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Abstract Here, we examine the exciting forces for an arrangement of two coaxial vertical cylinders—a riding
porous cylinder and a submerged bottom-mounted solid rigid cylinder.We take up two cases: first we consider a
hollow porous cylinder at the top and secondly a solid porous cylinder at the top, and for both the cases, there is
a solid rigid cylinder placed at the bottom. The present configuration may be observed as a wave energy device
which can tap and transfer ocean wave energy to be used as non-conventional energy. A three-dimensional
representation of the problem is developed, based on the familiar method of eigenfunction expansion under
the assumption of linear water wave theory. The important porous boundary condition on the porous boundary
can be defined by means of Darcy’s law. The matching conditions across the linear interface between the
adjacent fluid domains can be obtained through the continuity of pressure and velocity. Subsequently, after
solving a system of linear equations, exciting forces and wave run-up for the upper and lower cylinders are
calculated through the evaluated velocity potentials. Various numerical experiments show the effect of different
parameters, such as porous coefficients, draft ratio, the ratio of radii of the upper and lower cylinders and the
water depth on exciting force and wave run-up. It is also shown that higher porosity value of the upper cylinder
results in higher energy loss conforming to the wave dissipation by the structure. The obtained results establish
that appropriate values of different parameters may be considered in designing practical structures in ocean.
Successful validation of the present model carried out with an available established one confirms the efficiency
of the present model. The present system may be considered as a wave energy device in other problems where
it can tap and transfer ocean wave energy to be used as non-conventional energy.

Keywords Energy device · Darcy’s law · Wave run-up · Exciting force · Porous coefficient
Mathematics Subject Classification 76B15 · 76S05

1 Introduction

The present study is concerned with the diffraction of linear water waves by two vertical circular cylinders
arranged in a specific manner such that this system can be considered to consist of a floating porous buoy
in a vertical position above a bottom-mounted caisson. For reasonable understanding, the porous buoy can
be approximated as a porous vertical cylinder whereas the caisson can be considered as a solid rigid vertical
cylinder. This configuration may be considered to represent a wave energy device, also sometimes called an
oscillating water column (OWC), which can be used to conveniently capture the immense and easily available
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power of ocean waves and convert it to electrical energy. The energy extracted by the upper porous cylinder is
usually transferred to a liquid pump properly placed on the lower rigid cylinder. Since the primary objective is to
capture waves as much as possible, there is a requirement of positioning the device in an appropriate manner.
Due to the rapid reduction of natural resources, the idea of using renewable non-conventional energy has
subsequently accorded immense importance to such devices. While designing marine structures, it is always
of utmost importance to take into account the possible existing atmospheric conditions and then to propose an
almost accurate prediction of the hydrodynamic impact on the structures. In this context, of late, one of the
main directions of research has specifically been in optimizing a system or a structure which will be able to
withstand significant adverse hydrodynamic actions. At present, the focus is on exploring the possibility of
the use of suitable porous structures, which, due to the pores on its surface, can make significant contribution
in reducing the impact of wave–body interaction. That is why many countries are exploring the feasibility of
extracting offshore wind and wave energy to be used as an alternative to conventional energy. Additionally, this
energy is inexpensive, readily available and reliable. For example, South Korea has already started working
on one such project to extract and utilize offshore wind energy through windmills installed in ocean [10].

The whole world witnessed global oil crisis in 1970. From then onward, the concept of bringing renewable
energy into fore has kicked off. Along side, a sizeable endeavor has been undertaken precisely on research
and burgeoning activities that relate to solar, wind and ocean energy. This development has come to the aid
of strengthening the study of the existing gap between renewable and non-renewable energy. In the recent
past, it has been observed that WEC (wave energy converter) systems require high cost in comparison with
traditional electricity produced from coal, hydro, nuclear power plants. The appealing power of the WEC can
be further intensified through the consolidation of a WEC into other maritime structures such as breakwater
pier or jetty, making it sustainable from economy point of view. Detailed information regarding consolidation
of breakwater and wave energy device over the stand-alone wave energy device can be found in Mustapa et al.
[15]. Waveloads and the competence of converting cylinders as wave energy device have received considerable
attention from designers. The diffraction by a system of two cylinders, as considered here, can be related to the
corresponding diffraction problem of a wave energy device. It may be mentioned here that our current work
involves the wave interaction with the structure, mainly looking at the hydrodynamic force and wave run-up
rather than focussing on the wave energy tapping aspect.

At the outset, it is considered pertinent to discuss some relevant important works carried out over the last
few decades. These works directly or indirectly influence the WEC construction and utilization. Ursell [30],
a leading researcher in water wave scattering and allied problems, studied the small oscillation of a long and
floating horizontal cylinder in finite ocean depth. He evaluated the amplitude of wave at some distance from the
cylinder and also the relevant added mass of the cylinder corresponding to its vertical motion. MacCamy and
Fuchs [13], by employing eigenfunction expansion, calculated the force andmoment acting on cylindrical piles
by diffraction of water waves. By applying the eigenfunction expansion approach, Spring andMonkmeyer [28]
analytically studied diffraction of linear water waves by an array of bottom-mounted impermeable circular
cylinders. This result can be considered as an extension of that of MacCamy and Fuchs [13].

Sahoo [18] considered a configuration consisting of an inner rigid circular cylinder and a vertical coax-
ial permeable hollow cylinder and examined cylindrical surface waves in infinite ocean depth by utilizing
Havelock’s expansion theorem and some properties of Bessel functions. Hassan and Bora [9] investigated
the radiation problem due to surge motion of a hollow riding cylinder that was placed above a coaxial solid
cylinder in finite ocean depth. They evaluated and discussed the behavior of the associated surge added mass
and surge damping coefficients.

The studyofwaterwave interactionwith porous structures is considered to bemore important and significant
from realistic and application point of view. For formulating problems pertaining to wave-induced flow in any
porous medium, the model devised by Sollitt and Cross [27] has attracted massive attention. This model
reckons wave energy dissipation inside a porous medium, and Lorentz Principle and an iterative procedure
were instrumental in evaluating the linearized friction term f . Chwang [2] developed a porous wave-maker
theory and investigated the distribution of hydrodynamic pressure and the total force exerted on thewave-maker.
They also established that the parameters associated with wave propagation and porosity had immense impact
on the outcomes. Darwiche et al. [3], by using eigenfunction expansion method, investigated the interaction
of water waves with a semi-porous cylindrical breakwater and they produced a very important result which
established that the semi-porous portion of the cylinder was instrumental in the reduction of the wave force.
Yu [34] came up with a new result for a fluid flow passing through a thin porous structure used as a breakwater
in ocean. He found that ignoring the inertial effect of the porous medium was instrumental in achieving an
underestimate of the performance of the structures. Williams and Li [31] considered a breakwater in the form
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of a semi-porous cylinder surrounding a rigid vertical circular cylinder that was mounted on a storage tank,
and they investigated its interaction with water waves. The wave field exhibited a significant change and
the presence of the semi-porous cylindrical breakwater led to significant reduction in hydrodynamic forces.
Williams and Li [32] extended their investigation by studying interaction of water waves with an array of
surface-piercing bottom-mounted porous cylinders and evaluated the associated hydrodynamic forces exerted
on them.

Sankarbabu et al. [19] considered the diffraction of water waves by an array of surface-piercing bottom-
mounted porous cylinders and observed various impacts that the wave and structural parameters exhibited.
Das and Bora [4] discussed reflection of linear water waves by a vertical porous structure placed on an
elevated impermeable sea-bed by considering a 2-step and a p-step bottom topography. They observed an
increase in the values of the reflection coefficient corresponding to lower values of porosity. Das and Bora
[5] further investigated an obliquely incident wave on a vertical porous structure placed on a multi-step
bottom topography by considering a solid vertical wall in water placed at a finite distance from the porous
structure and again by placing the wall at infinity. Koley et al. [11] investigated the oblique wave trapping
by bottom-standing and surface-piercing porous structures of finite width placed at a finite distance from a
vertical rigid wall. The solutions of the associated boundary value problems were obtained analytically by
using the eigenfunction expansion method and also numerically by using a multidomain boundary-element
method. Various aspects of structural configurations in trapping surface gravity waves were analyzed from the
computed results on the reflection coefficients and the hydrodynamic forces. Singla et al. [25] investigated the
scattering of obliquely incident water waves by a surface-piercing porous box in finite depth of fluid. They
computed physical quantities of interest like reflection and transmission coefficients. They also discussed some
special cases such as wave interaction with (i) rigid box and (ii) single/double porous barriers in the absence
of submerged porous plate. They found that the height and width of the porous box played important roles not
only in wave trapping inside the structure, but also in dissipating a major part of wave energy by the structure
to reduce wave transmission for creating a calm region on the lee side of the structure. Again Singla et al. [26]
discussed the effectiveness of a floating porous plate for mitigating the wave-induced structural response of a
very large floating structure using the eigenfunction expansion method. The elastic plate was modeled using
thin plate theory, and the wave past the porous plate was based on the assumptions of the generalized porous
wave-maker theory. They found that the amplitude of the periodic oscillatory pattern in the wave reflection
reduces with an increase in the length of the porous plate of moderate porosity. Ning et al. [16] investigated
the diffraction of water waves by a truncated cylinder consisting of an upper porous side-wall and an inner
column. They found that the associated wave forces and moments reduced corresponding to an increasing draft
ratio. Sarkar and Bora [20] evaluated hydrodynamic forces on a surface-piercing bottom-mounted compound
porous cylinder due to its interaction with water waves. It was observed that parameters such as radius, draft
and porosity immensely influenced hydrodynamic loads andwave run-up. In a similar manner, Sarkar and Bora
[21] evaluated the hydrodynamic force arising for the case of a floating compound porous cylinder in finite
ocean depth. It was observed that the hydrodynamic load exhibited a steady behavior in the lower frequency.
However, on the other hand, occurrence of fluctuations was noticed probably due to resonance prevailing near
a particular frequency. Sarkar and Bora [22] further investigated diffraction of ocean waves by a specific type
of cylinders, namely, a floating surface-piercing truncated partial-porous cylinder and then a surface-piercing
bottom-mounted truncated partial-porous cylinder, by treating both cases separately. Numerical experiments
were carried out in order to analyze the impact of parameters, such as porous coefficients, draft ratio, the ratio
of inner and outer radii, the water depth on the quantities hydrodynamic force, moment and wave run-up.
After that, Sarkar and Bora [23] extended their previous problem in [22] and they discussed the radiation of
ocean waves by a floating surface-piercing truncated partial-porous cylinder. They considered the surge and
heave motions of the cylinder to calculate the added mass and damping coefficients. Guo et al. [7] investigated
oblique wave interaction with a submerged horizontal flexible porous membrane in finite water depth. They
analyzed the effects of spring stiffness, porous effect parameter, submergence depth, structural length, angle
of incidence and flow pattern on reflection, transmission, dissipation coefficients, membrane deflection and
vertical force. Liu et al. [12] experimentally and theoretically discussed waveloads on quasi-ellipsoid-type
foundations coaxially surrounded by perforated breakwaters. They also validated the experimental results with
the occurrence of the “phase jump” when the waveloads on the breakwater were minimum.

In the present work, the interaction of linear surface waves with a cylindrical system consisting of two
coaxial vertical cylinders is theoretically investigated. Here, we discuss two cases: (i) a system consisting of a
hollow porous cylinder at the top and a rigid solid cylinder at the bottom, (ii) a solid porous cylinder at the top
with a rigid solid cylinder considered at the bottom. The entire fluid region is split into a number of subregions.
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Fig. 1 Schematic diagram of the configuration

By employing linear water wave theory and eigenfunction expansion, the problem is solved analytically in
each fluid region by an appropriate use of the conditions on and across the boundaries. The impacts of various
parameters due to the wave and the structure on the exciting forces exerted on the upper and lower cylinders are
illustrated graphically. We calculate the forces on the cylinders induced by diffraction, and the expectation is
that these outcomesmay be appropriately utilized in designing effective devices. Further, it is also anticipated to
benefit the engineers in selecting optimally important parameters such as depth, porosity, the radii of cylinders
and the gaps between the cylinders. This specific model, trusted not to have been considered earlier, is likely
to throw new lights in tackling ocean engineering problems that involve different configurations of porous
structures.

2 Two coaxial cylinders: an upper hollow porous cylinder and a lower rigid solid cylinder

2.1 Theoretical formulation

Two coaxial cylinders, a hollow upper cylinder with porous side-wall and a solid rigid lower cylinder, are
considered such that the upper one floats and the lower one is placed at the ocean bottom. A cylindrical
coordinate system (r, θ, z) is considered with the origin on z = 0 along the axis of the cylinders and the
z-axis pointing vertically upward where a and b are the radii of the upper and lower cylinders, respectively,
and h1 is the draft of the upper cylinder. The bottom of lower cylinder is located at depth z = −h3 with its
upper surface at z = −h2 (Fig. 1). For convenience and practical point of view, the whole fluid domain is
split into three regions: Region I (r ≥ b, −h3 ≤ z ≤ 0); Region II (a ≤ r ≤ b,−h2 ≤ z ≤ 0) and Region
III (0 ≤ r ≤ a,−h2 ≤ z ≤ 0) in each of which the velocity potentials are defined by Φ j for j = 1, 2, 3
as Φ j (r, θ, z, t) = Re[φ j (r, θ, z) exp (−iωt)], with Re denoting the real part of the quantity in brackets, ω

the angular wave frequency and i = √−1 the usual imaginary quantity. Subsequently, the incident velocity
potential due to awave of amplitude H and angular wave frequencyω that propagates in the positive x-direction
takes the following form [8,13,20]:

φinc = − igH

ω

cosh k0(z + h3)

cosh k0h3

∞∑

m=0

βm Jm(k0r) cosmθ,

where

βm =
{
1, for m = 0,

2im, for m ≥ 1,
(1)

with Jm(.) as the Bessel function of first kind of order m, k0 the incident wavenumber and g the acceleration
due to gravity. For such a flow, Laplace’s equation is satisfied by each potential φ j :

∇2φ j = 0; j = 1, 2, 3, (2)
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where φ j , j = 1, 2, 3 represent the potentials in regions I, II and III, respectively.
To construct the boundary value problems for φ j , the boundary conditions on the free surface, sea-bed and the
surface of the lower cylinder can be written in the following form:

∂φ j

∂z
− ω2

g
φ j = 0; at z = 0, j = 1, 2, 3, (3)

∂φ1

∂z
= 0; at z = −h3, r > b, (4)

∂φ2

∂z
= 0; at z = −h2, a < r < b, (5)

∂φ1

∂r
= 0; at r = b, −h3 < z < −h2, (6)

∂φ3

∂z
= 0; at z = −h2, 0 < r < a. (7)

The important condition on the porous surface of the structure is (Williams et al. [33])

∂φ3

∂r
= ik0G(φ2 − φ3) on r = a, −h1 < z < 0. (8)

The parameter G denotes the dimensionless porous parameter as used by Chwang [2]. Further, G can be
expressed in the from Gr + iGi as used by Yu [34], where Gr and Gi , respectively, denote the real part and the
imaginary part. The diffracted velocity potential φ1 in the exterior region satisfies the Sommerfeld radiation
condition:

lim
r→∞

√
r

[
∂(φ1 − φinc)

∂r
− ik0(φ1 − φinc)

]
= 0. (9)

On the boundary r = b, the relevant potentials φ1 and φ2 must satisfy the following matching conditions due
to continuity of velocity and pressure:

∂φ1

∂r
= ∂φ2

∂r
; −h2 < z < 0, (10)

φ1 = φ2; −h2 < z < 0. (11)

Similarly, at the boundary r = a, the relevant potentials φ2 and φ3 must satisfy followingmatching conditions:

∂φ2

∂r
= ∂φ3

∂r
; −h2 < z < −h1, (12)

φ2 = φ3; −h2 < z < −h1. (13)

Using eigenfunction expansion method, expression for each potential φ j , j = 1, 2, 3 can be obtained as
infinite series of orthogonal functions valid in the respective fluid region. The diffracted velocity potential for
Region I takes the following form [21]:

φ1(r, θ, z) = − igH

ω

⎡

⎣
∞∑

m=0

τm Jm(k0r)
cosh k0(z + h3)

cosh k0h3
cosmθ +

∞∑

m=0

cosmθ

∞∑

j=0

AmjZ(1)
j (k j z)T (1)

m (k jr)

⎤

⎦ ,

(14)

where the unknown coefficients Amj are to be determined. The wavenumbers k j ( j = 0, 1, 2, 3, . . .) are
derived from the following dispersion relations:

ω2 =
{

gk j tanh k j h3; j = 0,

−gk j tan k j h3; j ≥ 1.
(15)

To compute the wavenumbers k j from (15), the technique adopted by Chamberlain and Porter [1] is utilized.
For the benefit of readers, the technique is discussed in Appendix 6.
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The vertical eigenfunctions Z(1)
j (k j z) are defined as

Z(1)
j (k j z) =

⎧
⎨

⎩

cosh k j (z+h3)
cosh k j h3

; j = 0,

cos k j (z+h3)
cos k j h3

; j � 1.

T (1)
m (k jr), the radial eigenfunctions in (14), are as follows:

T (1)
m (k jr) =

⎧
⎪⎨

⎪⎩

H (1)
m (k j r)

H (1)′
m (k j b)

; j = 0,

Km(k j r)
K ′
m(k j b)

; j � 1,

with H (1)
m (k jr) and Km(k jr), respectively, denoting Hankel function of first kind andmodified Bessel function

of second kind of order m. Velocity potential φ2 in Region II satisfies the structural boundary conditions and
has the following form [8]:

φ2(r, θ, z) = − igH

ω

⎡

⎣
∞∑

m=0

∞∑

j=0

{
BmjS(1)

m (λ j r) + CmjR(1)
m (λ j r)

}
Z(2)

j (λ j z) cosmθ

⎤

⎦ , (16)

where the unknowns Bmj and Cmj are to be determined. The eigenvalues λ j are derived from

ω2 =
{

gλ j tanh λ j h2; j = 0,

−gλ j tan λ j h2; j ≥ 1.
(17)

The vertical eigenfunctions Z(2)
j (λ j z) are defined as

Z(2)
j (λ j z) =

⎧
⎨

⎩

cosh λ j (z+h2)
cosh λ j h2

; j = 0,

cos λ j (z+h2)
cos λ j h2

; j � 1.

The pair of radial eigenfunctions S(1)
m (λ j r) and R(1)

m (λ j r) appearing in (16) have the following forms:

S(1)
m (λ j r) =

⎧
⎪⎨

⎪⎩

H (1)
m (λ j r)

H (1)′
m (λ j b)

; j = 0,

Im(λ j r)
I ′
m(λ j b)

; j ≥ 1,
R(1)

m (λ j r) =

⎧
⎪⎨

⎪⎩

H (2)
m (λ j r)

H (2)′
m (λ j b)

; j = 0,

Km(λ j r)
K ′
m(λ j b)

; j ≥ 1,

where H (2)
m (λ j r) and Im(λ j r), respectively, denote Hankel function of second kind and modified Bessel

function of first kind of order m.
Now the potential φ3 in region III takes the following form:

φ3(r, θ, z) = − igH

ω

⎡

⎣
∞∑

m=0

cosmθ

∞∑

j=0

DmjZ(2)
j (λ j z)U (1)

m (λ j r)

⎤

⎦ , (18)

whereDmj are the unknown coefficients to be determined. The radial eigenfunctions U (1)
m (λ j r) are as follows:

U (1)
m (λ j r) =

⎧
⎨

⎩

Jm(λ j r)
J ′
m(λ j a)

; j = 0,

Im(λ j r)
I ′
m(λ j a)

; j � 1.
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2.2 Determination of unknown coefficients

Applying the matching conditions (10) and (11) for −h2 < z < 0 and the orthogonality of the depth eigen-
functions Z(2)

α (λαz), the following are obtained:

∞∑

j=0

AmjT (1)′
j (k jb)Qα j −

(
BmαS(1)′

m (λαb) + CmαR(1)′
m (λαb)

)
Vαα = −βm J ′

m(k0b)Qα0, α ≥ 0, (19)

∞∑

j=0

AmjT (1)
j (k jb)Qα j −

(
BmαS(1)

m (λαb) + CmαR(1)
m (λαb)

)
Vαα = −βm Jm(k0b)Qα0, α ≥ 0. (20)

Again using the condition (12), along with the orthogonality of eigenfunctions Z(2)
α (λαz), we obtain

∞∑

j=0

DmαU (1)′
m (λαa)Lα j −

∞∑

j=0

(
BmαS(1)′

m (λαa) + CmαR(1)′
m (λαa)

)
Lα j = 0, α ≥ 0. (21)

Now application of the porous wall condition (8) for the depth −h1 < z < 0 and the orthogonality of the
eigenfunctions Z(2)

α (λαz) gives the following:

∞∑

j=0

(
U (1)′
m (λ j a) + ik0GU (1)

m (λ j a)

)
DmjWα j + ik0G

∞∑

j=0

(
BmjS(1)

j (λ j a) + CmjR(1)
j (λ j a)

)
Wα j = 0,

α ≥ 0, (22)

where

Qα, j =
∫ 0

−h2
Z(2)

α (λαz)Z(1)
j (k j z)dz, (23)

Vα,α =
∫ 0

−h2
Z(2)

α (λαz)Z(2)
α (λαz)dz, (24)

Lα, j =
∫ −h1

−h2
Z(2)

α (λαz)Z(2)
j (λ j z)dz, (25)

Wα, j =
∫ 0

−h1
Z(2)

α (λαz)Z(2)
j (λ j z)dz. (26)

For such studies, two important aspects are the exciting forces and the wave run-up. Wave exciting forces are
those forces which are induced by the direct action of the incident waves on the body. In linear theory, these
forces are directly proportional to the wave amplitude, which is assumed to be small. Wave run-up is defined
as the maximum onshore elevation reached by a wave, relative to the wave-averaged shoreline position. In
order to obtain the exciting forces and wave run-up, the unknown coefficients are required to be computed.
By truncating each of the infinite series appearing in Eqs. (19)–(22) after some terms N = 20, the values of
the coefficientsAmj , Bmj , Cmj andDmj are computed. It is worthwhile mentioning that excellent convergence
is attained by such truncation as already described in [20]. As a consequence, the following linear system of
algebraic equations is obtained for determining the unknowns:

HlXl = El , (27)

with Xl = [Al1,Al2, . . . ,AlN ,Bl1,Bl2, . . . ,BlN , Cl1, Cl2, . . . , ClN ,Dl1,Dl2, . . . ,DlN ]t , Hl the coefficient
matrices, El the right-hand vectors.
Gaussian eliminationmethod thatwas adopted in [20] is employedhere also for solving this systemof equations.
To justify the selection of N = 20 for evaluating the coefficientsAmj ,Bmj , Cmj andDmj , we present two tables
(Tables 1, 2) for the coefficientsAmj and Bmj fromwhich it becomes clear why N = 20 is selected. The values
of the coefficients between N = 20 and N = 25 have very small variations which can be easily neglected. It is
found that the values of the potential coefficients are correct up to six decimal places. A similar convergence
was also observed byMandal et al. [14] too. However, for each table, we choose only two coefficients for want
of space. It may be noted that values for the rest of the coefficients also follow a similar trend.
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Table 1 CoefficientsA1N for G = 1, a/b = 0.50, h2/h3 = 0.66 and h1/h2 = 0.37

A1N N = 5 N = 15

A11 0.0276246627534525 + 0.256451687513357i 0.02356451364289226 + 0.216467244632127i
A12 0.0368423166272579 + 0.02578261727637948i 0.0335637215691970 + 0.0229053548642178i
A13 0.0458324772158265 - 0.0356126822878257i 0.0415276431578675 - 0.0278785654985492i

N = 20 N = 25

A11 0.0217265354867123 + 0.174243623484381i 0.0217264262158414 + 0.174243564259232i
A12 0.02913456782437924+ 0.0203468289358562i 0.02913424943535535+ 0.0203467655279801i
A13 0.037256332569782- 0.0251562182548145i 0.0372562561481531- 0.0251561529453171i

Table 2 Coefficients B1N for G = 1, a/b = 0.50, h2/h3 = 0.66 and h1/h2 = 0.37

B1N N = 5 N = 15

B11 0.0347868268604512 - 0.254366312634592i 0.0320345623445345 - 0.212464223413425i
B12 -0.04534578323556625 + 0.0386356126254757i -0.04135471275231214 + 0.0352445213653245i
B13 0.03135423567514145 + 0.02541364524566785i 0.0295415325458245 + 0.02254632691532535i

N = 20 N = 25

B11 0.0304127564142835 - 0.195654543242556i 0.0304126253254724 - 0.195654452453825i
B12 -0.04015256542452681 + 0.0326456327649642i -0.04015245213524352 + 0.0326454245453351i
B13 0.0275652546923416 + 0.02134245567251245i 0.0275651458114922 + 0.02134234256132350i

2.3 Horizontal exciting forces and wave run-up

The exciting forces acting on the upper and the lower cylinders in the direction of wave propagation can be
computed by integrating the pressure at the surface of the structure. The forces F̃ j

x = Re[F̃ j
x exp(−iωt)] for

j = 1, 2 ( j = 1 refers to upper cylinder and j = 2 to lower cylinder) are defined as follows:

F̃1
x = iωρ

∫ 0

−h1

∫ 2π

0
φ3(a, θ, z) cos θ dzdθ − iωρ

∫ 0

−h1

∫ 2π

0
φ2(a, θ, z) cos θ dzdθ, (28)

F̃2
x = −iωρ

∫ −h2

−h3

∫ 2π

0
φ1(b, θ, z) cos θ dzdθ. (29)

The exciting forces at the upper and lower cylinder are non-dimensionalized by dividing F̃1
x and F̃2

x by
ρgah2H and ρgbh2H , respectively (Froude–Krylov force acting on cylinders of radius a and b, respectively).
The Froude–Krylov force is the force introduced by the unsteady pressure field generated by undisturbedwaves.
The Froude–Krylov force does, together with the diffraction force, make up the total non-viscous forces acting
on a floating body in regular waves. Therefore, the Froude–Krylov force is the force that the fluid would exert
on the body, had the presence of the body not disturbed the flow. We now denote the non-dimensionalized

exciting forces for upper and lower cylinder by F1
x = |F̃1

x |
|ρgah2H | and F2

x = |F̃1
x |

|ρgbh2H | , respectively. Similar

kind of non-dimensionalization is noticed to have been followed by Ning et al. [16], Sarkar and Bora [24] and
Williams and Li [31].

The wave run-up for the exterior and interior regions, as given by η j (r, θ, t) = Re[ζ j (r, θ) exp(−iωt)]
for j = 1, 2, 3 ( j denoting regions I, II and III), is calculated by applying the following dynamic free surface
condition:

η j = −1

g

∂φ j

∂t
, z = 0, j = 1, 2, 3. (30)

2.4 Numerical discussion

In practice,G always possesses positive real and imaginary parts but when the resistance effect against the flow
dominates the inertial effect of the fluid inside the porous material, then G becomes real. Conforming to our
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(a) Exciting force F 1
x acting on the upper cylinder
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Fig. 2 Exciting forces F1
x and F2

x against wavenumber for various values of radius ratio a/b with h1/h2 = 0.37, h2/h3 = 0.66
and G = 1

problem, we discuss only real part of G, that means when resistance effect dominates inertial effect. Further,
it is observed that even if G is imaginary or a mix of real and imaginary, there is no significant deviation at all
from present results. In this context, we later produce two results by considering complex values of G.

Figure 2a and b, respectively, presents the exciting forces F1
x acting on the upper cylinder and F2

x on the
lower cylinder plotted against wavenumber for various values of radius ratio a/b with G = 1, h1/h2 = 0.37
and h1/h3 = 0.66. From Fig. 2a, it is observed that the value of the force is initially nonzero. For certain values
of k0h2, waveload on the upper cylinder becomes very low and it creates turning points. This may be due to
the interaction of incoming and scattered waves leading to destructive interference near the upper cylinder.
The clear observation is that higher forces occur for lower values of a/b. This is due to more energy getting
concentrated near the upper cylinder and consequently resulting in an increase in exciting force. It establishes
that the size of the cylinder needs to be adjusted for getting higher or lower force on the cylinder surface.
Higher values of the force occur for lower values of a/b, i.e., when the radius of the upper cylinder tends
to be much smaller compared to that of the lower cylinder. Also from Fig. 2b, it is observed that all curves
maintain a similar trend (i.e., start from zero and then take increasing values as the values of the wavenumber
increase). That the higher values of force correspond to the lower values of radius ratio a/b means that for a
much smaller upper cylinder or a much bigger lower cylinder, an increase in exciting force occurs.

The exciting forces F1
x acting on the upper cylinder and F2

x on the lower cylinder corresponding to different
values of h1/h2 with fixed values G = 1, h2/h3 = 0.66 and a/b = 0.50 are plotted against wavenumber
in Fig. 3a and b, respectively. In Fig. 3a, the same trend of graph pattern as observed in Fig. 2a is observed.
The oscillation is observed to get shifted toward left for increasing values of h1/h2. The occurrence of shift in
these curves may be due to the phase shift of the wave with the change of the drafts of the porous cylindrical
system. The main observation is that the higher values of the force occur within lower values of h1/h2, i.e.,
when the draft of the upper cylinder with respect to its upper surface is reduced which makes the cylinder
closer to the free surface. Figure 3b shows that the exciting force F2

x acting on the lower cylinder takes higher
values corresponding to lower values of h1/h2. This implies that when the draft of the upper cylinder is less,
then the force acting on the lower cylinder increases due to a larger fluid region between the cylinders.

In Fig. 4a and b, the exciting force F1
x acting on the upper cylinder is examined by plotting it against

wavenumber corresponding to various values of porous coefficient G (real values in Fig. 4a and complex
values in Fig. 4b) for the fixed values a/b = 0.5, h2/h3 = 0.66 and h1/h2 = 0.37. From Fig. 4a, it is clearly
visible that G has a reasonable influence on the exciting forces and all curves exhibit similar behavior as in
the earlier cases. Also, lower values of porous coefficient give rise to higher values of force. As the porous
coefficient G takes increasing values, more waves pass through the structure which brings reduction of the
resistance of the cylinder to the wave motion. Also from Fig. 4b, it is observed that there is no significant effect
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Fig. 3 Exciting forces F1
x and F2

x against wavenumber corresponding to different values of h1/h2 for a/b = 0.50, h2/h3 = 0.66
and G = 1
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(b) Exciting force F 1
x acting on the upper cylinder for complex G

Fig. 4 Exciting force F1
x plotted against wavenumber for different values of porous coefficients G with fixed values a/b = 0.50,

h2/h3 = 0.66 and h1/h2 = 0.37

of the imaginary part of the porous parameter on exciting force on the upper hollow porous cylinder and hence
consideration of real G is justified for further investigation. In other words, the inertial effect corresponding
to G is not significant enough.

Figures 5 and 6 present contour plots of the wave run-up nearer the free surface corresponding to two
different values of frequency. They illustrate that when the wave gets scattered by the cylinder, the elevation
gets reduced. By comparison of these two figures, it is clearly noticed that corresponding to higher frequency
incident waves, the pattern of the diffracted wave becomes more assertive in addition to the observation of
appearance of more number of wave ripples in the annular region.

It is clear from the results that due to the porosity of the cylinder, dissipation of wave energy occurs which
results in reduction of wave energy. The energy loss is given by the difference of the energy due to the presence
of the solid wall, i.e., for G = 0 and that due to the presence of the porous wall divided by the energy due to
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Fig. 5 Contour plot for the wave run-up |ζ1(r, θ)|/H at free surface for k0b = 3.5, a/b = 0.50, h1/h2 = 0.37, h2/h3 = 0.66
and G = 1

Fig. 6 Contour plot for the wave run-up |ζ1(r, θ)|/H at free surface for k0b = 1.75, a/b = 0.50, h1/h2 = 0.37, h2/h3 = 0.66
and G = 1

Table 3 Energy loss due to the hollow porous cylinder for various values of G with k0h2 = 0.25, a/b = 0.50, h2/h3 = 0.66
and h1/h2 = 0.37

Porosity G Energy loss (%)

1 9.87
2 28.16
3 36.58
4 44.50

the presence of the solid wall (see Richey et al. [17]), i.e.,

Energy loss = Energy in the presence of the solid wall − Energy in the presence of the porous wall

Energy in the presence of the solid wall
× 100.

(31)

Based on (31), we present Table 3 which gives some idea about energy loss due to various values of the porosity
of the porous wall.
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Fig. 7 Schematic diagram of the second problem

3 Two coaxial cylinders: upper porous cylinder and lower rigid cylinder

3.1 Theoretical formulation

In this case, we take up two coaxial cylinders such that the upper cylinder of radius a is fully porous (it is
no more hollow) with an impermeable bottom and the lower cylinder of radius b is rigid. There are four fluid
regions considered: Region I (r ≥ b,−h3 ≤ z ≤ 0); Region II (a ≤ r ≤ b,−h2 ≤ z ≤ 0) ; Region III
(0 ≤ r ≤ a,−h2 ≤ z ≤ −h1) and Region IV (0 ≤ r ≤ a,−h1 ≤ z ≤ 0) (Fig. 7). In each of these regions,
the velocity potentials are defined by Φ j (r, θ, z, t) = Re(φ j (r, θ, z) exp(−iωt)) for j = 1, 2, 3, 4. In this
case also, each potential satisfies Laplace’s equation in the respective region as defined above. The boundary
conditions on the free surface, sea-bed and the surface of the bottom cylinder are same as Eqs. (3)–(6) from
the first problem along with the following additional conditions for φ3 and φ4:

∂φ4

∂z
= 0; at z = −h1, 0 < r < a, (32)

∂φ3

∂z
= 0; at z = −h2, 0 < r < a, (33)

∂φ3

∂z
= 0; at z = −h1, 0 < r < a. (34)

The condition on the porous boundary wall has the following form [29]:

∂φ4

∂r
= ik0G(φ2 − φ4) on r = a, −h1 < z < 0. (35)

The matching conditions are expressed by Eqs. (10) and (11) along with the following additional conditions:

∂φ4

∂r
= ∂φ2

∂r
; at r = a, −h1 < z < 0, (36)

∂φ3

∂r
= ∂φ2

∂r
; at r = a, −h2 < z < −h1, (37)

φ3 = φ2; at r = a, −h2 < z < −h1. (38)

The potentials φ1 and φ2 are given by (14) and (16), respectively. Further, φ3 has the following form:

φ3(r, θ, z) = − igH

ω

⎡

⎣
∞∑

m=0

cosmθ

∞∑

j=0

[
FmjN (1)

m (μ j r)
]
Z(3)

j (μ j z)

⎤

⎦ , (39)
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where Fmj are the coefficients to be determined. The vertical eigenfunctions Z(3)
j (μ j z) are defined as

Z(3)
j (μ j z) =

{√
2
2 ; j = 0,

cosμ j (z + h2); j � 1.

μ j can be found from

μ j = π j

h2 − h1
, j = 0, 1, 2, . . . .

The radial eigenfunctions N (1)
m appearing in (39) are as follows:

N (1)
m =

⎧
⎨

⎩

rm

am−1 ; j = 0,
Im(μ j r)
I ′
m(μ j a)

; j � 1.

Now potential φ4 in Region IV takes the form

φ4(r, θ, z) = − igH

ω

⎡

⎣
∞∑

m=0

cosmθ

∞∑

j=0

GmjZ(4)
j (σ j z)O(1)

m (σ j r)

⎤

⎦ , (40)

where Gmj are unknown coefficients. The vertical eigenfunctions Z(4)
j (σ j z) here are defined as

Z(4)
j (σ j z) =

⎧
⎨

⎩

cosh σ j (z+h1)
cosh σ j h1

; j = 0,

cos σ j (z+h1)
cos σ j h1

; j � 1.

The wavenumbers σ j ( j = 0, 1, 2, 3, . . .) are derived from the following dispersion relations:

ω2 =
{
gσ j tanh σ j h1; j = 0,

−gσ j tan σ j h1; j ≥ 1.

The radial eigenfunctions O(1)
m (σ j r) are as follows:

O(1)
m (σ j r) =

⎧
⎨

⎩

Jm(σ j r)
J ′
m(σ j a)

; j = 0,

Im(σ j r)
I ′
m(σ j a)

; j � 1.

3.2 Determination of unknown coefficients

Applying the matching conditions (10) and (11) for −h2 < z < 0 and also the orthogonality of the eigen-
functions, we get the first two equations (19) and (20). Then, using matching condition (36) for the depth
−h1 < z < 0, along with the orthogonality of the eigenfunctions Z(4)

α (σαz), we get

GmαO(1)′
m (σαa)Xαα −

∞∑

j=0

(
BmjS(1)′

j (λ j a) + CmjR(1)′
j (λ j a)

)
Pα j = 0, α ≥ 0. (41)

Again using the condition (37) for the depth −h2 < z < −h1, along with the orthogonality of eigenfunctions
Z(3)

α (μαz), we obtain

(
FmαN (1)′

m (μαa)

)
Kαα −

∞∑

j=0

(
BmjS(1)′

j (λ j a) + CmjR(1)′
j (λ j a)

)
Yα j = 0, α ≥ 0. (42)
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Fig. 8 Comparison of hydrodynamic force of the present work with that of Garrett [6]

Similarly, with the help of matching condition (35) for the depth −h1 < z < 0, along with orthogonality of
the eigenfunctions Z(4)

α (σαz), we get

Gmα(1 + ik0GO(1)
m (σαa))Xαα − ik0G

∞∑

j=0

(
BmjS(1)

j (λ j a) + CmjR(1)
j (λ j a)

)
Pα j = 0, α ≥ 0, (43)

where

Pα, j =
∫ 0

−h1
Z(4)

α (σαz)Z(2)
j (λ j z)dz, (44)

Xα,α =
∫ 0

−h1
Z(4)

α (σαz)Z(4)
α (σαz)dz, (45)

Yα, j =
∫ −h1

−h2
Z(3)

α (μαz)Z(2)
j (λ j z)dz, (46)

Kα,α =
∫ −h1

−h2
Z(3)

α (μαz)Z(3)
α (μαz)dz. (47)

To calculate the unknown coefficients, the same technique as used in the earlier problem is followed here too.

4 Validation of the present model

To validate our present analytical model for solving the problem, we compare one result with that of Garrett
[6], i.e., when the upper cylinder is considered to be a solid impermeable cylinder (i.e., G = 0) and the height
of the lower cylinder is taken to be zero, i.e., the lower cylinder is not present at all in this comparison case.
All the parameters in our problem are reconsidered conforming to Garrett’s work so that our problem can be
converted to the same physical problem. We consider a floating cylinder corresponding to G = 0, h3/a =
0.75, (h1 − h3)/a = 0.50. Figure 8 depicts the hydrodynamic force acting on outer wall for both Garrett’s
work and our work fromwhich an excellent agreement is reached. In view of this, our model can be considered
effective and hence can be utilized to study and analyze different aspects of various parameters for such
problems.

4.1 Numerical discussion

In Fig. 9a and b, the exciting forces F1
x acting on the upper cylinder and F2

x acting on the lower cylinder
are plotted, respectively, against wavenumber for various values of radius ratio a/b with fixed values G = 1,
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Fig. 9 Exciting force F1
x and F2

x plotted against wavenumber for various values of radius ratio a/b with h1/h2 = 0.37,
h2/h3 = 0.66 and G = 1
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Fig. 10 Exciting forces F1
x and F2

x against wavenumber corresponding to different values of h1/h2 for a/b = 0.50, h2/h3 = 0.66
and G = 1

h1/h2 = 0.37 and h2/h3 = 0.66. Figure 9a shows that the exciting force acting on the upper cylinder increases
corresponding to a reduction in the value of the radius ratio. Comparing Figs. 2a and 9a, it is clearly visible
that the exciting force for this case (presence of solid porous cylinder at the top) is higher at r = a than that
in the earlier case (presence of hollow porous cylinder at the top). Higher values of the force occur for lower
values of a/b, i.e., when the radius of the upper cylinder tends to be much smaller compared to that of the
lower cylinder. Figure 9b indicates that the wave force acting on the lower cylinder increases as the radius ratio
a/b decreases. This implies that in order to achieve lower forces, the configuration is to be made such that
the sizes of the lower and the upper cylinder must not be much different from each other with the restriction
a < b.

Figure 10a and b, respectively, presents the exciting forces F1
x acting on the upper cylinder and F2

x acting
on the lower cylinder plotted against wavenumber corresponding to various values of draft h1/h2 with G = 1,
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Fig. 11 Exciting force F1
x acting on the upper cylinder plotted against wavenumber for different values of porous coefficient G

with fixed values a/b = 0.50, h2/h3 = 0.66 and h1/h2 = 0.37

Table 4 Energy loss due to the solid porous cylinder for various values of G with k0h2 = 0.25, a/b = 0.50, h2/h3 = 0.66 and
h1/h2 = 0.37

Porosity G Energy loss (%)

1 9
2 25.67
3 33.34
4 40.58

h2/h3 = 0.66 and a/b = 0.50. Figure 10a shows that force increases when h1/h2 decreases. This implies
that the draft of the upper cylinder has a significant effect on the exciting force. Further, the exciting force
acting at the cylinder surface r = a in Fig. 10a is found to be similar to that observed in Fig. 3a. The main
observation is that the higher values of the force occur within lower values of h1/h2, i.e., when the draft of the
upper cylinder with respect to its upper surface is reduced which makes the cylinder closer to the free surface.
From Fig. 10b, the observation here is that the force increases corresponding to decreasing values of h1/h2.
This shows that a lower value of the draft of the upper cylinder, which results in a larger fluid region between
the cylinders, is responsible for the occurrence of higher force on the lower cylinder.

Figure 11 depicts the variation of exciting force F1
x at r = a plotted against dimensionless wavenumber for

various values of G (both real and complex) corresponding to the fixed values h1/h2 = 0.37, h2/h3 = 0.66
and a/b = 0.50. Comparing Figs. 4 and 11, it is evident that for the earlier case (presence of hollow porous
cylinder at the top), the exciting force is not as pronounced as is observed in this case (presence of solid porous
cylinder at the top). The peak value of the force occurs for G = 1 and the force on the upper cylinder, in
general, reduces corresponding to increasing values of |G|. This establishes the influence of the porosity of
the upper cylinder on the exciting forces.

Comparing the results of both the cases of keeping a hollow porous or a solid porous cylinder at the top, it
can be seen that corresponding to the same set of values of radius ratio a/b, draft h1/h2 and porous coefficient
G, the exciting force is higher for the solid porous cylinder case than the hollow porous cylinder case.

Based on (31), as observed for the earlier case, here also we can observe reduction of wave energy due to
dissipation by the porous structure under consideration. Energy loss by the solid porous cylinder is presented
in Table 4 corresponding to various values of G.

5 Conclusion

The current work caries out a theoretical study on the interaction of linear water waves with a system consisting
of two coaxial vertical cylinders in the form of a riding hollow or a solid porous cylinder at the top and a
bottom-mounted solid rigid cylinder. The radius of the lower cylinder is taken to be greater than the radius of
the upper cylinder. By using the familiar methods of eigenfunction expansion and separation of variables, this
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diffraction problem governed by Laplace’s equation is solved. The main objective here is to study the exciting
force andwave run-up due to the system interactingwith thewater waves. Subsequently, it is concluded through
appropriate graphical representation that variation of values in radii, draft and porosity has significant impact
on the exciting force and wave run-up. It is found that for the first case (i.e., a riding hollow porous cylinder
at the top), the force acting on the upper cylinder takes increasing values corresponding to lower values of
radius ratio a/b. Further, for this case, the force becomes higher also corresponding to lower values of draft
h1/h2. It is observed that higher force occurs corresponding to lower porous coefficients. It is also observed
that for fixed radius, porosity and depth, the wave run-up is more visible corresponding to increasing values
of wavenumber. It is further observed that the exciting force for the second case (i.e., a solid porous cylinder
at the top) is higher at the surface of the upper cylinder than that in the first case (i.e., a hollow porous cylinder
at the top). Since wave energy is dissipated due to the porosity of the structure, results are also presented for
energy loss corresponding to various porosity values which establish that more energy reduction takes place
due to consideration of higher porosity values. For the second case (i.e., a solid porous cylinder at the top),
higher values of the force occur within lower values of draft ratio (h1/h2). Also, the force increases for lower
values of radius ratio (a/b). A successful validation shows that the current model will be effective for such
problems. This model can be considered as a wave energy device. Proper positioning of the device will allow
the device to capture more waves. The expectation here is that the configuration and formulations suggested
and results obtained in this work will provide essential information to design suitable and effective porous
structures that may be installed in ocean and that these structures will efficiently serve as wave energy devices
and also for other meaningful purposes.
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Appendix A

Chamberlain and Porter’s method for finding wavenumbers

Basically, the dispersion relation (15) has one positive real root k0 corresponding to the mode of wave prop-
agation and infinitely many purely imaginary roots ikn ; n = 1, 2, . . ., which correspond to the evanescent
modes. In our calculation, we have used 20 roots: one root (positive real) for the propagating mode and another
nineteen roots (purely imaginary) for the evanescent modes. Das and Bora [4,5] used the same method for
finding the roots of the dispersion equation. Now we discuss the Chamberlain and Porter’s method for finding
the roots of dispersion the equation. The Different dispersion relations arise for different upper surfaces and
bottom surfaces. Equation (15) may be rewritten as

h3ω2

g
= C0 tanh C0,where C0 = k0h3. (A.1)

The above equation has only one positive root and an infinite number of imaginary roots. We call the positive
root C0 and other roots iCn for n = 1, 2, 3, . . .. Also, Cn are the real positive roots of

h3ω2

g
= −Cn tan Cn, (A.2)

where the roots lie in (n − 1
2 )π < Cn < nπ .

An approximation for C0 is given by Chamberlain and Porter [1] as

C0 = M
(
1 − 4(1 − (1 + M)e−2M

2M + sinh 2M

)− 1
4

,where M = h3ω2

g
. (A.3)
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To approximate Cn(n = 1, 2, . . .), we again use an iterative method suggested by Chamberlain and Porter:

Cn,m+1 = tn(Cn,m), (A.4)

where tn(an) = an√
1 − 2(an tan an+M) sin 2an

M(2an+sin 2an)

and Cn,0 = βn = nπ − π

2
tanh

2M
nπ2 . Once we obtain the values of

Cn(n = 0, 1, 2, . . .), kn can be calculated by using the relation Cn = knh3.
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