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Abstract For the exact solution of the stress in the functionally graded (FG) cylindrical/spherical pressure
vessel, this paper presents a unified form of the basic equations of the FG hollow cylinder/spherical shell
by introducing parameter, and then, the axial/spherical symmetry mechanical problems of FG hollow shells
are studied under three different boundary conditions, respectively. Assume that the Young’s modulus of the
material changes with thickness distribution of cylinder/shell in the form of power functions and the value
of Poisson’s ratio is constant, the analytical solutions of the displacement and stress of the FG hollow cylin-
drical/spherical pressure vessel are derived under different boundary conditions. By comparing the analytical
solutions of the FG hollow cylinder/spherical shell obtained in this paper with the existing classical theoretical
solutions and numerical solutions, the correctness of the analytical solution given in this paper is verified. In
the numerical discussion, the distributions of displacement, radial stress and circumferential stress of the FG
hollow cylinder/spherical shell under different gradient parameters and different size conditions are given,
respectively. Finally, based on the difference numerical method, the stress distribution of FG hollow cylin-
der/spherical shell with the Young’s modulus and Poisson’s ratio along thickness distribution in the form of
power functions is analyzed numerically. The results show that gradient parameter and geometric size have a
great influence on the mechanical response of FG structure under different boundary conditions.

Keywords Functionally graded material (FGM) · Hollow cylinder/spherical shell · Stress distribution ·
Analytical solution · Axial/spherical symmetry problem

1 Introduction

Composite materials have great application in the engineering and the sudden change in the properties of
most composite materials often cause obvious local stress concentration and material failure. The functionally
graded material (FGM) [1, 2], as a special composite material, is generally composed of two or more materials,
and its microstructure changes from one continuous and smooth material to another material with a specific
gradient. So, the material properties of the FGM (including Young’s modulus, shear modulus and material
density) present a gradient changewithin a specific size range [3, 4].As the development of traditional laminated
materials, FGMs havemany advantages, including reducing in-plane and lateral stress, reducing stress intensity
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factors, improving residual stress distribution and enhancing thermal performance [5]. Therefore, FGMs have
been widely used in aerospace, mechanical engineering, biomedicine and other fields.

In order to obtain the analytical solution of the mechanical response of FGM structure, in theoretical
research, it is often assumed that the Young’s modulus changes with the spatial coordinates in the form of some
special functions. Many researchers have studied the analytical solutions for FGM structures with changing
material properties along the thickness direction. Pradhan and Chakraverty [6] studied the free vibration of
functionally graded (FG) beams under different boundary conditions. Kang.

Kang and Li [7] analyzed the large deformation of the nonlinear cantilever FG beam and derived the explicit
expressions of the deflection and rotation for FG beam subjected to end bending moment, and the influences of
Young’s modulus gradient distribution and material nonlinear parameters on the deflection of FG beam were
analyzed. Li [8] extended the high-order theory to FG beams with continuously changing material properties
and calculated numerically the FG cantilever beams with gradient index obeying the power law and showed
graphically the effect of gradient index on deflection and stress distribution.By using the superposition principle
method, Jiang and Ding [9] derived the analytic solution of the orthotropic FG cantilever beam. Ding et al. [10]
considered the plane stress problem of a general anisotropic beam whose elastic compliance parameter was
an arbitrary function of the thickness coordinate, and obtained the solutions for tension, pure bending beams,
cantilever beam subjected to free end shear and cantilever beams or simply supported beams under uniform
load.

In addition, FG hollow cylinders and spherical shells are commonly used in engineering. Some researchers
have been carried out the research on FG vessel such as cylinders and spheres. For the FG cylindrical/spherical
pressure vessel, it was assumed that the Young’s modulus of the material changes with thickness distribution
of cylinder/shell in the form of some special functions to solve the analytical solution of the problem in many
papers. Horgan andChan [11] proposed the linear elastic problemof FGhollow cylinder under internal pressure
and studied the FG cylinder model under mechanical stress. Sarathchandra et al. [12] carried out modeling and
structural analysis of FG cylindrical shells with different inner and outer surface compositions and carried out
static structural analysis of cylindrical shells under internal pressure and then verified the analysis results with
analytical solutions. Horgan and Chan [13] assumed that the Young’s modulus changes with radial direction
in the form of power functions and studied the one-dimensional axisymmetric deformation of a FG rotating
disk. Li et al. [14] obtained the analytical solution of an isotropic FG ring under uniform load by introducing
an appropriate logarithmic function term in the displacement expression when the inner and outer boundary
conditions were in any combination. Tutuncu and Ozturk [1] studied FG spherical and cylindrical pressure
vessels with the change of Young’smodulus satisfying the power function along thickness distribution and gave
the analytical solutions of stress. Tutuncu and Temel [15] obtained the stress and displacement equations of
FG axisymmetric hollow spheres, cylinders and disks under uniform pressure. Ghannad et al. [16] studied the
analytical solutions of the deformation and stress of axisymmetric thick cylindrical shells that were clamped
along the edges and the FG with changing thickness was under internal pressure. Li et al. [17] proposed a new
simple and effective integral equation method to study the FG axisymmetric structure with arbitrary gradient
changes and solved the problem by transforming the considered problem into solving the integral equation.
Chirag and Srikant [18] used the variation asymptotic method to obtain the asymptotically accurate analytical
solution of the FG cylinder and analyzed the influence of the internal and external material properties, radius
and material composition on the mechanical properties of the material. In addition, researchers also considered
the influence of temperature load on the stress law of FG. Bahtui and Eslami [19] studied the thermoelastic
coupling response of a FG cylindrical shell, and the thermoelastic coupling equation and energy equation of
FG axisymmetric cylindrical shell under thermal shock load were solved. Subsequently, Bahtui and Eslami
[20] studied the response of FG cylindrical thin shells based on the generalized thermoelastic theory. Assuming
that the volume fraction of metal and ceramics is power law distribution, the influence of the temperature field
on the linear and nonlinear distribution of shell thickness was studied. Jabbari et al. [21] studied the accurate
solutions of the steady two-dimensional axisymmetric mechanical and thermal stresses on FG hollow cylinder.

This paper presents a unified form of the basic equations of the FG hollow cylinder/spherical shell by
introducing parameter δ and further discusses the stress distribution of the FG cylindrical/spherical pressure
vessel under different boundary conditions. Assuming that Young’s modulus of the material changes with
radial direction in the form of power functions and the value of Poisson’s ratio is constant, a derivation
scheme is proposed to obtain the pressure distribution of the FG hollow cylinder/spherical shell under three
different boundary conditions, respectively. Then, the analytical solution of stress distribution of FG hollow
cylinder/spherical pressure vessel is compared with the numerical solution and the classical solution. Some
analytical solutions in Ref [1] are corrected, which confirms the correctness of the results in this paper. In
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addition, the stress distribution of FG hollow cylinder/spherical shell with the change of Poisson’s ratio is
numerically analyzed. Finally, some remarks and conclusions are given.

2 Basic equations and boundary conditions

2.1 basic equation

Considering the stress distribution of the FG cylindrical/spherical pressure vessel, the radial coordinate r and
displacement u are normalized: r � r/R and u � u/R, where R is the outer radius of the cylindrical/spherical
shell. It is assumed that the material is isotropic with constant Poisson’s ratio and radially varying Young’s
modulus is approximated by E(r ) � E0rβ , where E0 is the Young’s modulus of the inner surface and β is the
gradient constant.

The unified geometric equations of the cylindrical/spherical pressure vessel are established as following

εr � du

dr
, εθ � εφ � u

r
γrθ � γrφ � γθφ � 0

(1)

Constitutive equations are

σr � C11εr + (δ + 1)C12εθ

σθ � C12εr + C11εθ + δC12εφ
(2)

where δ is parameter, and

C11 � c11r
β � E0(1 − v)

(1 + v)(1 − 2v)
rβ

C12 � c12r
β � E0v

(1 + v)(1 − 2v)
rβ

(3)

Equilibrium equation is

dσr

dr
+
(δ + 1)(σr − σθ )

r
� 0 (4)

Here, this paper presents a unified form of the basic equations of the FG hollow cylinder/spherical shell
by introducing parameter δ. It can be seen that when the parameter δ is 0, the basic equation given here can
degenerate to get the basic equation of the axisymmetric problem for the FG cylindrical pressure vessel. When
the parameter δ is 1, the basic equation given here can degenerate to get the basic equation of the spherical
symmetry problem for the FG spherical shell pressure vessel. The basic equations of the two kinds pressure
vessels obtained by degradation are consistent with the basic equations given in Ref [1]. However, when δ is
chosen as a value between 0 and 1, the corresponding real physical problem has not been found yet at present.
Here the parameter δ realizes the unification of the basic equations of thick-walled cylindrical and spherical
shell pressure vessels. This paper can realize the solutions of FG hollow cylindrical/spherical pressure vessels
based on the basic equations in a unified form.

3 Boundary conditions

Considering the radial polarization of FG hollow cylinder/spherical shell, the inner and outer diameters are a
andR, respectively, so the thickness of the hollow cylinder/spherical shell isR-a. Here, three different boundary
conditions are considered here. Respectively, the inner surface is under pressureP and the outer surface is under
tension Q(Case A); the inner boundary displacement is 0 and the outer boundary is under tension Q(Case B);
and the inner boundary is under pressure P and the outer boundary displacement is 0(Case C). The boundary
conditions are expressed as following.

Case A

σr (a/R) � −P, σr (1) � σr (R/R) � Q (5)
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Case B

u(a/R) � 0, σr (1) � σr (R/R) � Q (6)

Case C

σr (a/R) � −P, u(1) � u(R/R) � 0 (7)

4 Problem solving

4.1 Analytical solution of displacement

Using Eqs. (1)–(3), the governing equation of radial displacement becomes

r2u′′ + (β + (δ + 1))ru′ + (v∗β − 1)(δ + 1)u � 0 (8)

where v∗ � v/(1 − v). Equation (8) is the Euler–Cauchy equation, and the characteristic equation is

m2 + (β + δ)m + (v∗β − 1)(δ + 1) � 0 (9)

Its root is
⎧
⎪⎪⎨

⎪⎪⎩

m1 � 1

2

(

−β − δ −
√

(β + δ)2 − 4(v∗β − 1)(δ + 1)

)

m2 � 1

2

(

−β − δ +
√

(β + δ)2 − 4(v∗β − 1)(δ + 1)

) (10)

These roots may be: (a) different real roots, (b) double roots and (c) complex conjugate roots. For different
real roots, the solution of Eq. (8) is

u � Arm1 + Brm2 (11)

For double roots m1 � m2 � m, the solution of Eq. (8) becomes

u � (A + B ln r )rm (12)

In the case of complex roots m1 � x + iy, m2 � x − iy, the solution of Eq. (8) is

u � [A cos(y ln r ) + B sin(y ln r )]r x (13)

where A and B are unknown parameters that have nothing to do with r, A and B can be calculated by boundary
conditions.

Here, Eq. (9) has been proved rigorously to have two different real roots. The detailed process is shown
in “Appendix” A. Therefore, the displacement expression uses Eq. (11). Next, for three different boundary
conditions, the stress was solved in this paper.

For Case A, using Eq. (5), the constants A and B are

A � −
(
P + Q(a/R)β(a/R)m2−1)(a/R)1−β (1 + v)(1 − 2v)
(
(a/R)m1 − (a/R)m2

)
E0(m1(1 − v) + (δ + 1)v)

B �
(
Q(a/R)m1−1(a/R)β + P

)
(a/R)1−β (1 + v)(1 − 2v)

(
(a/R)m1 − (a/R)m2

)
E0(m2(1 − v) + (δ + 1)v)

(14)

For Case B, using Eq. (6), the constants A and B are

A � − Q(a/R)m2

(a/R)m1 m2E0(1−v)+(δ+1)E0v
(1+v)(1−2v) − (a/R)m2 m1E0(1−v)+(δ+1)E0v

(1+v)(1−2v)

B � Q(a/R)m1

(a/R)m1 m2E0(1−v)+(δ+1)E0v
(1+v)(1−2v) − (a/R)m2 m1E0(1−v)+(δ+1)E0v

(1+v)(1−2v)

(15)
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For Case C, using Eq. (7), the constants A and B are

A � − P(a/R)−β

(a/R)m1−1 m1E0(1−v)+(δ+1)E0v
(1+v)(1−2v) − (a/R)m2−1 m2E0(1−v)+(δ+1)E0v

(1+v)(1−2v)

B � P(a/R)−β

(a/R)m1−1 m1E0(1−v)+(δ+1)E0v
(1+v)(1−2v) − (a/R)m2−1 m2E0(1−v)+(δ+1)E0v

(1+v)(1−2v)

(16)

The displacement solutions of the FG hollow cylinder/spherical shell can be directly obtained by Eq. (11).

4.2 Stress analytical solution

Further combining Eqs. (1) and (2), the radial stress and circumferential stress of the FG hollow cylin-
der/spherical shell can be finally obtained. The corresponding stress analytical solutions in Case A are

σr � rβ−1
( a

R

)1−β
(
P + Q(a/R)m1−1(a/R)β

)
rm2 − (

P + Q(a/R)β(a/R)m2−1)rm1

(a/R)m1 − (a/R)m2

σθ � (a/R)1−βrβ−1(χ1 − χ2)

[m1(v − 1) − (δ + 1)v][m2(v − 1) − (δ + 1)v]
(
(a/R)m1 − (a/R)m2

)

(17)

where

{
χ1 � (

P + Q(a/R)β(a/R)m1−1)rm2(vm2 + (1 − v) + δv)[m1(1 − v) + (δ + 1)v]

χ2 � (
P + Q(a/R)β(a/R)m2−1)rm1(vm1 + (1 − v) + δv)[m2(1 − v) + (δ + 1)v]

(18)

The corresponding stress analytical solutions in Case B are

σr � Qrβ
(
(a/R)m1rm2−1(m2(1 − v) + (δ + 1)v) − (a/R)m2rm1−1(m1(1 − v) + (δ + 1)v)

)

(a/R)m1(m2(1 − v) + (δ + 1)v) − (a/R)m2(m1(1 − v) + (δ + 1)v)

σθ � Qrβ
(
(a/R)m1rm2−1((1 − v) + m2v + δv) − (a/R)m2rm1−1(m1v + (1 − v) + δv)

)

(a/R)m1(m2(1 − v) + (δ + 1)v) − (a/R)m2(m1(1 − v) + (δ + 1)v)

(19)

The corresponding stress analytical solutions in Case C are

σr � Prβ
(
(1 − v)

(
m2rm2−1 − m1rm1−1

)
+ (δ + 1)v

(
rm2−1 − rm1−1

))

( a
R

)β+m1−1
(m1(1 − v) + (δ + 1)v) − ( a

R

)β+m2−1
(m2(1 − v) + (δ + 1)v)

σθ � Prβ
(
(1 − v)

(
rm2−1 − rm1−1

)
+ v

(
m2rm2−1 − m1rm1−1

)
+ δv

(
rm2−1 − rm1−1

))

( a
R

)β+m1−1
(m1(1 − v) + (δ + 1)v) − ( a

R

)β+m2−1
(m2(1 − v) + (δ + 1)v)

(20)

When the parameter δ is 0, the stress distributions Eqs. (17)–(20) can degenerate to obtain the stress
distribution of the FG cylinder under three different boundary conditions. The detailed expression is shown in
“Appendix” B. When the parameter δ is 1, the stress distribution Eqs. (17)–(20) can degenerate to obtain the
stress distribution of the FG spherical shell under three different boundary conditions. The detailed expression
is shown in “Appendix” C.
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5 Result verification and analysis

5.1 Comparative verification

Now, considering the FG cylindrical/spherical pressure vessel is only subjected to internal pressure, that is Q
� 0 in Case A, the radial stress and circumferential stress of the hollow cylinder are, respectively,

σr � rβ−1(a/R)1−β P(rm2 − rm1)

(a/R)m1 − (a/R)m2

σθ � (a/R)1−βrβ−1(χ1 − χ2)

[m1(v − 1) − v][m2(v − 1) − v]
(
(a/R)m1 − (a/R)m2

)

(21)

where

χ1 � Prm2(vm2 + (1 − v))[m1(1 − v) + v]χ2 � Prm1(vm1 + (1 − v))[m2(1 − v) + v].

The radial stress and circumferential stress of the spherical shell are, respectively,

σr � rβ−1(a/R)1−β P(rm2 − rm1)

(a/R)m1 − (a/R)m2

σθ � (a/R)1−βrβ−1(χ1 − χ2)

[m1(v − 1) − 2v][m2(v − 1) − 2v]
(
(a/R)m1 − (a/R)m2

)

(22)

where

χ1 � Prm2(vm2 + 1)[m1(1 − v) + 2v]χ2 � Prm1(vm1 + 1)[m2(1 − v) + 2v].

However, the radial stress and circumferential stress of the FG cylindrical vessel under internal pressure
in Ref [1] are, respectively,

σr � −P(a/R)1−β (rm1 − rm2)rβ−1

(a/R)m1 − (a/R)m2

σθ � P(a/R)1−β(χ1 − χ2)
(
(a/R)m1 − (a/R)m2

)
[(v − 1)m1 − v][m2(v − 1) − v]

(23)

where

⎧
⎪⎪⎨

⎪⎪⎩

m1 � 0.5

(

−β −
√

4+β2 − 4v∗β
)

m2 � 0.5

(

−β+
√

4+β2 − 4v∗β
)

{
χ1 � rm1(m2(v − 1) − v)[1+(m1 − 1)v]

χ2 � rm2(m1(v − 1) − v)[1+(m2 − 1)v]

(24)

The corresponding radial stress and circumferential stress of the FG spherical vessel under internal pressure
in Ref [1] are

σr � −P(a/R)1−β (rm1 − rm2)rβ−1

(a/R)m1 − (a/R)m2

σθ � P(a/R)1−β(χ1 − χ2)
(
(a/R)m1 − (a/R)m2

)
[m1(v − 1) − 2v][m2(v − 1) − 2v]

(25)
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where
⎧
⎪⎪⎨

⎪⎪⎩

m1 � 0.5

(

−β − 1 −
√

β2 + (2 − 8v∗)β + 9

)

m2 � 0.5

(

−β − 1 +
√

β2 + (2 − 8v∗)β + 9

)

{
χ1 � rm1−1[(m2(v − 1) − 2v)

(
v + rβ (1+(m1 − 1)v

)]

χ2 � rm2−1[(m1(v − 1) − 2v)
(
v + rβ (1+(m2 − 1)v

)]

(26)

The stress distributions of the FG hollow cylinder/spherical shell obtained in this paper are consistent
with the radial stress expressions of the FG cylinder/sphere given in Ref [1], but the circumferential stress
expressions are different [23]. The correctness of our proposed analytical solutions is discussed here. When
β � 0, analytical solution in this paper can degenerate to the analytical solution of pressure vessels with
homogeneous material. The degradation analytical solutions in this paper are completely consistent with those
of the classic literature [22]. It is worth noting that the degradation result of the cylinder pressure vessel
in Ref [1] is σθ � −P(a/R)2(r2 + 1)

/[
r
(
(a/R)2 − 1

)]
, which is inconsistent with the classic result of the

homogeneous cylindrical pressure vessels σθ � −P(a/R)2(r2 + 1)
/[
r2

(
(a/R)2 − 1

)]
in the classic literature

[22]. This confirms some errors in the analytical solutions in Ref [1]. In addition, the finite element methods
(FEM) are performed here. The comparison of our proposed analytical solution, FEM numerical solution and
previous analytical solution in Ref [1] is given.

Figure 1 shows the comparison results of the radial and circumferential stresses of the FG hollow cylin-
der/spherical shell, that is, the results of this paper are compared with the results of Ref [1] and the numerical
results. It can be seen from the figure that radial stress of the cylindrical/spherical pressure vessel in this paper
is completely consistent with the radial stress given in Ref [1] and numerical results, and the circumferen-
tial stress calculated in this paper is completely consistent with the numerical results [23], but the results of
circumferential stress in Ref [1] are completely different with the results in this paper and numerical results.
As shown in Fig. 1a and b, the trend of radial stress distribution is the same for the FG cylinder/sphere in
Case A. The absolute value of the radial stress decreases with increasing r, and the absolute value of the
radial stress increases with increasing β. Figure 1c and d shows the circumferential stress distribution of FG
cylindrical/spherical shell when β � [−2, 2]. From Fig. 1c and d, when β < 0, the circumferential stress of
the hollow cylinder/spherical shell stress container gradually decreases with the increase of r. When β > 0,
the circumferential stress increase with the increase of r. However, the result of Ref [1] is different. Regardless
of the value selection of β, the circumferential stress shows a decreasing trend with the increase of r, which
is quite different from the results of this paper and the numerical results. Figure 1 shows that the radial stress
of the FG cylindrical/spherical pressure vessel is much smaller than the circumferential stress, so the failure
of this vessel under internal pressure load is often caused by excessive circumferential stress. When β � −2,
the circumferential stress reaches the maximum on the inner surface, and the maximum circumferential stress
on the inner surface decreases with the increase of β. When the β exceeds a certain value, the circumferential
stress is relatively evenly distributed inside the cylindrical/spherical shell. This feature is helpful for engineers
to select a suitable gradient in the design of FG pressure vessels to reduce circumferential stress change in the
structure and this feature can help to avoid cracking due to excessive circumferential stress.

5.2 The influence of different boundary conditions and structure types on dimensionless displacement
distribution

Note that the u0 is displacement for homogeneous material under three boundary conditions. Here, u0 is used
as a reference value for normalization. The expressions can also easily be obtained by setting β � 0 in Eq. (10)
and Eq. (11). In addition, the σ 0

r and σ 0
θ are radial and circumferential stress for homogeneous material under

three boundary conditions, respectively. The expressions are shown in “Appendix” D. The u0, σ 0
r and σ 0

θ are
studied by some researchers, such as the classic literature [22]. Figures 2 and 3 show the radial dimensionless
displacement distribution of the FG cylindrical/spherical container under three different boundary conditions.
As shown in Figs. 2a and 3a, the dimensionless displacement distribution of the FG cylinder/spherical shell
increases with the increase of the gradient parameter β; the dimensionless displacement hardly increases with
the increase of r in Case A. For case B, since the boundary condition is internally fixed, as shown in Figs.
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Fig. 1 Stress distributions along the thickness direction of FG hollow cylindrical/spherical vessel under degraded boundary in
Case A

2b and 3b, when β > 0, the dimensionless displacement decreases with the increase of r. When β < 0,
the dimensionless displacement increases as r increases. As shown in Figs. 2c and 3c, under the boundary
conditions of Case C, the dimensionless displacement distribution of the FG cylinder/spherical shell increases
with the increase of the gradient parameter β. When β < 0, the dimensionless displacement increases with
the increase of r; when β > 0, the dimensionless displacement decreases with the increase of r.

5.3 The influence of different boundary conditions on stress distribution

Figures 4 and 5 show the radial and circumferential stress distributions of FG cylindrical/spherical vessels
under three different boundary conditions. From Figs. 4a, b and 5a and b, it can be seen that under the boundary
conditions of Case A, the radial stress of the FG cylindrical/spherical shell decreases with the increase of the
gradient parameter β. When β > 0, the circumferential stress increases with the increase of r. When β < 0,
circumferential stress decreases with the increase of r. The circumferential stress is higher than the radial
stress. That is, the circumferential stress is very sensitive to the gradient parameter β, which also shows that
the failure of cylindrical/spherical pressure vessel is often caused by excessive circumferential stress. For Case
B, as shown in Figs. 4c, d and 5c and d, the radial stress of the FG hollow cylinder/spherical shell decreases with
the increase of β. When the gradient parameter β > 0, the circumferential stress increases with the increase
of r. When β < 0, the circumferential stress first increases with the increase of r, and then the increase tends
to be flat nearby the dimensionless position r � 0.74. From Figs. 4e, f and 5e and f, it can be seen that under
the boundary conditions of Case C, the radial stress distribution of the FG cylindrical/spherical shell increases
with the increase of β. However, the absolute value of the circumferential stress distribution decreases with
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Fig. 2 Radial dimensionless displacement distribution of FG cylindrical vessel in three different boundary conditions

the increase of β, and the absolute value of the circumferential stress decreases with the increase of r and
finally stabilizes. As shown in Figs. 4 and 5, the magnitude and sign of the gradient parameter β have a great
influence on the circumferential stress under the three boundary conditions. It not only affects the absolute
value of circumferential stress, but also affects the change trend of circumferential stress. This shows that
the selection of appropriate gradient parameters can make the FG cylinder/spherical shell obtain the optimal
stress distribution. Figures 4a, 5a, b, b, c, c, d and d show the absolute value of the radial and circumferential
stress distribution of corresponding FG hollow cylindrical/spherical pressure vessel under the same boundary
conditions. It can be seen from Figs. 4 and 5 that under the same boundary conditions, the stress distribution
trend of the FG cylindrical/spherical pressure vessel is consistent, which is easy to understand. However, the
absolute value of the stress is different, which is determined by their geometric characteristics.

5.4 The influence of geometric features (thickness) on stress distribution

Figures 6 and 8 show the influence of different dimensionless size r (cylindrical/spherical shell thickness)
on the radial and circumferential stress distribution of the FG hollow cylindrical/spherical pressure vessel
under different boundary conditions. Here the gradient parameter β is −2, the dimensionless size r is 0.2, 0.4
and 0.6, respectively. It can be seen from the figure that different thicknesses, that is the value selection of r,
have no effect on change trend of the radial and circumferential stress for the cylindrical/spherical shell, but
the value selection of r has a significant influence on the absolute value of the stress distribution in the FG
cylindrical/spherical shell. It can be seen from in Figs. 6, 7 and 8 that under different thicknesses, the absolute
value of the stress has a local maximum, and the magnitude of the extreme value is related to the value of
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Fig. 3 Radial dimensionless displacement distribution of FG spherical shell vessel in three different boundary conditions

r. Therefore, the thickness has a great influence on the radial and circumferential stress distribution of the
FG cylindrical/spherical pressure vessel, which indicates that adjusting different sizes based on appropriate
gradient parameters can achieve the optimal stress distribution for the FG cylindrical/spherical pressure vessel.
Therefore, the most suitable material performance can be obtained, and device can be used more safely for
people.

6 The discussion on the FGMs with change both Young’s modulus and Poisson’s ratio

In this subsection, it is assumed that the radially varyingYoung’smodulus and Poisson’s ratio are approximated
by E(r ) � E0rβ and v(r ) � v0rα , where E0 and v0 are the Young’s modulus and Poisson’s ratio for the inner
surface, respectively. β and α are Young’s modulus and Poisson’s ratio gradient constant, respectively. The
influence of the change of both Young’s modulus and Poisson’s ratio on the stress distribution is analyzed by
numerical calculations. The numerical calculation process for this problem is shown in “Appendix” E.

FGMs were originally used to solve problems in the design and manufacture of thermal protection systems
for the new generation of space shuttles. For the FGMs, on the relatively high temperature outer side is made
of ceramics with excellent heat resistance, and the inner side is made of metal materials with high thermal
conductivity, high toughness and high mechanical strength. The composition, microstructure and porosity of
the composite material are adjusted to form the FG layer in the transition zone between on the inner and outer
sides [2]. The application of FGMs avoids the interface stress caused by the huge difference between metals
and ceramics in physical and mechanical properties. The Poisson’s ratio of ceramic materials and metal steel
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Fig. 4 Stress distributions along the thickness direction of FG hollow cylindrical vessel (Solid lines: analytical solution of this
paper, solid points: solution of finite difference method)
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Fig. 5 Stress distributions along the thickness direction of FG spherical vessel (Solid lines: analytical solution of this paper, solid
points: solution of finite difference method)
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Fig. 6 Different stress distributions of FG hollow cylinder/spherical shell in Case A

materials is 0.32 and 0.3, respectively. When the ratio of the inner radius for the hollow cylinder/spherical shell
is a, one can obtain the Poisson’s ratio gradient parameter α � loga 0.32/0.3, where the Poisson’s ratio of the
inner metal material is 0.3 and the Poisson’s ratio of the outer ceramic material is 0.32. Under this condition,
the influence of Poisson’s ratio on stress in FGMs is discussed numerically here. As shown in Fig. 9, in this
condition, the Poisson’s ratio gradient parameter has little effect on the stress distribution in Case A and Case
C. But the change for Poisson’s ratio has a greater effect on the stress distribution in Case B, especially for the
radial stress. The radial and circumferential stresses of the FG hollow cylinder/spherical shell both decrease
with the increase of the gradient parameter α in Fig. 9c and d.

In addition, the influence of changes in Young’s modulus and larger changes in Poisson’s ratio on stress
is considered. The gradient parameters are β � −2, α � −0.5, −0.2, 0, 0.2 and 0.5, respectively, in Fig. 10.
It shows the influence of the change of Poisson’s ratio on the stress. Figure 10a and b show that both the
radial stress and the circumferential stress increase with the increase of α. The change of Poisson’s ratio
has a greater effect on the circumferential stress for the FG cylinder and spherical shell. The circumferential
stress of FG cylinder is approximately 1.5 times larger than that of spherical shell circumferential stress. As
shown in Fig. 10c, f, the gradient parameter α affects the change trend of the radial stress for FG hollow
cylinder/spherical shell. When α � −0.5, the radial stress increases with the increase of the α, and when
α � −0.2, 0, 0.2 and 0.5, the radial stress decreases with the increase of α, and some existing analytical
solutions ignore the influence of the change of Poisson’s ratio in the mechanical analysis of FGMs. Based on
the difference numerical method, this paper confirms that the change of Poisson’s ratio also has a greater effect
on the stress distribution under certain conditions.
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Fig. 7 Different stress distributions of FG hollow cylinder/spherical shell in Case B

7 Conclusion

This paper presents a unified formof the basic equations of theFGhollowcylinder/spherical shell by introducing
parameter and studies the axial/spherical symmetry mechanical problems of the FG hollow cylinder/spherical
shell under three different boundary conditions. Assuming that the value of Poisson’s ratio is constant and
the Young’s modulus changes with radial direction in the form of power functions, the analytical solutions
of the displacement, radial stress and the circumferential stress of the hollow cylindrical/spherical pressure
vessel are given under three different boundary conditions. By comparison with the analytical solutions in the
classical literature [22] and the numerical solutions by FEM, the errors of analytical solutions are corrected
in Ref [1] when the inner surface is under pressure P. At the same time, by comparing with the results
from the difference numerical method, the correctness of new analytical solutions for three different boundary
conditions is confirmed in this paper.Analysis shows that the circumferential stress tends to be evenlydistributed
by adjusting the gradient parameter, which can effectively prevent container cracking caused by excessive
circumferential stress, thereby improving the reliability and service life of the device. In addition, the influence
of different geometric size (vessel thickness) on the stress distribution is analyzed. Finally, the influence of the
change of Young’s modulus and Poisson’s ratio on stress is numerically discussed. Some existing analytical
solutions ignore the influence of the change of Poisson’s ratio in the mechanical analysis of FGM. Based on
the difference numerical method, this paper confirms that the change of Poisson’s ratio also has a significant
effect on the stress distribution under certain conditions. Therefore, for the FG hollow cylindrical/spherical
pressure vessel, selecting the appropriate gradient parameters and the appropriate thickness can make the FG
pressure vessel achieve its optimal performance, which is helpful for engineering design. The method in this
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Fig. 8 Different stress distributions of FG hollow cylinder/spherical shell in Case C

paper is further promoted to be suitable for discussing the analysis of other FG piezoelectric and piezomagnetic
materials [24].
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Appendix A

Here, Eq. (9) has been proved rigorously to have two different real roots. The detailed process is as follows.
When the parameter δ is 0, Eq. (9) degenerates to

m2 + βm + (v∗β − 1) � 0 (A.1)

Most materials satisfy 0 < v < 0.5. Because of v∗ � v/(1− v), v∗ satisfies 0 < v∗ < 1 and 0 < v∗2 < 1.

� � β2 − 4(v∗β − 1) � (
β2 − 2v∗)2 + 4

(
1 − v∗2) > 0 (A.2)

So Eq. (9) has two different real roots.
When the parameter δ is 1, Eq. (9) degenerates to

m2 + (β + 1)m + 2(v∗β − 1) � 0 (A.3)
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Fig.9 Radial and circumferential stress distribution of FG cylinder/ spherical shell vessel
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Fig. 10 Radial and circumferential stress distribution of FG cylinder/spherical shell vessel
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Since

� � (β + 1)2 − 8(v∗β − 1) � (
β + 1 − 4v∗)2 + 8

(
1 − v∗)(1 + 2v∗) > 0 (A.4)

So Eq. (9) has two different real roots.

Appendix B

Here, the stress distribution is given for FG hollow cylinder under three boundary conditions. The detailed
process is as follows.

When δ � 0, the stress distributions Eqs. (17)–(20) under three different boundary conditions can degen-
erate to get the stress distribution of the FG thick walled cylinder.

The radial stress and the circumferential stress of the hollow cylinder in Case A are

σr � rβ−1
( a

R

)1−β

(
P + Q

( a
R

)m1−1( a
R

)β
)
rm2 −

(
P + Q

( a
R

)β( a
R

)m2−1
)
rm1

(
(a/R)m1 − (a/R)m2

)

σθ � (a/R)1−βrβ−1(χ1 − χ2)

[m1(v − 1) − v][m2(v − 1) − v]
(
(a/R)m1 − (a/R)m2

)

(B.1)

where

⎧
⎪⎪⎨

⎪⎪⎩

m1 � 1

2

(

−β −
√

β2 − 4(v∗β − 1)

)

m2 � 1

2

(

−β +
√

β2 − 4(v∗β − 1)

)

{
χ1 � (

P + Q(a/R)β(a/R)m1−1)rm2(vm2 + 1 − v)(m1(1 − v) + v)

χ2 � (
P + Q(a/R)β(a/R)m2−1)rm1(vm1 + 1 − v)(m2(1 − v) + v)

(B.2)

The radial stress and the circumferential stress of the hollow cylinder in Case B are

σr � Qrβ
(
(a/R)m1rm2−1(m2(1 − v) + v) − (a/R)m2rm1−1(m1(1 − v) + v)

)

(a/R)m1(m2(1 − v) + v) − (a/R)m2(m1(1 − v) + v)

σθ � Qrβ
(
(a/R)m1rm2−1(1 − v + m2v) − (a/R)m2rm1−1(m1v + 1 − v)

)

(a/R)m1(m2(1 − v) + v) − (a/R)m2(m1(1 − v) + v)

(B.3)

where the meanings of m1 and m2 are consistent with those in Eq. (B.2).
The radial stress and the circumferential stress of the hollow cylinder in Case C are

σr � Prβ
(
(1 − v)

(
m2rm2−1 − m1rm1−1

)
+ v

(
rm2−1 − rm1−1

))

( a
R

)β+m1−1
(m1(1 − v) + v) − ( a

R

)β+m2−1
(m2(1 − v) + v)

σθ � Prβ
(
(1 − v)

(
rm2−1 − rm1−1

)
+ v

(
m2rm2−1 − m1rm1−1

))

( a
R

)β+m1−1
(m1(1 − v) + v) − ( a

R

)β+m2−1
(m2(1 − v) + v)

(B.4)

where the meanings of m1 and m2 are consistent with those in Eq. (B.2).
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Appendix C

Here, the stress distribution is given for FG spherical shell under three boundary conditions. When δ � 1, the
stress distributions Eqs. (17)–(20) under three different boundary conditions can degenerate to get the stress
distribution of the FG spherical shell.

The radial stress and the circumferential stress of the spherical shell in Case A are

σr � rβ−1
( a

R

)1−β

(
P + Q

( a
R

)m1−1( a
R

)β
)
rm2 −

(
P + Q

( a
R

)β( a
R

)m2−1
)
rm1

(
(a/R)m1 − (a/R)m2

)

σθ � (a/R)1−βrβ−1(χ1 − χ2)

[m1(v − 1) − 2v][m2(v − 1) − 2v]
(
(a/R)m1 − (a/R)m2

)

(C.1)

where
⎧
⎪⎪⎨

⎪⎪⎩

m1 � 1

2

(

−β − 1 −
√

(β + 1)2 − 8(v∗β − 1)

)

m2 � 1

2

(

−β − 1 +
√

(β + 1)2 − 8(v∗β − 1)

)

{
χ1 � (

P + Q(a/R)β(a/R)m1−1)rm2(vm2 + 1)(m1(1 − v) + 2v)

χ2 � (
P + Q(a/R)β(a/R)m2−1)rm1(vm1 + 1)(m2(1 − v) + 2v)

(C.2)

The radial stress and the circumferential stress of the spherical shell in Case B are

σr � Qrβ
(
(a/R)m1rm2−1(m2(1 − v) + 2v) − (a/R)m2rm1−1(m1(1 − v) + 2v)

)

(a/R)m1(m2(1 − v) + 2v) − (a/R)m2(m1(1 − v) + 2v)

σθ � Qrβ
(
(a/R)m1rm2−1(1 + m2v) − (a/R)m2rm1−1(m1v + 1)

)

(a/R)m1(m2(1 − v) + 2v) − (a/R)m2(m1(1 − v) + 2v)

(C.3)

where the meanings of m1 and m2 are consistent with those in Eq. (C.2).
The radial stress and the circumferential stress of the spherical shell in Case C are

σr � Prβ
(
(1 − v)

(
m2rm2−1 − m1rm1−1

)
+ 2v

(
rm2−1 − rm1−1

))

( a
R

)β+m1−1
(m1(1 − v) + 2v) − ( a

R

)β+m2−1
(m2(1 − v) + 2v)

σθ � Prβ
(
(1 − v)

(
rm2−1 − rm1−1

)
+ v

(
m2rm2−1 − m1rm1−1

)
+ v

(
rm2−1 − rm1−1

))

( a
R

)β+m1−1
(m1(1 − v) + 2v) − ( a

R

)β+m2−1
(m2(1 − v) + 2v)

(C.4)

where the meanings of m1 and m2 are consistent with those in Eq. (C.2).

Appendix D

Here, the expressions for displacement and stress of homogeneous materials hollow cylindrical/spherical
shell were given as follows. When the parameter β is 0, FG hollow cylinder/spherical shell degenerates into
homogeneous hollow cylinder/spherical shell. The u0,σ 0

r and σ 0
θ are displacement, radial and circumferential

for homogeneous material under three boundary conditions, respectively. The following expressions are the
same as the related expressions in the classic literature [22]

The expressions of u0, σ 0
r and σ 0

θ for hollow cylinder in Case A are, respectively,

u0 � Q(1 + v)
(
(a/R)−2 − 1

)
E0

r−1 +
Q(1 + v)(1 − 2v)
(
1 − (a/R)2

)
E0

r (D.1a)

σ 0
r � Q

(a/R)−1 − (a/R)r−2

(a/R)−1 − (a/R)
(D.1b)

σ 0
θ � Q

(a/R)−2 + r−2

(a/R)−2 − 1
(D.1c)
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The expressions of u0, σ 0
r and σ 0

θ for hollow cylinder in Case B are, respectively,

u0 � − Q(1 + v)(1 − 2v)

E0(a/R)−2 + E0(1 − 2v)
r−1 +

Q(1 + v)(1 − 2v)

E0 + E0(a/R)2(1 − 2v)
r (D.2a)

σ 0
r � Q

(a/R)−1(1 + v) − (a/R)r−2(3v − 1)

(a/R)−1(1 + v) − (a/R)(3v − 1)
(D.2b)

σ 0
θ � Q

(a/R)−1(1 + v) − (a/R)r−2(1 − v)

(a/R)−1(1 + v) − (a/R)(3v − 1)
(D.2c)

The expressions of u0, σ 0
r and σ 0

θ for hollow cylinder in Case C are, respectively,

u0 � P(1 + v)(1 − 2v)

E0(a/R)−2(1 − 2v) + E0
r−1 − P(1 + v)(1 − 2v)

E0(a/R)−2(1 − 2v) + E0
r (D.3a)

σ 0
r � P

(1 − v)
(
1 + r−2

)
+ v

(
1 − r−2

)

(
(a/R)−2(2v − 1) − 1

) (D.3b)

σ 0
θ � P

(1 − v)
(
1 − r−2

)
+ v

(
1 + r−2

)

(
(a/R)−2(2v − 1) − 1

) (D.3c)

The expressions of u0, σ 0
r and σ 0

θ for spherical shell in Case A are, respectively,

u0 � Q(1 + v)

2
(
(a/R)−3 − 1

)
E0

r−2 +
Q(1 − 2v)

(
1 − (a/R)3

)
E0

r (D.4a)

σ 0
r � Q

(a/R)−3 − r−3

(a/R)−3 − 1
(D.4b)

σ 0
θ � Q

2(a/R)−3 + r−3

2
(
(a/R)−3 − 1

) (D.4c)

The expressions of u0, σ 0
r and σ 0

θ for spherical shell in Case B are, respectively,

u0 � − Q(1 + v)(1 − 2v)

(a/R)−3E0(1 + v) + 2E0(1 − 2v)
r−2 +

Q(1 + v)(1 − 2v)

E0(1 + v) + 2E0(a/R)3(1 − 2v)
r (D.5a)

σ 0
r � Q

(a/R)−2(1 + v) − (a/R)r−3(4v − 2)

(a/R)−2(1 + v) − (a/R)(4v − 2)
(D.5b)

σ 0
θ � Q

(a/R)−2(1 + v) − (a/R)r−3(1 − 2v)

(a/R)−2(1 + v) − (a/R)(4v − 2)
(D.5c)

The expressions of u0, σ 0
r and σ 0

θ spherical shell in Case C are, respectively,

u0 � − P(1 + v)(1 − 2v)

2(a/R)−3E0(2v − 1) − E0(1 + v)
r−2 +

P(1 + v)(1 − 2v)

2(a/R)−3E0(2v − 1) − E0(1 + v)
r (D.6a)

σ 0
r � P

(1 − v)
(
1 + 2r−3

)
+ 2v

(
1 − r−3

)

(a/R)−3(4v − 2) − (1 + v)
(D.6b)

σ 0
θ � P

(1 − v)
(
1 − r−3

)
+ v

(
2 + r−3

)

(a/R)−3(4v − 2) − (1 + v)
(D.6c)
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Appendix E

Here, the numerical calculation process when the both Young’s modulus and Poisson’s ratio change with
thickness distribution of cylinder/shell in the form of power functions is given. It is assumed that the radially
varyingYoung’smodulus and Poisson’s ratio are approximated by E(r ) � E0rβ and v(r ) � v0rα , respectively.

Constitutive equations are

σr � c11(r )εr + (δ + 1)c12(r )εθ

σθ � c12(r )εr + c11(r )εθ + δc12(r )εφ
(E.1)

where

c11(r ) � E0(1 − v0rα)rβ

(1 + v0rα)(1 − 2v0rα)

c12(r ) � E0v0rα+β

(1 + v0rα)(1 − 2v0rα)

(E.2)

Using Eqs. (E.1) and (4), the governing equation for radial displacement can be expressed as

u′′ + p(r )u′ + q(r )u � 0 (E.3)

where

p(r ) � 1

r

(
F1r2α + F2r3α + F3rα + β

(2v0rα − 1)
(
v20r

2α − 1
) + (δ + 1)

)

,

q(r ) � 1

r2
(δ + 1)

[
v0r

(
F4r3α−1 + F5r2α−1 + F6rα−1

)

(2v0rα − 1)
(
v20(r

α)2 − 1
) − 1

]

,

F1 � 4

(

α − β

4

)

v20, F2 � −2v30(α − β), F3 � −2βv0

F4 � 2v20(α − β), F5 � −βv0, F6 � α + β

(E.4)

Equation (E.3) is a second-order ordinary differential boundary-value problem.Thefinite differencemethod
is used to solve this problem in this paper.

On the internal node ri , one marks as u(ri ) � ui ,p(ri ) � pi and q(ri ) � qi . On each node, replace the first
and second derivatives with first and second differences, respectively. The difference expressions of u′ and u′′
are approximated

u′(ri ) � du

dr
�ui − ui−1

h
, u′′(ri ) � d2u

dr2
� ui+1 − 2ui + ui−1

h2
(E.5)

where a and R are the inner diameter and outer diameter of the cylinder/spherical shell, respectively. The
solution interval is divided into N equal parts, where the points are r0 � a/R, ri � r0 + ih, (i � 0, 1, 2 · · · N )
and h � (1 − a/R)/N . Then, Eq. (E.3) is written as

ui+1 − 2ui + ui−1

h2
+ pi

ui − ui−1

h
+ qiui � 0, (i � 1, 2 · · · N − 1) (E.6)

At the edge nodes, i � 0 and i � N

u′
0 � u1 − u0

h
, u′

N � uN − uN−1

h
(E.7)

For Case A, using Eqs. (E.1) and (E.7), boundary condition can be written as

i � 0,

(
(δ + 1)c12(r0)

a
− c11(r0)

h

)

u0 +
c11(r0)

h
u1 � −P

i � N , −c11(1)

h
uN−1 +

(
c11(1)

h
+
(δ + 1)c12(1)

1

)

uN � Q

(E.8)
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And Eq. (E.6) can be rewritten as

aiui−1 + biui + cui+1 � 0, 1 ≤ i ≤ N − 1 (E.9)

where

ai � 1 − pih bi � pi h + h2qi − 2 c � 1 (E.10)

Next, the displacement can be solved numerically. Using Eqs. (E.2)–(E.9), it yields

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(δ+1)c12(r0)
a − c11(r0)

h
c11(r0)

h 0 0 · · · 0
a1 b1 c 0 · · · 0
0 a2 b2 c · · · 0

0 0 a3 b3
. . .

...
...

...
...

... bN−1 c
0 0 0 0 − c11(1)

h
c11(1)
h + (δ+1)c12(1)

R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0
u1
u2
...

uN−1
uN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P
0
0
...
0
Q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(E.11)

For Case B, using Eqs. (E.1) and (E.7), boundary condition can be written as

i � 0, u0�0

i � N , −c11(1)

h
uN−1 +

(
c11(1)

h
+
(δ + 1)c12(1)

R

)

uN � Q
(E.12)

Equation (E.11) can be written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 · · · 0
a1 b1 c 0 · · · 0
0 a2 b2 c · · · 0

0 0 a3 b3
. . .

...
...

...
...

... bN−1 c
0 0 0 0 − c11(1)

h
c11(1)
h + (δ+1)c12(1)

R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0
u1
u2
...

uN−1
uN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
0
Q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(E.13)

For Case C, using Eq. (E.1) and (E.7), boundary condition can be written as

i � 0,

(
(δ + 1)c12(r0)

a
− c11(r0)

h

)

u0 +
c11(r0)

h
u1 � −P

i � N , uN�0
(E.14)

Equation (E.11) can be written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(δ+1)c12(r0)
a − c11(r0)

h
c11(r0)

h 0 0 · · · 0
a1 b1 c 0 · · · 0
0 a2 b2 c · · · 0

0 0 a3 b3
. . .

...
...

...
...

... bN−1 c
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0
u1
u2
...

uN−1
uN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P
0
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(E.15)

Next, the displacement can be solved numerically. The radial stress and circumferential stress are obtained
by substituting Eqs. (E.2), (E.5), (E.7) and Eq. (1) into Eq. (E1).
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