 = Sp+1 T Pnta |
Return to step 1

Else Plastic step, return mapping algorithm:

Step 3- Solve for Ay: D(Ay) — D, — #}(/Ay) (—Y(rAy))s =0

\/§||strml||—3GAy

D(AV) = Dn+1 =1- —0'3+R(Esq'n+A}/)

Step 4- Update variables:

— 3 _2GAy trial — trial p — P —
Spt1 = (1 - \/; ||strial||>s » Pn+1 =P » Eeqni1 = €eqn T AY , Dnya = D(Ay)

_ e _ 1 1
Ont1 = Sn+1 + Pn+1 I ’ En+1 = E5n+1 + ﬁ Pn+1 I
End if

Return to step 1

3 New proposed method

In this section, a novel numerical approach is presented to determine the Lemaitre’s ductile damage parameter
r only from one standard simple tensile test results. The suggested approach is easier, cheaper, and faster than
the experimental methods, such as variations of the elasticity modulus and microhardness tests. For numerical
determination of the Lemaitre’s ductile damage parameter for a desired ductile metal, the following steps are
offered:

Step 1

Step 2

Step 3

Step 4

A standard bulk specimen is prepared and empirically drawn until fracture by a uniaxial tensile test

machine.

The conventional mechanical properties of the material consisting of the Young’s modulus, yield stress,
and isotropic hardening coefficients are achieved via the provided engineering and true stress—strain

diagrams.

An initial guess value is chosen for the damage parameter r. This value is generally between 0.5 and

12 Mpa, regarding the former practical researches for ductile metals [30-33].

The standard tensile test is numerically simulated through a finite element model, established in Table
1. After the finite element simulations, the force—displacement and engineering stress—strain diagrams

are numerically obtained and compared with the empirical curves.
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Fig. 1 Geometry of the standard round tensile test specimen (all dimensions are in mm)
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Fig. 2 Engineering stress—strain curve for the annealed 16MnCr5 steel

Step 5 If the numerical and experimental diagrams are in good accordance and show adequate correlation,
the initial trial value is accepted as the true value for the Lemaitre’s ductile damage parameter r.

Step 6 Else, a new guess value is tried and step 4 is repeated until the comparison of numerical and practical
results exhibits sufficient adaptation. After reaching a proper agreement between the numerical and
empirical results, the last trial value is finalized for the Lemaitre’s ductile damage parameter r.

The proposed approach may not accurately predict pure shear or pure torsion loadings, due to ignoring
the effect of the Lode angle parameter addressed by Bai and Wierzbicki [25] and Cao et al. [34]. Moreover,
regarding Papasidero et al. [35] and Gerke et al. [36], using the damage and fracture models with non-
proportional loading histories can lead to more accurate results for large deformation processes. Additionally,
the anisotropic plasticity and anisotropic damage models conducted by Autay et al. [37] and Ghorbel et al.
[38, 39] are highly recommended for anisotropic metals.

4 Mechanical properties

Referring to the Euro standard classification “EN 10084:1998” [40], the DIN 1.7131 steel, so-called 16MnCr5
steel, was selected. The material is extensively applied in industrial parts such as gears, shafts, camshafts, and
gudgeon pins which need high strength and durability. As demonstrated in Fig. 1, the required round tensile
test specimens were prepared by CNC machining according to the E8/E8M-16a standard [41].

The samples were annealed to remove the probable residual stresses of the machining operations. A
SANTAM multipurpose testing machine with a max capacity of 20 KN was employed to draw the instances
at the fixed rate of 0.5 mm/min and room temperature until fracture. For reliability and accuracy, the practical
tensile test was repeated three times and the results were averaged. Figure 2 illustrates the averaged results of
the engineering stress—strain curve for the annealed round tensile test specimen in the uniaxial tensile test.

As Fig. 3 clarifies, Ludwick’s power law is utilized to express the plastic behavior and isotropic hardening
of the annealed material by a simple curve-fitting on the true plastic stress—strain diagram. Comparison of the
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Fig. 3 True plastic stress—strain and proposed curve-fitting for the annealed 16MnCr5 steel

Table 2 Mechanical properties of the annealed 16MnCr5 steel

Parameter Value Standard deviation
Young’s modulus, E(GPa) 210 2.16
Initial yield stress,o’)(MPa) 418 5.89
Ultimate stress,o, (MPa) 505 1.70
Fracture stress,o y (MPa) 282 6.68
Elongation, e, (%) 22.08 0.10
Hardening coefficient, K (MPa) 956.81 7.31
Hardening power, n 0.8984 0.01

Table 3 Mesh study results for the center point of the sample at a displacement of 5.478 mm

Element size (mm) Damage variable Percentage of changes
1.0 0.2950 -

0.5 0.3611 22.40

0.4 0.4068 12.65

0.3 0.4348 6.88

0.25 0.4386 0.87

experimental and the fitted curves shows a maximum error percentage of 3.3% and a correlation coefficient
of + 0.9976, which is reasonable and satisfactory. Table 2 lists the mean values and standard deviation of
mechanical properties for the annealed material, extracted from both the engineering and true stress—strain
curves.

5 Numerical determination of damage parameter

To examine the novel numerical approach, the standard 16MnCrS5 steel sample was numerically simulated. For
this aim, a user-defined material subroutine found on the Lemaitre’s ductile damage model algorithm (Table
1) was developed and implemented into an explicit code. Referring to the ductile damage modeling in the
mesoscale, the proper mesh size for ductile metals is strongly recommended to be between 0.1 and 0.5 mm
[1, 13]. To ensure the mesh non-dependence of the numerical results, a mesh study was performed. Table 3
indicates the results for the center point at a displacement of 5.478 mm, where the instance is exposed to great
plastic deformation. The results reveal that at the element size of 0.25 mm, the percentage of changes is less
than one percent and the damage variable converges. Thus, this element size is fixed for all of the numerical
simulations.

As depicted in Fig. 4, a fine mesh with the size of 0.25 mm was assigned to the center zone of the
specimen, which is subjected to high magnitudes of the stress triaxiality and faster damage growth. Due to
symmetry, only one-eighth of the sample was discretized by a total number of 4704 eight nodes bilinear 3D
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Fig. 4 One-eighth of the finite element model for the standard round tensile test specimen
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Fig. 5 Numerical determination of the Lemaitre’s ductile damage parameter r

stress quadrilateral elements. The symmetry conditions were imposed on the symmetry planes, and the end
surface was monotonically drawn.

As explained in Sect. 3, different guess values for the ductile damage parameter r were tried and the
damage parameter was numerically determined for the material by the new offered method. Figure 5 displays
the comparison of the force—displacement diagrams, predicted by the numerical simulations with different
guess values and the experimental results. As clarified, the value of 1.695 MPa closely follows the empirical
curve and the failure of the specimen, which occurs at 5.52 mm. The maximum error percentage of 2.58% at
the displacement of 4.7 mm and the correlation coefficient of + 0.9932 completely validates the accuracy of
the determined value.

The numerical simulations were continued until the value of the damage variable in the elements reached
the critical damage parameter Dj.. Then, the stresses of critical elements were released, well known as the
element deletion technique in the finite element numerical analyses. Dj. is a material-dependent damage
parameter between 0.2 and 0.5 for all types of steel alloys. However, it is specified by practical tests, and there
is an approximate formula to estimate the magnitude of this parameter for ductile metals [1]:

o
De=1--1L (1n

Oy

where o and o, respectively, are the fracture and ultimate stresses of the material. Referring to Table 2, the
critical damage parameter was approximated to be 0.4415, which was used for the element deletion technique.

Figure 6 illustrates the damage evolution results of the specimen at several displacements until complete
fracture. Increasing the displacement leads to faster damage growth in the center zone of the instance rather
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Fig. 6 Damage evolution results for the standard tensile test at displacements of: a 2.084 mm, b 4.984 mm, ¢ 5.478 mm, and
d 5.488 mm (fracture initiation)

than in other regions. As clearly seen, the ductile damage variable reaches the critical damage parameter value
at the final displacement of 5.488 mm, and fracture initiates.

Besides, the history of the stress triaxiality growth vs. the ductile damage variable at three separate points
of (a), (b), and (c) located on the central cross section of the instance is compared in Fig. 7. As the figure
confirms, the stress triaxiality ratio for the three points has initially constant nominal value of 0.33, which
is expected for the uniaxial tensile test. However, the values of stress triaxiality rapidly change, due to the
large deformation and non-uniformity of stress distribution in the central section. Growing the stress triaxiality
ratio leads to the damage evolution and failure of the part. Rather than others, the stress triaxiality ratio more
quickly grows in the central point of (a) with increasing the loading. Moreover, Fig. 8 compares the damage
variable versus the equivalent plastic strain at the three different points of (a), (b), and (c). The comparison
obviously indicates that the point of (a) earlier touches the critical damage value of 0.4415, during the loading.
As previously mentioned, damage growth in ductile metals extremely depends on the two factors of stress
triaxiality ratio and the equivalent plastic strain. Therefore, point (a) sooner reaches the critical damage value
and fracture starts from this point.

6 Validation

To validate the determined damage parameter and the new approach, the Lemaitre’s ductile damage parameter is
experimentally achieved and compared with the numerically determined value. Regarding the investigations of
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central cross section of the sample

Lemaitre [1, 13], two types of direct and indirect methods exist for measuring the ductile damage parameter of
materials. The direct method is a destructive approach which works based on observing micrograph pictures of
the material. It accounts for the cross section area of microvoids and damaged zones and requires very accurate
and sensitive image processing tools. On the other hand, indirect methods detect variations of a physical
or mechanical property in a damaged material. These approaches consist of density, electrical resistance,
propagation of ultrasonic waves, tertiary creep response, cyclic plasticity response, elasticity modulus, and
microhardness methods. The variations of microhardness and elasticity modulus approaches are the most
accurate methods for ductile metals. Haji Aboutalebi et al. applied the Vickers microhardness method and
practically obtained the Lemaitre’s ductile damage parameter for DIN1623 St14 steel [31]. In the current
research, the method of elasticity modulus variations is employed to experimentally specify the Lemaitre’s
ductile damage parameter for the 16MnCr5 steel.

6.1 Variations of elasticity modulus method

Deterioration of material through a successive loading—unloading tensile test causes to the reduction of the
elasticity modulus. Thus, tracking the slopes of unloading lines allows following different stages of damage
evolution in the material. For a homogeneous and isotropic material, the isotropic damage can be simply
attained as:

(12)

| e
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Fig. 9 a SANTAM testing machine and (b) annealed round tensile test specimen

where E and E correspondingly are Young’s modulus of virgin material and effective elasticity modulus of
damaged material. The effective elasticity modulus is extracted from the slope of each unloading path in the
engineering stress—strain curve. Additionally, the Lemaitre’s ductile damage parameter r is given by the below
relation [30]:

02

= (13)
2E(1 - DY*(45)

6.2 Loading—unloading test

According to the previous descriptions of Sect. 4, three new annealed round tensile test specimens were similarly
provided. Each instance was individually exposed to the successive loading—unloading conditions, and the
results were averaged for reliability and accuracy. As depicted in Fig. 9, an accurate, sensitive extensometer
with large gauge length was used for precisely recording the strains.

Referring to Fig. 5, the total fracture displacement can be divided into a number of divisions, which is
adjusted as the needed displacement for the start point of each unloading path. In this study, a total number
of 16 divisions were fixed to precisely achieve the Lemaitre’s ductile damage parameter. After any of the
unloading stages, the slope of the unloading tangent line in the engineering stress—strain diagram denotes an
effective elasticity modulus of the material, as Fig. 10 exhibits. In comparison with the monotonic loading
diagram of Fig. 5, the test specimen fails at more elongation. It is because of the accumulation of the residual
stresses in the hysteresis cycles of the loading—unloading.

Having the magnitudes of effective elasticity modulus, the damage variable D can be easily found by
Eq. (12) for each step. Figure 11 demonstrates the variations of the damage variable versus the true plastic
strain in every of the unloading stages and also the related error bars. For higher accuracy, two different types
of linear and polynomial regression were utilized in the curve-fitting process. The figure clearly reveals that a
threshold plastic strain of about 0.02985 exists for the damage initiation process. The magnitude of damage
variable is highly insignificant for the equivalent plastic strains less than the threshold plastic strain.

Using Fig. 11, the slope of damage variable versus the equivalent plastic strain is calculated, as listed in
Table 4. Eventually, the ductile damage parameter r can be attained by Eq. (13) for each of the unloading
stages. Regarding Eq. (13), the value of Lemaitre’s ductile damage parameter r depends on the magnitudes of
stress, damage variable, and slope of the tangent line. Thus, various magnitudes of the mentioned parameters
give different values for the damage parameter in every step. Averaging the values of r can lead to the overall
prediction of damage growth and damage behavior of material throughout the loading history [1]. Meanwhile,
Fig. 12 displays the error bars of the damage parameter for the three empirical tests.
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Fig. 10 Results of the experimental successive loading—unloading test: a force—displacement curve and (b) details of the tangent
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Fig. 11 Variations of damage variable versus true plastic strain and error bars

The mean magnitude of r is computed equal to 1.707 MPa, which represents the intended value of
Lemaitre’s ductile damage parameter. On the other hand, the damage parameter was numerically determined to
be 1.695 MPa by the proposed method in Sect. 5. Comparing the determined and experimental values shows a
very low error percentage of 0.7%, which is satisfactory. Therefore, the practical tests strongly confirm that the
current novel numerical approach is able to successfully determine the Lemaitre’s ductile damage parameter
as well as the damage behavior of ductile metals.
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Table 4 Experimental loading—unloading test results

Unloading steps E (GPa) D The standard deviation of D r (MPa) The standard deviation of r
1 210.0 0.00000 0.00 - -

2 209.5 0.00238 1.46e-4 1.8341 6.55¢-3
3 208.8 0.00571 3.67e-4 1.9169 9.60e-3
4 208.2 0.00857 6.59¢-4 1.9858 1.36¢-2
5 207.6 0.01142 9.55e-4 2.0469 1.85e-2
6 206.8 0.01523 1.10e-3 2.1063 1.88e-2
7 206.2 0.01809 1.32¢-3 2.1600 1.61e-2
8 205.0 0.02381 1.43e-3 2.2214 2.18e-2
9 204.0 0.02857 1.44e-3 2.2966 2.63e-2
10 202.8 0.03428 1.51e-3 2.3536 2.32e-2
11 201.7 0.03952 1.65¢-3 2.4239 2.58e-2
12 200.4 0.04571 1.84¢-3 2.4722 2.34¢-2
13 198.5 0.05476 2.04e-3 1.2878 4.90e-2
14 194.4 0.07428 2.17e-3 0.3132 3.22e-2
15 182.3 0.13190 2.50e-3 0.1142 2.48e-2
16 152.1 0.27571 3.00e-3 0.0725 2.00e-2

3.0

Damage parameter (1) (MPa)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Loading-unloding steps

Fig. 12 Error bars diagram for ductile damage parameter r

7 Conclusions

In this paper, the major objective was to propose a new efficient approach for numerically determining the
Lemaitre’s ductile damage parameter in ductile metals. The suggested method only required the empirical
results of one simple uniaxial tensile test for a desired material. Compared with the conventional experimental
approaches, the presented approach was much easier, faster, and cheaper. The current method was exam-
ined for the so-called 16MnCr5 steel material. The Lemaitre’s ductile damage parameter was numerically
determined by a user-defined material subroutine. Furthermore, to validate the novel approach, the successive
loading—unloading tensile test was conducted to practically obtain the ductile damage parameter. The numer-
ical and empirical values of the ductile damage parameter were compared. The comparison revealed a very
insignificant percentage of error and excellent correlation. The offered approach can numerically determine
the Lemaitre’s ductile damage parameter without any high-cost and time-consuming empirical tests. Hence, it
is concluded that the numerically suggested method can be confidently employed for numerically determining
the damage behavior of ductile metals in bulk metal forming processes.
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