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Abstract This article is concerned with the propagation of guided type-Lamb waves in a magneto-electro-
elastic composite plate. As a numerical method, the ordinary differential equation with the Thomson Haskell
parameterization of Stroh formalism is employed to determine the wave characteristics in the composite plate
by imposing the traction-free boundary condition on the top and bottom surfaces. Multiple crossing appears in
the dispersion curves between the symmetric and the antisymmetric Lamb modes, which makes the dispersion
curves more complicated and interesting to study. We are trying in this research to find, are these modes
really coupled and why? For that, a set of numerical results are presented like the dispersion curves, the
non-dimensional frequency, bulk waves slowness curve as well as the mechanical displacement U1 and U3
versus the non-dimensional thickness. These results could be interesting for the analysis and design of new
acoustic devices based on magneto-electro-elastic material as well as a good candidate for nondestructive
testing technology.

Keywords Lamb waves · Dispersion curve · Splitting modes · Slowness curves · Modal shape

1 Introduction

Due to the vast applications of smart materials in aerospace, sensors and actuators transport vehicles, medical
instruments, supersonic airplanes and so on. Intelligent structures made of piezoelectric and magnetostrictive
materials (MEE) are nowadays widely utilized in engineering fields. In 1990s, a strong magneto-electrical
coupling effect was found in two-phase structure composed of piezoelectric and piezomagnetic materials,
which has wide practical application inmany scientific fields [1, 2] and reported that this coupling effect cannot
be found in a single-phase material. Moreover, MEE material shows important properties that the electrical
polarization could be produced directly by the application of magnetic field, or indirectly the modification of
themagnetic state is induced by an electric field. For these advantages,MEE have received wide applications in
modern industries such as nondestructive testing, aircraft structure and vibration control. Lambwaves have been
extensively studied in laboratory as in industry for many years because he has the ability to propagate through
the entire thickness of the plate [3, 4]. Understanding Lamb wave behavior in composite magneto-electro-
elastic material is important because it is directly related to the application in actuator/sensor technology, the
nondestructive testing technology, etc.
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We studied in this paper the propagation behavior of guided type Lamb wave in composite
BaTiO3–CoFe2O4 with different volume fraction of BaTiO3 (25%, 50% and 75%). Multiple crossing was
found between symmetric and antisymmetric Lamb modes. Many researchers have studied the reason of
crossing in dispersion curve. Chuanwen and Yang [5] studied Lamb wave in PMN-xPT piezoelectric plate
with different anisotropies. Multiple crossings was found in dispersion curves in [001]c and [011]c polarized
PMN-PT crystals plates. They attribute themultiple crossing to themultivalued slowness curves. TomášGrabec
and al [6] apply the Ritz–Rayleigh method for the calculation of Lamb waves in extremely anisotropic media,
interesting dispersion curve was found in Ni–Mn–Ga [100]-direction Plate and Ni–Mn–Ga in [110]-direction
plate. Chuanwen Rui and Wenwu [7] studied Lamb and SH wave in PMN-xPT (x � 0.29, 0.33) single crystal
plates. Multiple mode couplings appear in the dispersion curves for both the symmetric and the antisymmetric
Lamb and SH wave. Solie and Auld [8] presented dispersion curves in a [001] cut cubic plate, and they have
linked the splitting mode between the antisymmetric and symmetric mode to the slowness curves of bulk
wave specifically on the concavity of the quasi-shear slowness curves. Chuanwen, Rui, Hui and Wenwu [9]
studied the guided wave behavior in the [100] and [110] directions of 0.67Pb (Mg1/3Nb2/3)O3–0.33PbTiO3
piezoelectric plate, they attribute the multiple crossing in the dispersion curve to the moderate anisotropy of
the crystal. Several other researchers have studied theoretically and experimentally the presence of crossing
points in anisotropic [10, 11] and isotropic plate [12]. Understanding the dispersion behavior of Lamb waves
in composite magneto-electro-elastic plates is valuable for developing new Lamb wave devices. As mentioned
above, the present study is concerned with the propagation behavior of Lamb wave in magneto-electro-elastic
composite material. Using the state vector approach a set of dispersion curves was plotted. Interesting phe-
nomena found in these types of materials were the antisymmetric and symmetric guided modes coupling each
other several times as wave-number increases. This paper is organized as follows: First, in Sect. 2, the ordinary
differential equation is developed in case of decoupled Lamb wave, in Sect. 3 we present some numerical
results: The dispersion curve plotting routines used by the MATLAB is explained. The bulk slowness curve
was shown to explain the intertwining between modes. Some mechanical displacement profiles that visualize
the differences between the mode families are plotted and discussed.

2 Theoretical background

Consider a transversal isotropic homogenous magneto-electro-elastic plate with thickness h � 1 mm, which
is infinite in the (x1, x2) plane but finite in the vertical direction x3. All the mechanical, piezoelectric and
piezomagnetic constants are taken from the reference [13] (see Table 1). The coordinate system used in this
work is shown in Fig. 1.
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Fig. 1 Skeleton of multiferroic composite
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Table 1 Materials properties of BaTiO3–CoFe2O4 material [13]

Property Units vF:0% (PM) 25% (MEE) 50% (MEE) 75% (MEE) 100% (PE)

C11 ×109 N/m2
286 245 213 187 166

C12 ×109 N/m2
173 139 113 93 77

C13 ×109 N/m2
170 138 113 93.8 78

C33 ×109 N/m2
269.5 235 207 183 162

C44 ×109 N/m2
170 138 113 93.8 78

e31 C/m2
0 − 1.53 − 2.71 − 3.64 − 4.4

e33 C/m2
0 4.28 8.86 13.66 18.6

e15 C/m2
0 0.05 0.15 0.46 11.6

ε11 ×10−9 C2/Nm2
0.08 0.13 0.24 0.53 11.2

ε33 ×10−9 C2/Nm2
0.093 3.24 6.37 9.49 12.6

μ11 ×10−4 Ns2/C2
5.9 3.57 2,01 0.89 0.05

μ33 ×10−4 Ns2/C2
1.57 1.21 0.839 0.47 0.1

f31 N/Am 580 378 222 100 0
f33 N/Am 700 476 292 136 0
f15 N/Am 550 331.2 185 79 0
d11 ×10−12 Ns/VC 0 − 3.09 − 5.23 − 6.72 0
d33 ×10−12 Ns/VC 0 2334.15 2750 1847.49 0
ρ ×103 Kg/m3

5.3 5.43 5.55 5.66 5.8

2.1 Formulation of the ordinary differential equation

The propagation of elastic waves in a magneto-electro-elastic (MEE) material will therefore be studied in the
quasi-static approximation, that is to say that the magnetic energy which accompanies elastic deformation is
negligible compared to electric energy. The useful equations are, then the following:

Si j � 1

2

(
∂ui
∂x j

+
∂u j

∂xi

)

Ek � − ∂ϕ

∂xk

Hk � − ∂ψ

∂xk
(1)

where ϕ is the electrical potential and H the magnetic potential.
For the magneto-electro-elastic medium, the generalized constitutive relations are given as [14, 15]:

Ti j � Ci jkl
∂ul
∂xk

+ eki j
∂ϕ

∂xk
+ fki j

∂ψ

∂xk

Di � eikl
∂ul
∂xk

− εik
∂ϕ

∂xk
− dik

∂ψ

∂xk

Bi � fikl
∂ul
∂xk

− dki
∂ϕ

∂xk
− μik

∂ψ

∂xk
(2)

where Ci jkl , εik and μik are the elastic, the dielectric and the magnetic permeability coefficients, respec-
tively; eikl , fikl and dik are the piezoelectric, piezomagnetic and magneto-electric coefficients, respectively.
To describe the propagation behavior of guided Lamb wave in magneto-electro-elastic (MEE) material, we
use the ordinary differential equation as a method [16]. The Hooke law and the dynamic relation equation
(RFD) are therefore written as a system of ordinary differential equations of the first order with non-constant
coefficients of eight ranks.

∂ξ

∂x3
� iωQξ where ξ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iω U1
iω U3
iω ϕ
iω ψ
T13
T33
D3
B3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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where Q is the fundamental acoustic tensor, a square matrix dimensioned (8×8), which depends mainly on
the physical properties and the guiding slowness component S1, Q can be written as [17]:

Q �
[

S1	
−1
33 	31 	−1

33
S21 (	13	

−1
33 	31 − 	11) + ρ I4 S1	13	

−1
33

]
(4)

I4 Is the (4×4) identity matrix, S1 denoting the first component of the slowness vector. The parameter ρ is the
density of the material and 	ik are the (4×4) matrices formed from the elastic constants Ci jkl , piezoelectric
constant eki j , piezomagnetic constants fki j , dielectric permittivity εik , magnetic permeability constants μik
and magneto-electric coupling coefficient dik .

	ik �
⎡
⎢⎣
C1i1k C1i3k ek1i fk1i
C3i1k C3i3k ek3i fk3i
fi1k fi3k −εik −μik
fi1k fi3k −dik −μik

⎤
⎥⎦ (5)

The solution of this differential equation is a transfer matrixM which relates the state vector at x3 � 0 and
x3 � − h.

ξ(x3 � 0) � M ξ(x3 � −h), M � eiQh (6)

To solve the systemof differential equations for a particular direction is in fact to find the eigenvalues and the
eigenvectors of the matrix Q. This routine is done numerically by the “eig” function of theMATLAB software.
There are eight of these which correspond to eight partial waves. Four waves propagate to the positive x3.
Their eigenvalues represent the third component of the wave vector k3+j and their corresponding eigenvector

matrix denoted V + �
[
P+
j

D+
j

]
, or P+

j correspond to the polarization of these waves and D+
j represent the

stresses. The other four waves propagating toward the negative x3, their eigenvalues k3−j and the matrix of the

corresponding eigenvectors is denoted by V− �
[
P−
j

D−
j

]
(j � 1, 2, 3 and 4). Indeed, the diagonalized form of

the matrix Q is represented by:

Q � Vβ
+−
x3V

−1 �
[
P−
j P+

j
D−

j D+
j

] [
β−
z 0
0 β+

z

] [
P−
j P+

j
D−

j D+
j

]−1

(7)

whereβ
+−
x3 � I diag

(
k
1+−
x3 , k

2+−
x3 , k

3+−
x3 , k

4+−
x3

)
.

From (3) and (6)

⇒ M � VeiQβx3V−1

⇒ M �
[
P−
j P+

j H
+
j

D−
j D+

j H
+
j

] [
P−
j H−

j P+
j

D−
j H

−
j D+

j

]−1

(8)

From Eq. (6) we obtain:

[
iωU (x3 � −h)
T (x3 � −h)

]
� M

[
iωU (x3 � 0)
T (x3 � 0)

]
(9)
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2.2 Boundary conditions

The boundary conditions for the propagation of Lamb waves in homogeneous magneto-electro-elastic plate
requires that the normal and tangential component of the stress, electric and magnetic displacement, magnetic
and electric potential should vanish at the upper and lower surfaces.

Electrically open and magnetically close conditions (denoted by “os”): [18, 19]

At x3 � 0

τ13 � τ33 � D3 � B3 � 0

At x3 � −h

τ13 � τ33 � D3 � B3 � 0 (10)

Electrically shorted and magnetically open conditions (denoted by “so”): [18, 19]

At x3 � 0

τ13 � τ33 � ϕ � ψ � 0

At x3 � −h

τ13 � τ33 � ϕ � ψ � 0 (11)

2.3 Solution

By developing Eq. (9) we obtain: [20]⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωU1
iωU3
iωϕ
iωψ
T13
T33
D3
B3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

�
(
Qos

11 Qos
12

Qos
21 Qos

22

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωU1
iωU3
iωϕ
iωψ
T13
T33
D3
B3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−h

(12)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωU1
iωU3
D3
B3
T13
T33
iωϕ
iωψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

�
(
Qso

11 Qso
12

Qso
21 Qso

22

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωU1
iωU3
D
B3
T13
T33
iωϕ
iωψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−h

(13)

Developing Eqs. (12) and (13) as well as introducing the boundary conditions we obtain:

0 � Qos
21

⎛
⎜⎝
iωu1
iωu3
iωϕ
iωϕ

⎞
⎟⎠ (14)

0 � Qso
21

⎛
⎜⎝
iωu1
iωu3
D3
B3

⎞
⎟⎠ (15)

We obtain a homogeneous system of Eqs. (14, 15). In order to obtain the nontrivial solutions of the above
equations (Eqs. 14–15), the determinant of Qos,so

21 must vanish. So, the dispersive behaviors for the magneto-
electrical open and shorted case can be investigated.
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(a) (b)

Fig. 2 Dispersion curves of S0 and A0 modes of homogeneous composite material, for magneto-electrically open case: a author
result, b result from [21]

3 Results and discussion

3.1 Validation of the formulation

The authors of this research confirm that the unusual behavior of the dispersion curve found for the first time in
these types of magneto-electro-elastic composite materials requires a validation of our calculation programs.

So, the dispersion curves of S0 and A0 modes of homogeneous composite material from reference [21]
were plotted. Indeed, by comparing the result obtained by our method with this obtained by the power series
method used by Cao et al. [21], we find that the two dispersion diagrams perfectly agree as shown in Fig. 2.

3.2 Results and discussion

In this section, the numerical evaluation is carried out using MATLAB software to assess the dispersion
curves of the Lamb wave in homogenous BaTiO3 piezoelectric material, CoFe2O4 piezomagnetic material
and composite magneto-electro-elastic BaTiO3–CoFe2O4 with the different volume fraction of BaTiO3 (δ �
25%, 50% and 75%). In this section, we represent the phase velocity and the non-dimensional frequency versus

the non-dimensional wave-number. The non-dimensional frequency is defined as follows: 
 � ωh
√
Cmax

/
ρ,

with Cmax is the highest value of the elastic matrix.
The velocities of the most Lamb wave’s modes decrease rapidly with frequency, then after passing a

minimum tend to the shear wave velocity. As shown in Fig. 3a–d the dispersion nature in the piezoelectric
BaTiO3 homogenous plate and CoFe2O4 piezomagnetic homogenous plate are regular. Contrariwise multiple
mode coupling appears in the dispersion curves for both the dilatational and flexural Lamb mode as they
approach the surface wave limit for the BaTiO3–CoFe2O4 composite with volume fraction δ � 25%, 50%,
75%. We are trying in this research to answer two important questions:

• Is there a relationship between the nature of the material (piezoelectric/piezomagnetic/magneto-electric)
and the intersection between the symmetric and antisymmetric modes?

• “Are these modes really coupled or no”?

To answer the first question we presented in Fig. 4 the dispersion curves for CoFe2O4–BaTiO3 composite
plates with volume fraction (δ � 25%, 50%, 75%) with and without the magneto-electric coefficient. It is
found that the vanish of the piezoelectric and piezomagnetic coefficients decreases the phase velocity of all
Lamb modes, whereas the crossing between the modes remains unchanged except for the higher modes for
the composite 75% BaTiO3–25% CoFe2O4 or the number of crossing points between the modes decreases.
So the splitting between An and Sn mode cannot be attributed to the piezoelectric and piezomagnetic nature
of composite material. Solie and Auld [8] attribute the splitting between the antisymmetric and symmetric
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(b)(a)

(d)(c)

(e) (f)

Fig. 3 a–j Dispersion curves for CoFe2O4–BaTiO3 plates with different volume fraction of BaTiO3 (δ � 0%, 25%, 50%, 75%
and 100%)
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(h)(g)

(i) (j)

Fig. 3 continued

mode to the behavior of the slowness curve, precisely to the concavity of the quasi-shear slowness curves for
“non-piezoelectric” material.

Under MATLABR 2016a software a computational programwas written to plot the slowness curves in YZ
[0 1 0;− 1 0 0; 0 0 1] sagittal plane. Figures 5 show the slowness curves for all materials with different volume
fraction δ. The slowness surface noted “m” (inverse of the phase velocity) characterizes the free propagation of
the elastic waves in a solid and indicates the direction of propagation of the energy. It is the place of the ends of

the vector
→
m �

→
n
/
V where n is the direction of propagation. The slowness surface generally consists of three

tablecloths relating to a quasi-longitudinal mode and two quasi-shears ones. The slowness curves of BaTiO3
material are all circles, indicating that the slowness (and hence phase velocity) is independent of propagation
direction of waves polarized in this plane, for the CoFe2O4 material we have little anisotropy in the quasi-shear
partial wave. By cons the magneto-electro-elastic composite materials are strongly anisotropic (particularly
in the quasi-shear partial wave). The concavity of quasi-shear velocity curves indicate high anisotropy of the
material and can be an explanation of the oscillation of symmetric and antisymmetric modes as they approach
their asymptotic limit. To the author’s knowledge few researchers answer the question “are these modes really
coupled or not?”. To explain the phenomenon in Fig. 6, a succession of mechanical displacement profile u1
and u3 through the non-dimensional thickness has been presented.
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Fig. 4 Dispersion curves for CoFe2O4–BaTiO3 plates with volume fraction of BaTiO3 (δ � 25%, 50%, 75%) with magnetic and
electric coefficient and without magnetic and electric coefficient

The classification of the symmetric and antisymmetric Lamb modes is deduced from the symmetries of the
displacements u1 and u3 with respect to the median plane of the plate. The displacements of the antisymmetric
modes are of the type:

{
U1(x3) � −U1(−x3)

U3(x3) � U3(−x3)

}
(16)

The displacements of the symmetric modes are of the type:

{
U1(x3) � U1(−x3)

U3(x3) � −U3(−x3)

}
(17)

Figure 7 shows that the displacement profiles u1 and u3 of A0 mode before the crossing point at kh � 4 and
after the crossing point at kh� 6 retains its antisymmetrical nature, which proves the intersection phenomenon
between these two modes.

As for the A0 mode, Fig. 8 shows that the displacement profiles u1 and u3 of the S0 mode before the
crossing point at kh � 4 and after the crossing point at kh � 6 retain its symmetrical nature, which proves the
intersection phenomenon of the A0 and S0 modes.
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Fig. 5 Bulk wave slowness curves for propagation in BaTiO3, CoFe2O4, 25%BTO, 50%BTO and 75%BTO without electrical
and magnetically partial waves
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Fig. 6 Dispersion curve of the fundamental Lamb wave in 75%BaTiO3–25% CoFe2O4 magneto-electro-elastic composite mate-
rial

Fig. 7 Mechanical displacements for the fundamental antisymmetric Lamb mode A0 before the crossing point at kh � 4 and after
the crossing point at kh � 6
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Fig. 8 Mechanical displacements for the fundamental symmetric Lamb mode S0 before at kh � 4 and after the crossing point at
kh � 6

4 Conclusion

In this research, we analyze in detail the problem of propagation of Lamb wave in magneto-electro-elastic
composite plate. The dispersion curves (phase velocity and non-dimensional frequency versus non-dimensional
wave-number) were plotted. Multiple intertwining modes were found in the dispersion curve which makes it
both complex and important. The crossing between acoustic modes is awarded to the moderate anisotropy of
the magneto-electro-elastic (MEE) composite explained by the bulk slowness curve. Finally, a succession of
mechanical displacement profiles was shown to prove the crossing between the An and Sn mode.
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