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Abstract This paper takes an asymmetric support ball bearing-rotor system subjected by unbalanced force and
parametric excitation (varying compliance) as the research object. Multi-modes of resonance such as natural
frequency resonance region of each order, VC (varying compliance) frequency resonance region, the 1/2 sub-
harmonic VC frequency resonance region, and quasi-periodic regions, and the nonlinear characteristics in these
regions are analyzed. Besides, the effect of the number of balls of the ball bearing is also considered and the
result shows that the parity of this parameter matters a lot. By introducing a definition of the absolute quasi-
periodic frequency, the law of the occurrence of the quasi-periodic motion is demonstrated and the possible
cause is given to some extent. The work provides a theoretical basis for clarifying the nonlinear characteristics
of the bearing-rotor system and suppressing the nonlinear behavior of the system.

Keywords Rolling element bearing · Asymmetric support · Jeffcott rotor · Frequency–amplitude response ·
VC frequency resonance · Quasi-periodic response

1 Introduction

Rolling element bearings are a type of main support for rotating machinery, especially for the rotors of aero-
engines, and are a key source of vibration (parametric excitation) in rotor-bearing systems, which create a
demand for vibration analysis and diagnostic techniques under various operating conditions. Mainly including
the inner and outer rings, cages and balls or rollers, the complicated mechanical structure of a rolling element
bearing exhibits nonlinear behavior due to bearing clearance, nonlinear Hertzian contact force, and defects.
With the presence of rotating unbalance, which is unavoidable, a wide variety of nonlinear behaviors can be
expected. These would add difficulties and obstacles to system status determination, prediction and control.
Therefore, studying the nonlinear behavior of the systemand identifying the influence of rolling element bearing
parameters on the nonlinear behaviors of the rotor system will help to reasonably avoid system instability,
increase the operating life, and improve the efficiency of mechanical equipment.

For a vibrating system, when the external excitation frequency is equal to the natural frequency of each
order of the system, the main resonances of each order occur. But nonlinearities in the system lead linear
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resonance changing to nonlinear resonance, which is more complicated and wider in range. To a ball bearing
rotor, the nonlinearities introduced by the clearance and the contact force between the rollers and rings and
the unavoidable rotor unbalance make the rolling element bearing-rotor system a complex nonlinear system.
Using nonlinear models, the vibration analysis of rotor-bearing systems has received considerable attention.
The early research of the nonlinear phenomena in rolling element bearings can be traced back to 80s. Fukuta
et al. [1] found that ball bearing systems have nonlinear dynamic behaviors such as super-harmonic, sub-
harmonic, quasi-periodic, and chaos-like solutions. Mevel and Guyader [2,3] studied the path of the bearing
system entering chaos through theory and experiments. He pointed out that the system had a way to enter
chaos through the period-doubling bifurcation and quasi-period path, and explained the relationship between
chaos motion and the contact failure (loss contact).

For the effects of the clearance, Saito [4] found that there are hard spring characteristics and soft spring
characteristics in different vibration modes in a bearing-rotor system with clearance. Feng and Hahn [5]
experimentally studied the effects of clearance on bearing dynamics and confirmed the existence of multiple
solutions. Tiwari et al. [6,7] changed stiffness and unbalanced excitation frequency together. By increasing the
clearance and increasing the variable compliance frequencies of super-harmonic and sub-harmonic responses,
the flexible rotor had intermittent chaos. The stability analysis of the bearing-supported unbalanced rotor
system was carried out. It was found that the system had three high-amplitude regions, which are, respectively,
the period-doubling bifurcation caused by instability of the period-1 solution and the quasi-period solution
due to the Hopf bifurcation and 1/2 VC frequency. Bai et al. [8] studied the effects of bearing clearance on
the stability of the system. In addition to the norm form of instability via period-doubling bifurcation and
secondary Hopf bifurcation, there is also a boundary crisis bifurcation. When the rotating speed exceeded
the critical value, the chaotic attractor appeared suddenly. Kostek [9] studied the effects of bearing clearance
changes on the dynamic behaviors of the system. As the clearance increased, typical nonlinear phenomena
such as bi-stable state, chaotic motion, period window, and period-doubling bifurcation appeared in the system.
They were very sensitive to the changes of the clearance.

Besides the nonlinear behaviors introducedby the clearance,Harsha [10,11] considered theHertzian contact
force, waviness, clearance, and other factors of rolling bearings to obtain nonlinear characteristics such as sub-
harmonic, quasi-periodic motion, and chaotic motion in the bearing-rotor system. Guputa et al. [12] found
chaos when the VC frequency of the flexible rotor approached the first natural frequency of the system. Jin et
al. [13] verified the coexistence of soft and hard stiffness characteristics of system resonance peaks caused by
bearing contact resonance through experiments.

Moreover, Jump phenomena were observed during the run-up and run-down with the constant operation.
Villa et al. [14] performed a stability analysis on a flexible rotor supported by a rolling element bearing, and
found that there were two jump intervals in the range of the first-order main resonance region, and pointed out
that the contact between the rolling element and the outer ring of the bearing can be as many as three or even
four in a period. Maraini and Nataraj [15] found that bearing clearance caused the system resonance peak to
exhibit the characteristics of hard spring, and external load force caused the system resonance peak to exhibit
the characteristic of soft spring, and both could induce jump phenomenon.

Several researchers have studied the rotor-bearing system using a nonlinear analysis technique known as
the harmonic balance method. Yang et al. [16] employed harmonic balance method to solve the dynamic
equations of cracked uncertain hollow-shaft system. Sinou [17] used the harmonic balance method to analyze
the system and found that the frequencies 2, 3, and 6 in the system dominated, and the super-harmonic and
sub-harmonic of the corresponding frequency were generated. The change of the unbalance in the system
would make the responses change from soft-hard spring characteristic to hard spring characteristic. Zhang et
al. [18] integrated the harmonic balance method and pseudo-arc-length continuation method to analyze the
hysteresis and bifurcation behavior of the bearing-balance rotor system, and revealed that the period-doubling
bifurcation mechanism in the parametric resonance region is 1:2 internal resonance.

Most of these previous studies utilized numerical integration techniques and analytical methods such as the
harmonic balancemethod. Some nonlinear behaviors had been discovered, but more are expected, especially in
the region of jump where multiple solutions exist. Thus, in this paper, we will focus on the nonlinear behaviors
especial for the jump resonance phenomenon of a Jeffcott rotor-bearing system with clearance and nonlinear
Hertzian contact using a mathematical representation with fractional power. Using the derived describing
function for the bearing force, the frequency responses can be got by numerical means further. Meanwhile,
based on the work by Harsha et al. [19] and Aktürk et al. [20], we know that the number of balls has huge
effect on the nonlinear behaviors of the ball bearing-rotor system, thus in this paper the effects of the number of
balls will be discussed in detail. Meanwhile, in the current researches on bearing-rotor systems, there are more
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Fig. 1 Schematic diagram of a Jeffcott rotor with ball bearings

studies on bearing parametric resonance or main resonance. Quasi-periodic behavior research is relatively
less. Considering the asymmetry of mass and stiffness, this work will take a rotor system supported by rolling
bearings as a model and try to find out the occurrence rule of the quasi-periodic motion.

The goal of this work is to find the nonlinear resonance phenomena introduced by nonlinearities of rolling
element bearing in as many as possible frequency regions and find out the possible reasonable reason of the
formation. A secondary objective is to provide a better understanding of bearing behaviors by studying the
frequency response and effects of the parameters, such as number of balls, on the system. The specific content
of the work is organized as follows: a brief introduction has been given in Sect. 1. In Sect. 2, the governing
equations of an asymmetric support Jeffcott rotor will be established. Then based on the model get in Sect. 2,
the resonance phenomena and parameter discussion in the main resonance region, VC frequency resonance
region, the 1/2 sub-harmonic VC frequency resonance region, and some quasi-periodic resonance regions will
be studied step by step. Concluding remarks will be given finally.

2 Modeling and foundation of dynamic equations

Figure 1 shows a schematic diagram of a rotor system supported by ball bearings. The left and right ends
have different ball bearing support schemes, respectively, as the left end is connected to the foundation with a
spring, and the right end is directly connected to the foundation. So the DOF (degree of freedom) of the outer
ring of the left bearing should be considered while the right can be ignored.

Considering the gravity, unbalanced force, gyroscopic effect, and bearing force, the dynamic model of the
rotor support structure shown in Fig. 1 can be established into form

MẌ + (C + �G)Ẋ + KX + Fn = Fu + Fg (1)

where X = [x, y, θx , θy, xa, ya, xb, yb, xo, yo]T is displacement coordinate vector, in which x and y are disk
center’s displacements along the x-axis and y-axis, respectively; θx and θy are disk center’s rotation angles
along the x-axis and y-axis, respectively; xa and ya represent the displacements of the equivalent mass at the
left end; xb and yb represent the displacements of the equivalent mass at the right end; and, xo and yo represent
the displacements of the outer ring of the bearing mounted at the left.M, C, G and K are corresponding mass
matrix, damping matrix, gyro matrix and stiffness matrix. Fn is the bearing force vector; Fu is unbalanced
force vector andFg is gravity vector.� is rotating frequency which determines the frequency of the unbalanced
force. The expanded form of Eq. (1) can be found in appendix.

The model has two supports, then the ball bearing force vector has form of

Fn = [0, 0, 0, 0, Fbx1, Fby1, Fbx2, Fby2, −Fbx1,−Fby1]T .

And the bearing forcemodel adopted in this work is a two-degree-of-freedom ball bearingmodel, including
nonlinear Hertzian contact force, clearance, and variable stiffness characteristics. Assuming that the initial
positions of the bearing balls at both ends are the same, the position of the ball i at time t can be expressed as

θi = 2π(i − 1)/Nb + �ct (2)
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Fig. 2 Comparisons of the bearing forces from [1] and calculated in this work: a Fukata’s result at 450 rpm; b Fukata’s result at
1000 rpm; c result from this work at 450 rpm; d result from this work at 1000 rpm

where Nb is the number of the rolling balls. �c = ri/(ri + ro) · �, in which, ri is the radius of the inner ring
and ro the radius of the outer ring.

Then, the bearing force of the left end can be expressed as Eq. (3)

[
Fbx1
Fby1

]
= Cb

Nb∑
i=1

(δ1i G [δ1i ])
3/2

[
cos θ1i
sin θ1i

]
(3)

where δ1i = (xa − xo) cos θi + (ya − yo) sin θi − δ0; Cb is the Hertz contact stiffness; G[·] is Heaviside
function and δ0 is the radial clearance of bearing.

Meanwhile, the bearing force of the right end can be expressed as

[
Fbx2
Fby2

]
= Cb

Nb∑
i=1

(δ2i G [δ2i ])
3/2

[
cos θ2i
sin θ2i

]
(4)

where δ2i = xb cos θi + yb sin θi − δ0.
Using the parameters in the Fukata’s paper [1], the comparison simulation results are shown in Fig. 2, with

Fig. 2c which is calculated from Eqs. (3) and (4) compares with Fig. 2a which is from Ref. [1] at speed 450
rpm and Fig. 2d compares with Fig. 2b at 1000 rpm. The comparison results show that the bearing force model
adopted here is reasonable.

Defining the dimensionless time as τ = �t and dimensionless displacement vector Q = EX, in which
E = 1

cdiag(1, 1, l, l, 1, 1, 1, 1, 1, 1), Eq. (1) can be transformed into

Q′′ + (C̄ + Ḡ)Q′ + K̄Q + F̄n = F̄u + F̄g (5)

where C̄ = 1
�
EM−1CE−1 is dimensionless damping matrix; Ḡ = EM−1GE−1 is dimensionless gyro matrix;

K̄ = 1
�2EM

−1KE−1 is dimensionless stiffness matrix; F̄n = 1
�2EM

−1Fn is dimensionless bearing force

vector; F̄u = 1
�2EM

−1Fu is dimensionless unbalanced force vector and F̄g = 1
�2EM

−1Fg is dimensionless
gravity vector. The superscript prime denotes the derivative with respect of dimensionless time. The expanded
form of Eq. (5) can be found in appendix.

Because the natural frequencies are related to the numbers of bearing ball, before to simulate the resonance
regions, we calculate the first three order natural frequencies with different ball numbers. The results are shown
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Table 1 The critical speed under different numbers of the bearing balls

Ball number �1x (rad/s) �1y (rad/s) �2x (rad/s) �2y (rad/s) �3x (rad/s) �3y (rad/s)

8 281 303 822 969 1788 1818
9 286 307 854 1001 1795 1826
10 290 310 883 1032 1801 1834
11 292 312 889 1058 1802 1842
12 295 315 915 1083 1807 1849
13 298 318 936 1107 1812 1857

Table 2 The values of the parameters

Rotor parameters Value Bearing parameters Value

m 120 kg ri 39.6 mm
ma 12 kg ro 70.4 mm
mb 18 kg mo 0.965 kg
krr 7.4 × 107 N/m Cb 1.0 × 109 N/m3/2

krϕ and krϕ 2.77 × 107 N/m
kϕϕ 6.15 × 107 N/m
ka 1.0 × 107 N/m
c1 266 N·s/m
c2 and c3 99.6 N·s/m
c4 221 Ns/m
l1 0.8 m
l2 1.25 m
Jd 2.5 kg·m2

Jp 2.5 kg·m2

δ 1.67 × 10−6 m

in Table 1. The values of the system parameters are listed in Table 2. It should be mentioned that as the stiffness
is time varying, the mean of the response valves are used here as

kxx = 1

N

N∑
i=1

∂Fx
∂x

(i	τ)

kyy = 1

N

N∑
i=1

∂Fy

∂y
(i	τ) (6)

where N = T/	τ is the number of discrete points.
It can be seen that, as the number of balls increases, the support stiffness of the system increases, then

the natural frequency of each order slowly rises. Because the system is asymmetric, the natural frequency in
the horizontal direction is lower than the natural frequency in the vertical direction. Based on the result, a
dimensionless frequency λ = �/�0 (we choose �0 = 300 rad/s as an integer near the natural frequency) is
introduced for further analysis.

3 Analysis and discussion

3.1 The primary frequency resonance region

When the external excitation’s frequency matches the natural frequency of the system, we say that the main
resonance occurs in the general sense. To the rotor system established in the previous section, the amplitude-
frequency curve around the first-order natural frequency of the system is shown in Fig. 3, which shows that
the response curve (no matter what value of Nb is) appears a hard spring characteristic when the rotating
speed increases and decreases in the resonance region, i.e., the response jumps downward and when the speed
decrease, it jumps upward. This jump behavior is consistent with existing research [21].
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Fig. 3 Amplitude-frequency curves in main resonance zone (where ◦ indicates acceleration, and × indicates deceleration)

Figure 3 also shows three curves in different colors as the number of the rolling balls varies, which
could show us that when the number of the rolling balls increases, the equivalent stiffnesses of the system’s
supports increase, and the resonance peaks move to right without the hysteresis interval changing significantly.
Compared with the two resonance cases studied in latter subsections, the resonance peak of the main resonance
is much higher than the peak of the VC frequency resonance and its sub-harmonic resonance, so the magnitude
of the main resonance amplitude determines the vibration level of the system as a whole.

There are many literature focused on the jump behaviors in the main resonance region. This work will not
discuss it too much. But it is worth noting that for a nonlinear system, the super-harmonic or sub-harmonic
response that may occur with the main resonance when the frequencies coincide, which will increase the
amplitude of the response and further lead the resonance range wider. Also, the parametric characteristic of
the bearing force will make the rotor system prone to instability.

3.2 The VC frequency resonance region

In ball bearing-rotor systems, in addition to the unbalanced excitation frequency, there are bearing VC frequen-
cies related to the number of the balls. When the VC frequencies are equal to the system’s natural frequencies,
resonance behaviors also occur [22]. In this work, we call it VC frequency resonance.

Since the bearing VC frequency and the rotor unbalance excitation simultaneously present in the current
system, each order critical speed of the system should correspond to at least two resonant regions: (1) the main
resonance of the unbalanced excitation frequency and (2) the resonance of the bearing VC frequency.

Take Nb = 8 as a research case, The first three orders of the equivalent natural frequencies of the system
are converted into dimensionless parameters as λ1x = 0.94, λ1y = 1.01, λ2x = 2.74, λ2y = 3.23, λ3x = 5.96,
and λ3y = 6.06. The dimensionless VC frequency can be calculated as ωvc = 2.88 in this case. It can be
determined that the system’s VC frequency resonance points are λv1x = 0.326 and λv1y = 0.351.

In order to prove the point of view in this work right, the amplitude-frequency characteristic curves in the
horizontal and vertical directions when Nb = 8 are used to be compared with Ref. [13]. The results are shown
in Fig. 4.

Figure 4a, c shows the nonlinear behaviors in the horizontal direction through the VC frequency resonance
region, and Fig. 4b, d shows the nonlinear behaviors in the vertical direction through the same region. It can be
seen that in the horizontal direction, the system behaves as the amplitude jumps downward in both run-up and
run-down process, whichmeans it is a nonlinear characteristic of the coexistence of soft and hard stiffnesses, as
in run-up process characteristics of a hard spring emerges while the characteristics of a soft spring in run-down
process [22]. Unlike the horizontal direction, the vertical direction appears as a nonlinear characteristic of soft
stiffness only.

Because the experimental conditions in Ref. [13] are complicated and there are additional factors such as
horizontal additional stiffness and vertical additional load, it is difficult to quantitatively compare the results in
this paper with the experimental results. But, the numerical analysis results well match the experiment results
qualitatively, which could prove the validity of the analysis results in this paper to a certain extent.
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Fig. 4 Comparison of numerical results of nonlinear characteristics at parametric resonance region with experiment results:
a Coexistence of the soft and hard spring characteristic in experiment result [13]; b Soft spring characteristic in experiment
result [13]; c Coexistence of the soft and hard spring characteristic in numerical result (where ◦ indicates run-up, and × indicates
run-down); d Soft spring characteristic in numerical result (where ◦ indicates run-up, and × indicates run-down)

Figures 5 and 6 show the amplitude-frequency curves of the vibration of the disk center in the horizontal
direction and the vertical direction in the VC frequency resonant region, respectively, when the number of
balls varies from Nb = 8 to Nb = 13.

When Nb = 8, the dimensionless VC frequency ωvc = 2.88. Because the horizontal and vertical natural
frequencies are different, there are two resonance zones near λv1x = 0.326 and λv1y = 0.351, respectively,
which can be seen in Fig. 5a. The former one is a horizontal resonance region, and the latter is a horizontal–
vertical coupled resonance region. Both of them have the jump hysteresis phenomenon. As mentioned before,
a soft-hard spring characteristic is exhibited in the horizontal direction [22] (Fig. 5a). At where essentially
saddle-node bifurcation occurs, however the intersection on the amplitude-frequency curve is not the exact
bifurcation point, but a projection of the solution curve in the variable space [23]. This response characteristic
indicates that there is a strong coupling between the two DOFs. In the vertical resonance region (Fig. 6a), the
response exhibits a soft stiffness characteristic only, which means there is little coupling effect.

Although the soft stiffness characteristic dominates in vertical direction, it’s also can be seen in Fig. 6a,
there are multiple solutions and jumps around the point λ = 0.33. Take the data from run-up and run-down
processes, the FFT (Fast Fourier Transform) analysis results (shown in Fig. 7a, b) show that in run-down
process there is 2.88 frequency component (Fig. 7b), which corresponds to the VC frequency, and in run-up
process, bedsides 2.88 frequency component, there is another 2.74 frequency component (Fig. 7a), which is not
a periodic combination frequency of the unbalanced frequency and VC frequency. Thus, it is a quasi-periodic
response. This phenomenon will be analyzed and discussed in detail later.

In addition, by the FFT analysis in the range of the horizontal–vertical coupling resonance region λ = 0.345
(shown in Fig. 7c, d), it can be found that a quasi-periodic motion of the frequency ω = 2.502 in the run-down
process appears (Fig. 7d), which causes the jump in the horizontal direction at corresponding point (Fig. 5a).
While in run-up process, there is only a periodic motion (Fig. 7c).
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Fig. 5 Amplitude-frequency curves along the horizontal direction (where ◦ indicates run-up, and × indicates run-down)

Going through Figs. 6 and 7, there are some other characteristics can be found. Compared with Fig. 5b–f,
it can be seen that as the number of balls increases, the soft and hard spring coexistence characteristic in the
horizontal direction generally weakens, and the resonance peak also decreases. However, this phenomenon is
not monotonous, but varies according to parity of the Nb. In the case of Nb is an odd number, the amplitudes
are larger, the nonlinear forces are stronger and the hysteresis zone is wider than those in the case that Nb is
an even number.

Grouped by the parity of the Nb, the nonlinear characteristics of the system show the regularity of
monotonous change in each group: (1) for the even group, as the number of balls increases, the system’s
soft-hard spring coexistence characteristic gradually changes to hard spring characteristic. (2) For odd group,
nonlinear characteristic disappears as the number of balls increases. In summary, the nonlinear characteristics
would be weakened by the increase in the number of balls, but fluctuate regularly.

The trend in the vertical direction follows the same law. If Nb increases from an even number to an odd
one, the amplitude decreases. On the contrary, the amplitude does not substantially change or increase a little.
Meanwhile, as Nb increases, the amplitude in the vertical direction is gradually smaller than the amplitude
in the horizontal direction, indicating that Nb has more influence on the stiffnesses of the system in vertical
direction.
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Fig. 6 Amplitude-frequency curves along the vertical direction (where ◦ indicates acceleration, and × indicates deceleration)

3.3 The 1/2 sub-harmonic VC frequency resonance region

For the rolling bearing supported rotor system, as the strong nonlinear terms introduced by the bearing force,
there exist not only base frequency responses, but also integer multiple or fractional harmonic responses, which
could lead to resonance. When these harmonic responses are consistent with the natural frequencies of the
system, the system resonance will be excited [19,20]. The 1/2 sub-harmonic resonance of the VC frequency
will be studied in this section. When Nb = 8, the first VC resonance frequency of the system in the horizontal
direction will be at λ = 0.326. So if there is a 1/2 sub-harmonic resonance of the VC frequency exists, it
will be around λ = 0.652. Simulating around the point, as shown in Fig. 8a, a resonance peak appears in the
horizontal direction. Taking point P1(λ = 0.634), at where the response is about to enter the peak, and point
P2(λ = 0.635), at where the response has just started to increase, to conduct FFT analysis, the results are
shown in Fig. 9a, b.

Figure 9a, b shows the frequency components of the system before and after entering the sub-harmonic
resonance region, respectively. It is noting that the dominated frequency of the system response changes from
the unbalanced excitation frequency (base frequency) to the 1/2 VC frequency. Before the resonant peak,
the response component consists of the excitation frequency, VC frequency, and the combination of them,
while the spectrum of the solutions on the peak shows the 1/2 sub-harmonic component of the parametric
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Fig. 7 Spectrum of response frequencies at VC frequency resonance region when Nb = 8

Fig. 8 Frequency–amplitude curves of the center of disk (where ◦ indicates run-up, and × indicates run-down)

frequency (VC frequency) dominants. This means that the system arises a period-doubling bifurcation under
the influence of the VC frequency suddenly, which should be related to the parametric characteristic of the
VC frequency. There is also a sudden jump at the sub-harmonic resonance peak. In run-up process, it jumps
downward obviously, while in run-down process, it does not. This is a typical hard spring characteristic. In
Fig. 8a, another resonant peak can be found around λ = 0.670. By the FFT analysis of run-up and run-down
process around the point (shown in Fig. 9c, d), a quasi-period solution can be found.

Considering the effect of the number of ball Nb, the amplitude-frequency curves around the sub-harmonic
VC frequency resonance region with different Nb are simulated, which are shown in Fig. 10a–e.

When Nb changes, the variation characteristic of the amplitude of 1/2 sub-harmonic VC frequency and
the range of the resonance region also depends on the parity of Nb, as shown in Fig. 10a–e. When Nb is
an odd number, the VC frequency sub-harmonic resonance region is smaller than the adjacent even number
case. Similar to the case of the VC frequency resonance region, when Nb increases, generally, the resonance
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Fig. 9 Frequency components in sub-harmonic zone

region reduces and the amplitude decreases. In addition, even if the resonance peak is small, there is still a
multi-solution phenomenon, which means strong bearing nonlinearity of the bearing support structure.

To the vertical direction, the analysis process is similar. But two points should be noticed. The first, as
shown in Fig. 8b, because the VC frequency of the vertical direction is different from the horizontal direction,
the sub-harmonic resonance won’t appear simultaneously in both directions. The little peak in Fig. 8b around
λ = 0.652 is coupled by the response of horizontal direction, but the coupling effect is weak. The second, in
some case, like when Nb = 7, there is no 1/2 sub-harmonic resonance as shown in Fig. 10f.

The reason should be that unlike the horizontal direction, the vertical direction is asymmetric in geometry
due to the gravity. At the same time, the equivalent stiffness is greater than that of the horizontal direction.
Both asymmetric and rigid factors may cause the conditions of sub-harmonic resonance to be different. When
Nb = 7, the first-order vertical frequency is 298 rad/s. If sub-harmonic resonance occurs in the vertical
direction, the resonance region should be near λ = 0.788. However, in Fig. 10f, there is no 1/2 sub-harmonic
VC frequency resonance peak, which indicates that the stiffness is not themain factor affecting the vertical sub-
harmonic VC frequency conditions. It should be the asymmetry caused by gravity that changes the conditions
for the occurrence of sub-harmonic resonances in the vertical direction and inhibits its occurrence.

3.4 The quasi-periodic resonance region

According to the foregoing analysis, it can be seen that the system has quasi-periodic motion. Because the fre-
quency of quasi-periodic response is not proportional to the unbalanced excitation frequency or VC frequency,
it is hard to predict. In this section, we want to find some rules of quasi-periodic resonances.

When Nb = 8, the amplitude-frequency curve is simulated in a wide range after the first-order main
resonance, which is shown in Fig. 11. Going through Fig. 11, it is noting that near λ = 5.96 (the third-order
natural frequency), a resonance band with a large span appears. By FFT analysis at λ = 5.94, λ = 6.12
and λ = 6.68, respectively, as shown in Fig. 12, it can be found that the system has obvious quasi-periodic
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Fig. 10 Frequency–amplitude curves at sub-harmonic resonance region with different numbers of rolling balls (where ◦ indicates
run-up, and × indicates run-down)

frequency components, which amplitudes are greater than the periodic component. Thus, we can say, the
quasi-periodic response is dominant.

Introducing a definition of an absolute quasi-periodic frequency λ f = λ ·ω, the quasi-periodic components
in Fig. 12 can be calculated as (a) 0.943 and 2.683, (b) 0.971, and (c) 0.980. Comparedwith Fig. 3, the dominant
quasi-periodic components locate on the first-order primary resonance region, while λ f = 2.683 corresponds
to the second-order primary resonance region if you take further analysis. The reason is that the quasi-periodic
motion can be formed by the secondary Hopf bifurcation of the periodic solution. Similar to the intrinsic
property of the Hopf bifurcation excitation system, the second Hopf bifurcation can also excite the inherent
properties of the system, i.e., the natural frequency of each order. Especially, the lower orders of resonance
are easier to be excited, so the quasi-periodic motions are more likely to form in first-order primary resonance
band. Unlike linear system, where resonance does not occur as long as it is far from the resonance region, the
quasi-periodic response is a nonlinear characteristic, and could occur in the non-primary resonant region.

In Fig. 11, there are also some other quasi-periodic motions need to be noticed in the range of λ = 2.0 and
λ = 4.0. Taken the FFT analysis results of λ = 2.2, λ = 2.76, and λ = 3.08 (shown in Fig. 13), the absolute
quasi-periodic components frequency are (a) 0.860, (b) 0.943, 5.862, and (c) 0.940, which correspond to the
first-order and third-order primary resonance regions of the system, respectively. It can be seen that in these
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Fig. 11 Frequency–amplitude curve of horizontal direction when Nb = 8 (where ◦ indicates run-up, and × indicates run-down)

Fig. 12 Frequency spectrum at third primary resonance region

Fig. 13 Frequency spectrum when Nb = 8

frequency intervals, the system has non-coordinated responses concentrated, and each quasi-periodic solution
is connected into a complex motion region.

In the range of λ = 3.6 to λ = 3.8, it is noted that the amplitudes are different in run-up and run-down
processes. Along run-up curve, the amplitude gradually increases until it jumps to a lower amplitude value,
while in the case of run-down, the amplitude keeps a low value. Taking the FFT analysis (shown in Fig. 14),
the increment of the amplitude is derived from the quasi-periodic motion with the frequency 0.923, which
locates in the first-order resonance region (main resonance), and has same trend as that of the main resonance
region. Comparing the frequency components in run-up and run-down cases, there is a combination of the
quasi-periodic frequency and the excitation frequency exhibits in run-up case, while, there is no quasi-periodic
motion in run-down case, and only the external excitation frequency component exits. Therefore, in this interval,
the system is characterized by the coexistence of the periodic solution and the quasi-periodic solution, which
is a kind of bi-stable characteristic.

When the number of balls Nb = 9, the amplitude-frequency curve in the horizontal direction of the disk
center is shown in Fig. 15. Compared with the case of Nb = 8, although there are similar multiple peaks,
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Fig. 14 Frequency spectrum, when Nb = 8 at λ = 3.6

Fig. 15 Frequency–amplitude curve of horizontal direction (where ◦ indicates run-up, and × indicates run-down)

Fig. 16 Frequency spectrum in second primary resonance region when Nb = 9

all the resonance regions are relatively independent and no connected regions like interval λ = 2.0 to 4.0 in
Fig. 11 form.

Meanwhile, we notice that in the interval of λ = 2.8 to 2.9, the amplitude of the horizontal direction is
relatively small, but the coexistence characteristic emerges. As there are quasi-periodic frequency and super-
harmonic components in run-up process, while there is only periodic component in the run-down process,
which are shown in Fig. 16a, b. In addition, there are multiple regions in which periodic solutions and quasi-
periodic solutions coexist, such as λ = 3.2 ∼ 3.3, λ = 3.7 ∼ 4.0 and λ = 5.55 ∼ 5.65. The spectrum of
quasi-periodic solutions and periodic solutions are shown in Fig. 17, and the frequencies corresponding to the
quasi-periodic solution are λ f = 0.931, λ f = 0.947,and λ f = 0.955.
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Fig. 17 Frequency spectrum when Nb = 9

In the third-order resonance region (λ = 6 to 7.5), there still exists a series of quasi-periodic responses.
The corresponding frequencies are listed in Table 3, which all meet the rule of that both of them locate in the
first-order primary resonance region.

In order to analyze the effects of the number of balls, Fig. 18 shows amplitude-frequency curves in the
horizontal direction when the number of balls are Nb = 10, Nb = 11, Nb = 12, and Nb = 13, respectively.
And the quasi-periodic frequencies corresponding to each ball number are shown in Table 4. As the number
of balls increases, most of the quasi-periodic areas in the system show a decreasing trend. Noting that λ = 2.4
at Nb = 8 (Fig. 11), λ = 1.95 at Nb = 10 (Fig. 18a), λ = 1.61 at Nb = 12 (Fig. 18c), there are quasi-periodic
motions, whose frequencies are λ f = 0.9228, λ f = 0.9522, and λ f = 0.9827.

Multiplied by the corresponding VC frequencies of 2.88, 3.6, and 4.32, it can be found that the multiple
results 6.912, 7.02, and 6.955 locate in the third-order natural resonance region. Therefore, it can be seen
that these three resonance points are approximately the VC frequency resonance points in third-order natural
resonance region.These frequencies connect the low-order resonance regions andhigh-order resonance regions.



3006 C. Huizheng et al.

Table 3 Quasi-period frequencies at third primary resonance region

λ ω λ f

6.28 0.1587 0.9966
6.45 0.1536 0.9907
6.66 0.1465 0.9757
7.16 0.1404 1.0053

Table 4 Quasi-period frequencies at others region

Nb λ ω λ f

10 3.4 0.2808 0.9547
10 3.8 0.2518 0.9568
10 5.15 0.1862 0.9589
11 3.38 0.2869 0.9697
11 3.5 0.2747 0.9614
11 4.0 0.2441 0.9764
12 3.43 0.2808 0.9631
12 4.01 0.2441 0.9788
12 4.65 0.2075 0.9648
13 4.08 0.2441 0.9959

However, when the number of balls is odd, no such phenomenon occurs, which also shows that the system
with odd number of balls is more stable.

It can be known from the above analysis that most of the quasi-periodic frequencies of the system are
concentrated at the first-order resonance peak, and the quasi-periodic motion is more likely to occur due to the
wider resonance band of the nonlinear system. In addition, some quasi-periodic regions do not show obvious
regularity. Increasing the number of balls can only reduce the amplitude of some quasi-periodic solutions, but
the effects are not obvious for a wide range of quasi-periodic solutions. The quasi-periodic motion is a non-
harmonic response of the system that generates a natural vibration frequency in the non-resonant region. Its
amplitude is directly related to the low-order peak. Therefore, the suppression of the quasi-periodic vibration
should be considered in terms of suppressing the main peak. Controlling the low-order resonance peak can
reduce the maximum amplitude of the vibration on the one hand and suppress the generation of related quasi-
periodic motions on the other.

4 Conclusion remarks

This paper studies the nonlinear response characteristics of an asymmetric rolling bearing-rotor system in
multiple resonance regions, and draws the following conclusions.

(1) Due to the effect of the VC frequency of the bearing, the system has VC frequency resonance regions
corresponding to the main resonance regions. In the horizontal direction, there is a nonlinear characteristic
of the coexistence of soft-hard stiffness, and in the vertical direction, only soft stiffness exists. This means
the vertical direction affects the horizontal direction much, on the contrary, there is almost no effect.

(2) Due to the asymmetry and nonlinearity, there is a sub-harmonic resonance of the VC frequency in the
horizontal direction, which has hard spring characteristic, while there is no sub-harmonic resonance of the
VC frequency in the vertical direction.

(3) There are many quasi-periodic motions in the system, the frequencies of which are distributed at the natural
resonance region of each order of the system, especially concentrate in the first-ordermain resonance region.
There is a close relationship between the first-order main resonance and the quasi-periodic motions.

(4) The increase in the number of balls increases the stiffness of the system’s supports, thereby it will reduce
the amplitude and suppress the nonlinear behaviors of the system. But there are fluctuations in amplitude
and resonances in the VC frequency resonance regions and its 1/2 sub-harmonic resonance regions. Among
them, the resonance peak values in the resonance interval of the odd-numbered balls are smaller than those
of the adjacent even-numbered balls.
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Fig. 18 Amplitude-frequency curves along the longitude direction of the disk center (where ◦ indicates acceleration, × indicates
deceleration, Nb = 10)

All these characteristics can help us understand the dynamic behaviors of the ball bearing-rotor systems and
because they are all present in a healthy bearing condition and therefore can be used to establish base-line
behavior as a function of system parameters.
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In the study, the frequency prediction of the occurrence of the quasi-periodic and the occurrence conditions
of the frequency 1/2 sub-harmonics are worthy of further systematic research. In the future, further analysis
will be conducted related to these two points.
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A Appendix

Expanded form of Eq. (1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ + c1(ẋ − ẋ1) − c2(θ̇y − θ̇y1) + krr (x − x1) − krϕ(θy − θy1) = mδ�2 cos�t
m ÿ + c1(ẏ − ẏ1) + c2(θ̇x − θ̇x1) + krr (y − y1) + krϕ(θx − θx1) = mδ�2 sin�t − mg
Jd θ̈x + Jp�θ̇y + c3(ẏ − ẏ1) + c4(θ̇x − θ̇x1) + kϕr (y − y1) + kϕϕ(θx − θx1) = 0
Jd θ̈y − Jp�θ̇x − c3(ẋ − ẋ1) + c4(θ̇y − θ̇y1) − kϕr (x − x1) + kϕϕ(θy − θy1) = 0
maẍa − γ2c1(ẋ − ẋ1) + γ2c2(θ̇y − θ̇y1) − γ2krr (x − x1) + γ2krϕ(θy − θy1) + Fbx1 = 0
ma ÿa − γ2c1(ẏ − ẏ1) − γ2c2(θ̇x − θ̇x1) − γ2krr (y − y1) − γ2krϕ(θx − θx1) + Fby1 = −mag
mbẍb − γ1c1(ẋ − ẋ1) + γ1c2(θ̇y − θ̇y1) − γ1krr (x − x1) + γ1krϕ(θy − θy1) + Fbx2 = 0
mb ÿb − γ1c1(ẏ − ẏ1) − γ1c2(θ̇x − θ̇x1) − γ1krr (y − y1) − γ1krϕ(θx − θx1) + Fby2 = −mbg
moẍo + kaxo − Fbx2 = 0
mo ÿo + ka yo − Fby2 = −mog

where x1 = γ2xa + γ1xb, y1 = γ2ya + γ1yb, θx1 = (yb − ya)/ l and θy1 = (xa − xb)/ l represent the disk
center’s rigid body displacements and rotation angles, respectively; l = l1+ l2 is the total length of the rotating
shaft; l1 is the length of left part of the shaft, while l2 is the right; m, ma , mb and mo represent the equivalent
mass of the hub, the left and right journals and the outer ring of the bearing, respectively; krr , krϕ , kϕr and
kϕϕ represent the equivalent stiffness of the shaft in different directions, respectively; Jd and Jp represent the
moment of inertia and polemoment of inertia of thewheel equator, respectively; c1−c4 represent the equivalent
damping coefficients of the rotating shaft; γ1 and γ2 are the length proportional coefficients, respectively, in
which γ1 = l1/ l and γ2 = l2/ l; δ represents the eccentricity of the unbalanced mass; Fbx1 and Fby1 are the
horizontal and vertical bearing forces at the left end, respectively; Fbx2 and Fby2 are the horizontal and vertical
bearing force at the right end, respectively; g is the gravitational acceleration.

Expanded form of Eq. (5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
′′
1 + ζ1q

′
1 − ζ2q

′
4 − (ζ2 + ζ1γ2)q

′
5 + (ζ2 − γ1ζ1)q

′
7 + κ1q1 − κ2q4

−(κ2 + κ1γ2)q5 + (κ2 − γ1κ1)q7 = U1 cos τ

q
′′
2 + ζ1q

′
2 − ζ2q

′
3 − (ζ2 + ζ1γ2)q

′
6 + (ζ2 − γ1ζ1)q

′
8 + κ1q2 − κ2q3

−(κ2 + κ1γ2)q6 + (κ2 − γ1κ1)q8 = U1 sin τ − W
α0q

′′
3 + α0ηq

′
4 + ζ3q

′
2 + ζ4q

′
3 − (ζ4 + ζ3γ2)q

′
6 + (ζ4 − γ1ζ3)q

′
8 + κ3q2 + κ4q3

−(κ4 + κ3γ2)q6 + (κ4 − γ1κ3)q8 = 0
α0q

′′
4 − α0ηq

′
3 − ζ3q

′
1 + ζ4q

′
4 + (ζ4 + ζ3γ2)q

′
5 − (ζ4 − γ1ζ3)q

′
7 − κ3q1 + κ4q4

+(κ4 + κ3γ2)q5 − (κ4 − γ1κ3)q7 = 0⎧⎪⎪⎨
⎪⎪⎩

α1q
′′
5 − γ2ζ1q

′
1 + γ2ζ2q

′
4 + γ2(ζ2 + γ2ζ1)q

′
5 − γ2(ζ2 − γ1ζ1)q

′
7 − γ2κ1q1 + γ2κ2q4

+γ2(κ2 + γ2κ1)q5 − γ2(κ2 − γ1κ1)q7 + C̄b F̄bx1 = 0
α1q

′′
6 − γ2ζ1q

′
2 − γ2ζ2q

′
3 + γ2(ζ2 + γ2ζ1)q

′
6 − γ2(ζ2 − γ1ζ1)q

′
8 − γ2κ1q2 − γ2κ2q3

+γ2(κ2 + γ2κ1)q6 − γ2(κ2 − γ1κ1)q8 + C̄b F̄by1 = −α1W⎧⎪⎪⎨
⎪⎪⎩

α2q
′′
7 − γ1ζ1q

′
1 + γ1ζ2q

′
4 + γ1(ζ2 + γ2ζ1)q

′
5 − γ1(ζ2 − γ1ζ1)q

′
7 − γ1κ1q1 + γ1κ2q4

+γ1(κ2 + γ2κ1)q5 − γ1(κ2 − γ1κ1)q7 + C̄b F̄bx2 = 0
α2q

′′
8 − γ1ζ1q

′
2 − γ1ζ2q

′
3 + γ1(ζ2 + γ2ζ1)q

′
6 − γ1(ζ2 − γ1ζ1)q

′
8 − γ1κ1q2 − γ1κ2q3

+γ1(κ2 + γ2κ1)q6 − γ1(κ2 − γ1κ1)q8 + C̄b F̄by2 = −α2W
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{
α3q

′′
9 + κ5q9 − C̄b F̄bx1 = 0

α3q
′′
10 + κ5q10 − C̄b F̄by1 = −α2W

where q1 = x/c, q2 = y/c, q3 = θx l/c, q4 = θyl/c, q5 = xa/c, q6 = ya/c, q7 = xb/c , q8 = yb/c,
q9 = xo/c and q10 = yo/c are dimensionless displacements of the disk center, the left and right journals, and
the outer ring. The dimensionless forces F̄bx1, F̄bx2, F̄by1, and F̄by2 have same expressions as shown in Eqs.
(3) and (4), respectively, just with the replacement of the corresponding dimensionless parameters.

All other dimensionless parameters are listed as α0 = Jd/ml2, α1 = ma/m, α2 = mb/m, α3 = mo/m,
κ1 = krr/m�2, κ2 = krϕ/ml�2, κ3 = kϕr/ml�2, κ4 = kϕϕ/ml2�2, κ5 = ka/m�2, ζ1 = c1/m�,
ζ2 = c2/ml�, ζ3 = c3/ml�, ζ4 = c4/ml2�, η = Jp/Jd , U1 = δ1/c, C̄b = Cbc0.5/m�2, and W = g/c�2 ,
in which c = mg/k.
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