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Abstract In this article, thermoelastic interaction in a two-temperature generalized thermoelastic unbounded
isotropic medium having spherical cavity has been studied in the context of memory-dependent derivative
(MDD). The governing coupled equations for the problem associated with kernel function and time delays are
considered in the perspective of two-temperature (2 T) three-phase-lag thermoelasticity theory. The bounding
surface of the spherical cavity is subjected to mechanical and thermal loading. Using Laplace transform, the
problem is transformed from the space–time domain and then solved by the state–space approach method.
Suitable numerical technique is used to find the inversion of Laplace transforms. Comparisons are made
graphically, between the 2 T three-phase-lag model and 2 T Lord Shulman model with MDD. Also, the effects
of time-delay parameter and the kernel function on the distributions of the strain component, thermodynamic
temperature, conductive temperature, displacement components, radial and hoop stresses are examined and
illustrated graphically. The results show that due to the influence of the three-phase-lag-effect, memory effect,
two-temperature parameter, the kernel function and time-delay, all the distributions are affected extensively.

Keywords State–space approach · Three-phase-lag · Laplace transform · Memory-dependent derivative ·
Spherical cavity · Two-temperature generalized thermoelasticity

1 Introduction

In the past few decades, generalized thermoelasticity theory has gained more attention to the researchers due
to its applications in many fields of sciences, earthquake engineering, nuclear reactor’s design, soil dynamics,
high energy particle accelerators, geophysics, etc. The generalized dynamic coupled theory of thermoelasticity
is one of themodified versions of classical thermoelasticity. The primary theory of generalized thermoelasticity
is created by Lord and Shulman [1] who got a wave-type heat condition by proposing another law of heat
conduction to displace the established Fourier law. This new theory comprises the heat flux vector in addition
to its time derivative. It additionally involves another parameter that goes about as relaxation time. The second
hypothesis is proposed by Green and Lindsay [2], who included two constants that go about as relaxation
times. This hypothesis modifies not only the law of heat conduction but also the other equations of coupled
hypothesis. Several problems of each of the theories were investigated and a few existing phenomena were
discovered in [3–7].

Tzou [8] proposed a new modification of the generalized scheme of thermoelasticity known as the dual-
phase lag model (DPL). After DPLmodel, Roy Choudhuri [9] established the three-phase-lags (TPL) equation
of heat conduction utilizing the extension of the DPL model where the Fourier transform law of the heat
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conduction was substituted by estimation of TPL using the heat flux component τq , gradient of temperature
τT and thermal displacement τv . According to this TPL model,

�qi
(
r, t + τq

) � −Kφ,i (r, t + τT ) − K ∗v,i (r, t + τv), v̇ � φ (1)

where τq catches the thermal wave conduct (a little-scale reaction in time) and τT catches the impact of phonon
electron interactions (a microscopic reaction in time). The other delay time τv is effective since, in the TPL
model, the thermal displacement gradient is considered as a constitutive variable while in the conventional
thermo-elasticity theory temperature gradient is considered as a constitutive variable. TPL model is very much
useful in the problems of phonon-scattering, exothermic catalytic reactions, phonon–electron interactions,
nuclear boiling, etc.

In the 2nd law of thermodynamics for continuous bodies in which the entropy due to heat conduction was
governed by single temperature, the heat provided by an additional temperature was suggested by Gurtin and
Williams [10, 11]. In light of this idea, Chen andGurtin [12] and Chen et al. [13, 14] developed two temperature
(2 T) theory of thermoelasticity. Several problems of wave propagation on 2 T theory of thermoelasticity have
been solved by Warren and Chen [15] and Boley and Tollins [16]. The 2 T thermoelasticity theory has
increased much consideration of the researchers in the ongoing years. Quintanilla and Tien [17] studied the
spatial behavior, structural stability, existence and convergence of 2 T thermoelasticity theory. A newmodel of
2 T generalized thermoelasticity theory was introduced by Youssef [18]. Sarkar and Lahiri [19] and Youssef
and Al-Lehaibi [20] discussed problems on the 2 T thermoelasticity with a single relaxation time parameter.
The propagation of plane waves in the context of 2 T theory was investigated by Puri and Jordan [21]. The
reciprocity and uniqueness theorems for 2 T thermoelasticity theory were established by Lesan [22]. Using the
state–space approach, the problem of an unbounded body having a spherical cavity and cylindrical cavity for
2 T generalized thermoelasticity has solved by Youssef and Al-Harby [23] and Kumar, Mukhopadhyay [24]
and Abbas [25]. Kumar et al. [26] established the reciprocal and Variational principles for 2 T generalized
thermoelasticity. The 2 T electro-magneto-thermoelastic one-dimensional problem for the perfect conducting
medium has studied by Ezzat and El-Karamany [27]. The three-dimensional problem of 2 T thermoelasticity
with Lord Shulman model of a semi-infinite space subjected to traction free surface and ramp-type heating
was introduced by Ezzat and Youssef [28].

Enlightened by the Caputo [29] and Caputo and Mainardi [30] fractional derivative, Wang and Li [31]
presented the essential idea of MDD to portray the memory effect. He expressed a function f of the first-order
derivative as an integral form over a slipping interval regarding a common derivative associated with the kernel
function as follows:

D(1)
ω f (x, t) � 1

ω

t∫
t−ω

K (t − ξ) f ′(x, ξ)dξ (2)

where ω is the time delay and the kernel function K (t − ξ) is of the form [31].

K (t − ξ) � 1 − 2d

ω
(t − ξ) +

c2(t − ξ)2

ω2 �

⎧
⎪⎨

⎪⎩

1 if c � d � 0,
1 − (t−ξ)

ω
if c � 0, d � 1

2 ,(
1 − (t−ξ)

ω

)2
if c � d � 1.

The pioneering contribution was dedicated to explore different theoretical and practical perspectives in con-
tinuum mechanics with memory-dependent heat transfer. Yu et al. [32] presented MDD rather than fractional
calculus within Lord Shulman [1] universal thermoelasticity. Ezzat et al. [33, 34] proposed a novel MDD
model of thermo-viscoelasticity in the presence of time-dependent thermal shock. Ezzat et al. [35] developed
a new magneto-thermoelastic theory involving MDD for a perfect electrically conducting semi-infinite space,
which was subjected to thermal loading. Lofty and Sarkar [36] had studied 2 T generalized thermoelasticity
problem with MDD for photothermal semiconducting medium. Ezzat and El-Bary [37] solved the 1D problem
of functionally graded magneto-thermoelasticity in the perspective of MDD heat transfer. Sur and Kanoria
[38] studied the transient phenomena and three-phase lag effect on generalized thermoelasticity under MDD
for a fiber-reinforced plate having a heat source. The propagation of magneto-thermoelastic interaction on
2 T generalized thermoelastic perfectly conducting medium with MDD was investigated by Sarkar et al. [39].
Sarkar and Othman [40] considered a 3D problem of generalized thermoelasticity with MDD subjected to
thermal shock. The effect of MDD on two-dimensional thermoelastic rotating medium in the context of Lord-
Shulman model was dealt with by Othman and Mondal [41]. Mondal [42] studied memory response, nonlocal
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and moving heat source effect on a magneto-thermoelastic rod in the framework of the DPL model. Later on,
presenting this methodology of MDD, a few examinations were done by [43–51].

The importance of the state–space approach is familiar in fields where the time behavior of any physical
procedure is important. This approach is more general compared to the Fourier transform and Laplace theories.
Several examinations were carried out using the state–space approach in the following literatures [52–58].

Inspired by the above research works, in our present article, we analyze in details the TPL effect and
memory response on a 2 T generalized thermoelastic isotropic infinite medium having a spherical cavity. The
bounding surface of the spherical cavity is subjected to a ramp type heating thermal shock. The governing
equations involving 2 T thermoelasticity theory with MDD are exposed in the Laplace transform domain
and solved by utilizing the state–space approach. The numerical inversions of the Laplace transform have
been found utilizing Honig Hirdes [59]. The analytical solutions of the thermophysical quantities are obtained
numerically for coppermaterial. These complete solutions are presented graphically for various forms of kernel
functions and for the various time delay. Also, to estimate the effect of 2 T parameter, some comparisons (2 T
TPL model and 2 T LS model) have been made.

2 Derivation of two-temperature TPL heat conduction equation model with MDD

The 2 T thermoelasticity is depended based on the classical conjecture of heat conductivity. The classical
Fourier’s law is given by

�qi � −Kφ,i . (3)

The energy equation is [54]

ρCeṪ + γ T0ė � −�qi,i + ρQ (4)

where ρ is the mass density, T0 is uniform reference temperature, qi is the heat flux component, γ �
(3λ + 2μ)αt , αt is coefficient of linear thermal expansion, λ,μ are Lame’s constant, Ce is specific heat and Q
is the heat source.

The 2 T relation is as follows [23]

φ − T � bφ,i i , b ≥ 0 (5)

where T is the thermodynamic temperature, φ is the conductive temperature and b(> 0) is the 2 T parameter,
known as temperature discrepancy [12–14].

Using Taylor’s series expansion and MDD in (1) we obtain
(

1 + τq Dω +
τ 2q

2
D2

ω

)

�qi � −Kφ,i (1 + τT Dω) − K ∗v,i (1 + τvDω), (6)

where v̇ � φ, K ∗ is a constant material and K is the thermal conductivity, Dω is the memory-dependent
derivative operator of a differentiable function f (t).

Taking divergence of both sides of Eq. (6), we get
(

1 + τq Dω +
τ 2q

2
D2

ω

)

�qi,i � −Kφ,i i (1 + τT Dω) − K ∗v,i i (1 + τvDω). (7)

Eliminating �qi,i from Eqs. (4) and (7) the heat equation takes the form
(

1 + τq Dω +
τ 2q

2
D2

ω

)
(
ρCeṪ + γ T0ė − ρQ

) � K (1 + τT Dω)φ,i i + K ∗(1 + τvDω)v,i i . (8)

or,
(

1 + τq Dω +
τ 2q

2
D2

ω

)
(
ρCeT̈ + γ T0ë − ρ Q̇

) � K (1 + τT Dω)φ̇,i i + K ∗(1 + τvDω)φ,i i . (9)

Equation (9) represents the 2 T hyperbolic thermoelasticity heat transfer equation with MDD comprising TPL
effects.
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3 Formulation of the problem:

We consider a homogeneous, isotropic, thermoelastic solid having a spherical cavity with radius ‘a’. We shall
use a system of spherical polar system of co-ordinates (r, ψ, χ) with the origin at the center of the spherical
cavity. Due to spherical symmetry of the present problem, every function is treated as functions of r (radial
distance) and time t only. Therefore,

−→u � (u(r, t), 0, 0), T � T (r, t), φ � φ(r, t). (10)

The strain components are as follows

err � ∂u

∂r
, eψψ � eχχ � u

r
. (11)

The cubic dilatation e is given by

εkk � e � err + eψψ + eχχ � ∂u

∂r
+ 2

u

r
� 1

r2
∂
(
r2u

)

∂r
. (12)

The stress–strain–temperature relations are given by

σrr � 2μ
∂u

∂r
+ λe − γ T, (13)

σψψ � σχχ � 2μ
u

r
+ λe − γ T . (14)

The equation of motion and the TPL heat conduction in the nonappearance of the external forces and internal
heat sources under 2 T thermoelasticity based on MDD are as follows

(λ + 2μ)
∂e

∂r
− γ

∂T

∂r
� ρ

∂2u

∂t2
, (15)

(

1 + τq Dω +
τ 2q

2
D2

ω

)(
ρCe

∂2T

∂t2
+ γ T0

∂2e

∂t2

)
� K (1 + τT Dω)∇2φ̇ + K ∗(1 + τvDω)∇2φ (16)

where

∇2 ≡ ∂2

∂r2
+
1

r

∂

∂r
. (17)

For numerical simulation, we introduce the following non-dimensional variables

r ′ � c0ηr, u′ � c0ηu, t ′ � c20ηt, T ′ � (T − T0)

T0
, σ

′
i j � σi j

(λ + 2μ)
, τ

′
q � c20ητq

τ
′
T � c20ητT , τ

′
v � c20ητv, c20 � (λ+2μ)

ρ
, φ′ � φ

T0
, η � ρCe

k . For simplicity omitting primes,
Eqs. (13)–(16) and (5) take the non-dimensional form as

σrr � (
1 − β2)∂u

∂r
+ β2e − α2T, (18)

σψψ � σχχ � (
1 − β2)u

r
+ β2e − α2T, (19)

∂e

∂r
− α2

∂T

∂r
� ∂2u

∂t2
, (20)

(

1 + τq Dω +
τ 2q

2
D2

ω

)(
∂2T

∂t2
+ ε

∂2e

∂t2

)
� (1 + τT Dω)∇2φ̇ + ε′(1 + τvDω)∇2φ, (21)

T � φ − ω′∇2φ, (22)

where α2 � T0γ
(λ+2μ)

, ε′ � k∗
Ce(λ+2μ)

, ε � T0γ 2

ρCe(λ+2μ)
, β2 � λ

(λ+2μ)
, ω′ � bc20η

2.
Applying the divergence operator on Eq. (20) we get

∇2e − α2∇2T � ∂2e

∂t2
. (23)
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4 Special cases

(1) For τv � τT � τ 2q � 0, K ∗ � 0 and τq �� 0, in Eq. (16), the present problem reduces to the two
temperature Lord–Shulman theory with MDD

(2) For τv � τT � τq � 0 in Eq. (16), the present problem reduces to the two temperature Green–Naghdi
type III theory with MDD.

(3) For τv � τT � τq � 0 and K � 0, in Eq. (16), the present problem reduces to the two temperature
Green–Naghdi type II theory with MDD.

5 Initial and boundary conditions

The initial conditions are

u(r, 0) � T (r, 0) � φ(r, 0) � 0 at t � 0 for r ≥ a,

∂u(r, 0)

∂t
� ∂T (x, 0)

∂t
� ∂φ(x, 0)

∂t
� 0 at t � 0 for r ≥ a.

The boundary conditions of the problem are as follows:
The surface r � a is subjected to thermal and mechanical loading given by

(i) Thermal boundary condition:

φ(a, t) � h(t), (24)

where h(t) �
⎧
⎨

⎩

0, t ≤ 0
h0
t0
t, 0 < t ≤ t0

h0, t > t0

.

(ii) Mechanical boundary condition:

σrr (a, t) � 0. (25)

6 Laplace transform domain

The Laplace transform with parameter p is defined as

f (x, p) � L[ f (x, t)] � ∞∫
0
f (x, t)e−ptdt, Re(p) > 0. (26)

Using the Laplace transform in (18) and (19) and (21)–(25) we obtain

σ rr � (
1 − β2)∂u

∂r
+ β2e − α2T , (27)

σψψ � σχχ � (
1 − β2)u

r
+ β2e − α2T , (28)

∇2e − α2∇2T � p2e, (29)
(

1 + τqG(p) +
τ 2q

2
G(p)

)
(
p2T + εp2e

) � p(1 + τT G(p))∇2φ + ε′(1 + τvG(p))∇2φ, (30)

T � φ − ω′∇2φ, (31)

φ(a, p) � h(p) � h0
(
1 − e−pt0

)

t0 p2
, (32)

e(a, p) � 0. (33)

Here the following rule has been used
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L{Dω f (t)} � f (p)G(p)

ω

where G(p) �
(
1 − 2d

ωp + 2c2

ω2 p2

)
− e−pω

[(
1 − 2d + c2

)
+

2
(
c2−d

)

ωp + 2c2

ω2 p2

]
.

Substituting Eq. (31) in (30), we get

T � (
1 − ω′N

)
φ − εω′Ne (34)

where N �
p2

(
1+τqG(p)+

τ2q
2 G(p)

)

p+pτT G(p)+ε′+ε′τvG(p)+ω′ p2
(
1+τqG(p)+

τ2q
2 G(p)

) .

Substituting the value of T from Eq. (34) into (30), we get

∇2φ � Nφ + εNe. (35)

By using Eqs. (34) and (35) with Eq. (29), we obtain

∇2e � L1e + L2φ, (36)

where L1 � p2+(1−ω′N)α2εN
1+ω′α2εN , L2 � (1−ω′N)α2N

1+ω′α2εN .

7 State–space approach

Choosing the strain dilatation e and the conductive temperature φ in the r direction as state variables, Eqs. (35)
and (36), can be written explicitly in vector–matrix differential equation form as:

∇2V (r, p) � A(p)V (r, p), (37)

where V (r, p) �
(

φ(r, p)
e(r, p)

)
, A(p) �

(
a11 a12
a21 a22

)
and a11 � N , a12 � εN , a21 � L2, a22 � L1.

The formal solution of Eq. (37) can be expressed as

V (r, p) � a

r
e−√

A(p)(r−a)V (a, p) (38)

where V (a, p) �
(

φ(a, p)
e(a, p)

)
�

(
h(p)
0

)
.

The characteristic equation of the matrix A(p) is given by

λ2 − (a11 + a22)λ + (a11a22 − a12a21) � 0. (39)

The roots of Eq. (39), namely λ1 and λ2, satisfy the relations:

λ1 + λ2 � a11 + a22 � N + L1, λ1λ2 � (a11a22 − a12a21) � NL1 − εNL2. (40)

Now, we can write the spectral decomposition of A(p) given by [55] as:

A(p) � λ1E1 + λ2E2, (41)

where E1 and E2 satisfy the following conditions [60]:

E1 + E2 � I, E1E2 � 0, E2
i � Ei for i � 1, 2 (42)

where E1 and E2 are called the projectors of A(p), I is the identity matrix and 0 is the zero matrix.
Then, we have

√
A(p) � √

λ1E1 +
√

λ2E2, (43)

where
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Table 1 Physical parameters of copper material

Symbol Numerical value Units

λ 7.76 × 1010 Nm−2

ρ 8954 kg m−3

ce 383.1 J kg−1 deg−1

μ 3.86 × 1010 N m−2

T0 293 K
αt 0.0104 (K)−1

K 386 Wm−1 K−1

ε 0.0168

E1 � 1

λ1 − λ2

(
N − λ2 εN

− (λ1−N )(λ2−N )
εN λ1 − N

)
, E2 � −1

λ1 − λ2

(
N − λ1 εN

− (λ1−N )(λ2−N )
εN λ2 − N

)
.

Thus, we get

√
A(p) � 1√

λ1 +
√

λ2

(
N +

√
λ1λ2 εN

L2 L1 +
√

λ1λ2

)
. (44)

To find the matrix e−√
A(p)(r−a), we use Cayley–Hamilton theorem. The characteristic equation of the matrix√

A(p) is given by

m2 −
(√

λ1 +
√

λ2

)
m +

√
λ1λ2 � 0. (45)

The roots of Eq. (45), namely m1 and m2, take the forms

m1 � √
λ1, m2 � √

λ2. (46)

The Taylor’s series expansion for the matrix exponential in Eq. (38) is as follows

e−√
A(p)(r−a) �

∞∑

n�0

(−√
A(p)(r − a)

)n

n!
. (47)

We can express A2 and higher powers of the matrix A in terms of A and I , where I the identity matrix is of
second-order [61].

Thus, e−√
A(p)(r−a) in (47) can be reduced to

e−√
A(p)(r−a) � a0(r, p)I + a1(r, p)

√
A(p) (48)

where a0 and a1 are coefficients depending on r and p.
By Cayley–Hamilton’s theorem, the characteristic roots m1 and m2 of the matrix

√
A(p) must satisfy

Eq. (48), thus

e−m1(r−a) � a0 I + a1m1, (49)

e−m2(r−a) � a0 I + a1m2. (50)

The solution of Eqs. (49) and (50) is given by

a0 � m1e−m2(r−a) − m2e−m1(r−a)

m1 − m2
, (51)

a1 � e−m1(r−a) − e−m2(r−a)

m1 − m2
. (52)

Now, Eq. (48) can be written as

e−√
A(p)(r−a) � L(r, p) �

(
l11 l12
l21 l22

)
(53)
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Fig. 1 Distribution of φ against r

where

l11 �
(
m2
1−N

)
e−m2(r−a)−(

m2
2−N

)
e−m1(r−a)

m2
1−m2

2

l12 � εNe−m1(r−a)−εNe−m2(r−a)

m2
1−m2

2

l21 � L2e−m1(r−a)−L2e−m2(r−a)

m2
1−m2

2

l22 �
(
m2
1−L1

)
e−m2(r−a)−(

m2
2−L1

)
e−m1(r−a)

m2
1−m2

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (54)

Therefore, considering (53) and (38), we get the solution of (37) in the following form

V (r, p) � a

r

(
l11 l12
l21 l22

)
V (a, p). (55)

Thus, the solutions for φ(a, p) and e(a, p) can be obtained from Eq. (55), (32) and (33) as follows:

φ(r, p) � ah(p)

r
(
m2

1 − m2
2

)
{(
m2

1 − N
)
e−m2(r−a) − (

m2
2 − N

)
e−m1(r−a)

}
, (56)

e(r, p) � L2ah(p)

r
(
m2

1 − m2
2

)
{
e−m1(r−a) − e−m2(r−a)

}
. (57)

Using Eqs. (56) and (57) into (34) we obtain expressions of T

T (r, p) � ah(p)

r
(
m2

1 − m2
2

)
[{(

m2
1 − N

)(
1 − ω′N

) − L2ω
′Nε

}
e−m2(r−a)

]

− ah(p)

r
(
m2

1 − m2
2

)
[{(

m2
2 − N

)(
1 − ω′N

) − L2ω
′Nε

}
e−m1(r−a)

]
. (58)

Applying Laplace transform to Eq. (12) and using Eq. (57), we obtain expressions of u as follows:

u(r, p) � L2ah(p)

r
(
m2

1 − m2
2

)
m2

1m
2
2

{
m2

2(m1r + 1)e−m1(r−a) − m2
1(m2r + 1)e−m2(r−a)

}
. (59)
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Fig. 2 Distribution of σrr against r

Using (57)–(59) and (27) the stress components σ rr and σχχ are obtained as:

σ rr � ah(p)

r3
(
m2

1 − m2
2

)
m2

1m
2
2

[
m2

2e
−m1(r−a)

{
m1r

2(L2 + α2T2)
}
+ 2L2

(
1 − β2)(m1r + 1)

]

− ah(p)

r3
(
m2

1 − m2
2

)
m2

1m
2
2

[
m2

1e
−m2(r−a)

{
m2r

2(L2 + α2T1)
}
+ 2L2

(
1 − β2)(m2r + 1)

]
, (60)

where T1 � (
m2

1 − N
)(
1 − ω′N

) − L2ω
′Nε, T2 � (

m2
2 − N

)(
1 − ω′N

) − L2ω
′Nε,

(61)

σ̃χχ � ah (p)

r2
(
m2

1 − m2
2

)
m2

1m
2
2

[
m2

2e
−m1(r−a) {L2

(
1 − β2) (m1r + 1) + m2

1r
(
β2L2 − α2T1

)}

+ m2
1e

−m2(r−a) {L2
(
1 − β2) (m2r + 1) + m2

2r
(
β2L2 − α2T2

)}]
.

8 Inversion of Laplace transform

For the final solution of the thermodynamic temperature, conductive temperature, stress and displacement
in the space–time domain, we have used a numerical technique [59] where the inversion of Laplace transform
formula can be written as

f (t) ≈ fN (t) � er t f (r)

2t1
+

N∑

k�1

dk, for 0 ≤ t ≤ 2t1 (62)

where

dk � er t

t1
Re

[
e
ikπ t
t1 f (r + ikπ/t1)

]
, (63)

N is a large integer and N is picked in such a manner that dk ≤ ε (ε is a small, nonnegative quantity), which
corresponds to the achievement of the degree of accuracy. The best possible choices of t1 and r are made
according to the criteria outlined in [59].
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Fig. 3 Distribution of T against r

Fig. 4 Distribution of u against r

9 Particular cases

(i) For the case of two-temperature thermoelasticity with MDD problem, taking τT � τv � K ∗ � 0 and
τq � τ in Eq. (8) this problem agrees with Sarkar and Mondal [46].

(ii) If we put τv � τT � K ∗ � τ 2q � 0 and τq � ω, this problem reduces to two-temperature thermoelasticity

with MDD and agrees with the work of Ezzat et al. [43].

10 Numerical results and discussions

In this part, the numerical results of the non-dimensional displacement component, stress and temperature
distribution are demonstrated.Numerical computations are conducted for a coppermaterial [62]whose physical
information is given below (Table 1).
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Fig. 5 Distribution of σψψ against r

Fig. 6 Distribution of φ against r for various time delays

We take the other parameters for computational purposes ω′ � 0, φ0 � 1, a � 1m. Moreover, take
the other parameters for TPL theory τq � 0.001 s, τT � 0.05 s, τv � 0.05 s, K ∗ � 200 according to the
Quintanilla and Racke [63] stability condition K ∗ < K + K ∗τv < 2K τT

τq
.

In viewof the above physical constants, the field quantities are computed numerically by utilizingMATLAB
programming and are depicted graphically. The simulations were performed for three various cases.

10.1 Case I

In case I, the distributions of the dimensionless conductive temperature φ, radial stresses σrr , thermodynamic
temperature T , displacement u and hoop stresses σψψ with respect to distance r are examined for two-
temperature three-phase-lag model (2 T-TPL)(ω′ > 0), two-temperature Lord Shulman model (2 T-LS) (ω′ >
0), one-temperature three-phase-lag model (1 T-TPL)

(
ω′ � 0

)
and one-temperature Lord Shulman model

(1 T-LS)
(
ω′ � 0

)
in Figs. 1, 2, 3, 4 and 5.
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Fig. 7 Distribution of σrr against r for various time delays

Fig. 8 Distribution of T against r for various time delays

In Figs. 1 and 3 it is clear that the magnitudes of the dimensionless conductive temperature φ and thermo-
dynamic temperature T for 2 T-LS (ω′ > 0) and 1 T-LS (ω′ � 0) are smaller than that of 2 T-TPL (ω′ > 0) and
1 T-TPL

(
ω′ � 0

)
models. Also,φ and T converge towards zero with the increase in distance (r). However, we

notice that conductive temperature φ agrees with the physical boundary condition. It is observed from Figs. 2
and 4 that the values of radial stress σrr and u are larger in the case of 2 T-LS (ω′ > 0) model compared to
the 2 T-TPL (ω′ > 0), 1 T-TPL

(
ω′ � 0

)
and 1 T-LS

(
ω′ � 0

)
models. It is clear from Fig. 5 that the absolute

value of the hoop stress σψψ for 2 T-LS (ω′ > 0) model is larger than that of 2 T-TPL (ω′ > 0) model and
also 1 T-LS (ω′ � 0) is larger than that of 1 T-TPL

(
ω′ � 0

)
model. Moreover, σψψ reaches the peak value

around r � 1.8 and converges towards zero after r � 3.5.

10.2 Case II

In case II, the effects of the various time delay parameters ω � 0.03 s, 0.06 s, 0.09 s on the variations of the
dimensionless conductive temperature φ, radial stress σrr , thermodynamic temperature T , displacement u
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Fig. 9 Distribution of u against r for various time delays

Fig. 10 Distribution of σψψ against r for various time delays

and hoop stress σψψ for suitable kernel function K (t − ξ) �
(
1 − (t−ξ)

ω

)2
, t � 0.01 with respect to radial

distance r are examined. The obtained results are displayed graphically in Figs. 6, 7, 8, 9 and 10.
FromFigs. 5, 6, 7, 8, 9 and 10, we see that the absolute values of all the thermo-physical quantities have been

affected by the time delay parameter ω in the perspective of MDD. We observed that the time delay parameter
ω has a significant effect on all the field quantities. However, we also noticed that the conductive temperature
φ and thermodynamic temperature T have been affected by the time-delay ω, where the rising of the value of
the parameter ω causes diminishing effect in temperature fields. The thermal waves are smooth, continuous
functions and reach to steady state depending on the value ω, which means that the particles transport the
heat to the other particles easily and this makes the diminishing rate of the temperature greater than the other
ones. Also, the magnitudes of the non-dimensional conductive temperature φ and radial stresses σrr satisfy
the boundary conditions and validate the numerical scheme incorporated for the solution of the problem.
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Fig. 11 Distribution of φ against r for various K (t − ξ)

Fig. 12 Distribution of σrr against r for various K (t − ξ)

10.3 Case III

In Figs. 11, 12, 13, 14 and 15, we study the variations of the dimensionless conductive temperature φ, radial
stresses σrr , thermodynamic temperature T , displacement u and hoop stress σψψ for various forms of kernel

functions K (t − ξ) �
(
1 − (t−ξ)

ω

)n
(n � 0, 1, 2) and for suitable time delay parameters and time (t, ω) �

(0.02, 0.05), (0.1, 0.02), (0.03, 0.006), (0.06, 0.05), (0.004, 0.07) and (0.004, 0.08), respectively.
In Figs. 11 and 12, it is observed that the magnitudes of the conductive temperature φ and radial stresses

σrr have a significant consequence on the occurrence of various kernel functions. Also, φ and σrr acquire

maximum values for n � 0 in K (t − ξ) �
(
1 − (t−ξ)

ω

)n
and minimum value for the exponent n � 2 of K

(t − ξ) �
(
1 − (t−ξ)

ω

)n
. On the other hand, conductive temperature φ and radial stresses σrr satisfy Eqs. (24)

and (25) at r � a � 1 and then they converge towards zero with increasing values of r . It is observed from
Figs. 13, 14 and 15 that the thermodynamic temperature T , displacement u and hoop stress σψψ are affected
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Fig. 13 Distribution of T against r for various K (t − ξ)

Fig. 14 Distribution of u against r for various K (t − ξ)

by various forms of K (t − ξ). Increment the exponent n from 0 to 1 and 2 in K (t − ξ) �
(
1 − (t−ξ)

ω

)n
causes

decrement in all fields.

11 Conclusions

The behavior of strain component, conductive temperature, thermodynamic temperature, radial and hoop
stresses and displacement in a homogeneous, isotropic, two-temperature generalized thermoelastic medium
with a spherical cavity has been investigated in the framework of memory-dependent TPL model by utilizing
state–space approach. The theoretical developments and the numerical simulation expose that all the considered
parameters, namely time delay, kernel functions, ramp type parameter, and 2 T parameters, have considerable
effects on the field variables. As per the above investigation, the following concluding remarkable points can
be drawn:

1. According to the results, we can see the presence of the time delay parameter with its various values and
the kernel function with its various forms can play a significant role to increase or decrease the wave
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Fig. 15 Distribution of σφφ against r for various K (t − ξ)

propagation speed of all the considered distributions. To examine the memory impact, it is progressively
beneficial to deal with diverse kernel functions.

2. The generalized thermoelasticity with MDD has more capacity in depicting the memory impact than
fractional type.

3. According to this present work, some fundamental theories on two-temperature generalized thermoelas-
ticity with MDD can be easily obtained, such as the LS model, GN-III, II models and DPL heat conduction
model.

4. MDD ismore flexible than the fractional ones. The time-delay andKernel function ofMDD can be selected
randomly according to the need of applications.

5. For various kernel functions significant differences are observed for all the thermophysical quantities.
6. According to the figures of this work, we have noticed that larger value of time delay parameterω causes the

smaller magnitude of all the field quantities, from which we can conclude that ω has become an indicator
of its ability to conduct heat in a conducting medium.

7. The conductive temperature φ and thermodynamic temperature T plays a significant role for various time
delay and different kernel functions.

8. Also, it may be concluded that 2 T thermoelasticity theory with MDD is more realistic than the 1 T
thermoelasticity theory with MDD.

9. The vital phenomena are observed in all figures that the variations of the dimensionless thermodynamic
field variables in the present generalized thermoelasticity theory with MDD are restricted on the boundary
of the cavity and its neighboring region. In the distant region, the variation of the all the thermodynamic
variable vanishes identically. This physically implies that the domain of influence for each thermodynamic
variable is finite for any kernel function and time delay, and hence present problem with MDD shows the
behavior of finite speed propagation of thermal wave [47] and also all results are in agreement with the
generalized theory of two temperature thermoelasticity.
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