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Abstract This article presents a novel system identification method for the dynamic parametrical model of
the rotor-bearing system based on the Nonlinear Auto-Regressive with exogenous inputs (NARX) model,
where the physical parameter of the system appears as coefficients in the model. Customarily, the NARX
model-based modeling techniques require random signals as input, which leads to the rotor-bearing system
that cannot be modeled using such techniques. To solve this issue, an improved system identification method,
defined as the frequency sweep system identification approach is proposed in this paper. Firstly, the frequency
domain version modeling framework with a physical parameter is derived based on the traditional modeling
framework of the dynamic parametrical model. And then, the candidate model term dictionary corresponding
to the frequency domain version modeling framework is derived. The Predicted Residual Sums of Squares
based Extended Forward Orthogonal Regression algorithm is applied to identify the dynamic parametrical
model of the rotor system. The model obtained by using the proposed method is validated based on the Model
Predicted Output method. Finally, an experimental case of the rotor-bearing test rig is demonstrated to show
the feasibility of the proposed method for real-world scenarios. Both the numerical and experimental studies
illustrating the feasibility of the proposed modeling method, which provides a reliable model for time-domain
response prediction and dynamic analysis of the rotor system.
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Gk Matrix of coefficients corresponding toWk
Ge

J Gyroscopic matrix of the jointed element
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m1, m2 Lumped mass of disk 1 and disk 2
M Total number of potential model terms
Me

J Mass matrix of the jointed element
Mb

L ,M
b
R Mass matrices of the left and right shafts

Nb Number of balls in the bearing
nu , ny Maximum time delay of system input and output
Pk Time-domain version model term dictionary
P̃k Frequency domain version model term dictionary
P̂k Frequency domain version model term dictionary used for identification
Qs

L , Q
s
R External force matrices acting on both sides of the system

u, w Lateral displacement
Wk Orthogonal matrix of P̂k

Ỹk System output in frequency-domain

Greek letters

jω Harmonic components in the frequency spectrum
� Rotating speed of the rotor system
�0 Relative rotation angle at the transition point
� Relative rotation angle between disk1 and disk2
ξ Physical parameter vector
θk Coefficient matrix corresponding to the kth physical parameter value
θ j Angle location of the jth rolling ball
θ, ϕ Angular displacement about x and y axes
δeJ Displacement vector of the bolted joint structure
δ Generalized coordinates of the whole system

Operators

DTFT[·] Discrete-time Fourier transform
H (·) Heaviside function
EFOR Extended forward orthogonal regression
PRESS Predicted residual sums of squares
CMS Common model structure

Abbreviations

EFOR Extended forward orthogonal regression
PRESS Predicted residual sums of squares
CMS Common model structure

1 Introduction

The rotor-bearing systems are widely used in rotating equipment such as aero-engine, gas turbines, etc., the
physical parameters of the rotor-bearing system directly affect the responses of the rotating machine [1].
In such rotating machinery, bolted joints are widely employed to connect adjacent disks to make multiple
parts into an integrated one, and achieve high stiffness [2, 3]. In the previous studies on dynamic analysis of
the rotor-bearing system, finite element simulation and mathematical modeling combined with experimental
research are commonly used [4, 5]. For example, Zeng et al. [6] and Eryilmaz et al. [7] studied the effects of
structural parameters on rotor dynamics by using the nonlinear finite element simulation method. However,
due to the time-consuming problems, many scholars prefer to use a mathematical model [8, 9]. As for the
rotor systems with bolted joints, Luo et al. [10] derived the mathematical model of the bolted disk-disk joint
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to study the effect of bolted joint parameters on critical speed. Sun et al. [11] established a dynamic model of
the drum-disk-shaft system, where the assembly relationship at the mating surface is considered. Wang et al.
[12] derived the dynamic model of a rod fastening rotor-bearing system based on the D’Alembert principle, in
which the contact interface is modeled through a nonlinear stiffness spring. Liu et al. [13] established the finite
element model of a rod-fastening rotor-bearing system to study the effect of pre-tightening force on motion
stability. Themodeling approaches applied in the above researches are based on physical characteristics, which
are referred to as physical models.

The mathematical model is fundamental in engineering design, simulation, and analysis, which can be
used to reveal information about the dynamic characteristics of the system. The mathematical model can be
cataloged into two types [14]. One way, called the physical model, which can be very complex in the modeling
process. An alternative approach that only depends on the data is referred to as system identification [15, 16].
System identification is an approach of identifying the dynamic systems from the input and output signals,
which is developed from control theory and has become a useful tool applied to the modeling and analysis of
a wide range of real nonlinear systems [17, 18]. There are extensively published papers on dynamic system
modeling based on system identification techniques, including Nonlinear Auto-Regressive with exogenous
(NARX methods), which is focused on in this article. The NARX models have been successfully used to
represent nonlinear systems and dynamic behavior analysis [19–21]. There have been a lot of researches on
the analysis and design in combination with the NARX model. Peng et al. [22] established the mathematical
model of aluminum plate based on the NARX model, and then a fault diagnosis is carried out. AraújoT et al.
[23] constructed the representationmodel of theQuanser Server BaseUnit, the relationship between the voltage
applied to the motor and position was successfully established. Besides, the NARX models based modeling
method has also been applied in scenarios such as steel plate identification [24] and modeling of global
magnetic disturbance in near-earth space [25]. These suggest that NARX model-based dynamic modeling is
a topic worthy of further study.

In the above researches, however, the identified model cannot provide insight into the effect of physi-
cal parameters on system response [26]. Therefore, the focus was with more of an emphasis on parameter-
dependent Common Model Structure (CMS) detection over recent years. The NARX model with parameters
of interest for design provides an effective solution to this issue, where the physical parameters appear as
coefficients explicitly. This model is also known as the dynamic parametrical model [27]. The critical tasks
in the identification of the dynamic parametrical model include detecting the CMS, estimating the associated
coefficients, and establishing the function of the coefficients of the model with respect to the physical param-
eter [14]. To obtain the CMS, Wei et al. [26] proposed the Extended Forward Orthogonal Regression (EFOR)
algorithm, and the average approximate minimum description length criterion is introduced to determine the
number of model terms used for representing the underlying system.

Although the NARX model-based dynamic parametrical model identification is an attractive approach,
however, it has difficulties in aerospace applications [28]. This is because the input signal used for system
identification has to beGaussianwhite noise signal,which is a restriction for the sinusoidal excitation structures,
such as the rotor-bearing system. Although the foregoing works provide insight into the modeling process and
specific algorithm for the identification of nonlinear systems, few reports, according to the authors’ knowledge,
has been found on the NARX model-based dynamic parametrical model identification for a rotor-bearing
system. To solve the aforementioned problem, in our previous work [29], a new modeling method that applies
a multi-harmonic signal generated through the speed-up process to conduct system identification is proposed.
Thismethod successfully established theNARXmodels to reflect the output characteristics of the rotor-bearing
system in the simulation and experiment. However, the models themselves are multi-model forms to cover the
complete operating regime. In addition, Westwick et al. [30] applied a time-domain random odd multi-sine
signal to identify a NARX model. The signal was obtained by splicing multiple sets of sinusoidal signals
together, with each signal separated by 100 zeros, the proposed modeling method was similar to that in [29].
Zhang et al. [31] proposed a method using a NARX neural network to identify a gyro-stabilized platform, in
which a swept-frequency signal was used as the driving signal. The swept-frequency signal was similar to that
described in [29], which was obtained by splicing multiple sets of time-domain harmonic signals into a single
set of signals.

From the above studies, it can be seen that aGaussianwhite noise signal is needed in the traditionalmodeling
process of a dynamic parametricalmodel. However, rotatingmachinery is a typical sinusoidal loading structure,
and Gaussian white noise cannot be generated in the normal operation of such structure. In order to solve this
issue, this study proposes a frequency sweep system identification method for NARX model-based dynamic
parametrical model identification of rotatingmachinery. Comparedwith existing system identificationmethods
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that depend on time-domain signals to establish the dynamic parametrical model of nonlinear systems, the
method proposed in this study is based on frequency-domain data. The corresponding frequency domain
version modeling framework is derived in the paper, and the candidate model term dictionary composed of
frequency-domain data is also introduced. The PRESS-based EFOR algorithm [32] is applied to obtain the
CMS of the rotor system in this paper. A numerical case study is conducted based on a rotor-bearing system
with a bolted joint structure. Finally, an experimental study is also carried out. These study cases are illustrated
to demonstrate that the method proposed in this paper can gain a new and feasible method into dynamic
parametrical modeling of the rotor system. The proposed method can overcome the difficultly of establishing
a dynamic model of complex rotating machinery using traditional physical modeling methods. Moreover, as
the model structure can be written down explicitly, it is convenient for the analysis and design of dynamic
systems through the established dynamic parametrical model. For example, structural damage detection [22],
design of nonlinear systems [27], and analysis of the effects of characteristic parameters [33]. This suggests
that NARX model-based dynamic parametrical model identification is a topic worthy of further study.

The rest of the paper is organized as: A brief description of the traditional NARX model with a physical
parameter and the novel frequency domain version modeling framework are presented in Sect. 2. The identi-
fication process which includes detecting the CMS, evaluate the coefficients, and model validation method is
presented in Sect. 3. The identification of a rotor-bearing system with a bolted joint structure is presented in
Sect. 4, including constructing the finite element model of the underlying system and system identification.
Section 5 demonstrates the application of the proposed method on the rotor test rig. Finally, the conclusions
are summarized in Sect. 6.

2 Modeling framework of the dynamic parametrical model for the rotor system

The frequency sweep dynamical parametrical system identificationmethodology proposed for the rotor-bearing
systemmodeling and analysis is an identification procedure aiming at establishing a mathematical model from
the harmonic input and associated output data. This section describes the novel frequency domain version
modeling framework for the proposed method starting from the review of the conventional NARXmodel with
a physical parameter.

2.1 Conventional modeling framework of the NARX model with a physical parameter

It has been reported that the CMS with the design parameter can be represented by [27]

y(t) � F(y(t − 1), . . . y(t − ny), u(t − 1), . . . u(t − nu), θ(ξ))

� θ0(ξ) +
n∑

i1�1

θi1 (ξ) + · · · +
n∑

i1�1

· · ·
n∑

il�il−1

θi1···il (ξ)
l∏

k�1

xik (t) (1)

where F(·) is the unknown polynomial function which needs to be identified; t represents the time instant;nu
and ny are the maximum time delay of the system output y(·) and input u(·), respectively; θ(ξ) is the coefficient
matrix of the model (1), where ξ represents a vector composed of the physical parameter values, ξ � [ξ1,
ξ2,…, ξS], the subscript S represents the number of parameter values; n � nu + ny ; l is the highest order of
nonlinearity, and

xm(t) �
{
u(t − m), 1 ≤ m ≤ nu
y(t − (m − nu)), nu + 1 ≤ m ≤ nu + ny

(2)

Assume that the input and output variables of a single-input and single-output system under K different
design parameter values have been obtained, the nonlinear dynamic parametrical model with K different cases
of parameter properties can be written into the following matrix form as:

yk � Pkθk, k � 1, . . . ,K (3)

where yk represents the vector contains system output yk(t) corresponding to K physical parameter values;
Pk� [pk,1(t), pk,2(t), . . . , pk,M (t)] are time-domain version model term dictionary composed of delayed sys-
tem input and output variables; pk,m (t) represents the regressor formed by combinations of model terms chosen
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from [uk (t − 1),…, uk (t − nu), yk (t − 1),…, yk (t − ny)]; θk�[θk,1, θk,2, . . . , θk,M ]T represents the coefficient
vector corresponding to the kth physical parameter value; θk,m represents the model coefficients;M is the total
number of potential model terms, M � (n + l)! /n! / l!.

Remark 1 It is worth mentioning that when K � 1, model (1) and (3) are traditional NARX models [14]. The
framework described in this section can be used to predict the system output associated with the kth physical
parameter value, and make the difference with single-input and multiple-output scenarios.

2.2 A novel frequency-domain version modeling framework with physical parameter

Due to the lack of the random signal as inputwhich is required in the dynamic parametricalmodel identification,
for the rotor-bearing systems, the traditionalmethod cannot be used.Therefore, a frequency sweepmethodology
is proposed, starting from characterizing the harmonic input and associated output signals according to the data
in the frequency spectrum corresponding to the key harmonics. And then the associated frequency domain
version modeling framework with a physical parameter can be deduced based on the time domain version
modeling framework. The deriving process is described as follows.

According to Eq. (1) and the linear properties of theDiscrete-Time Fourier Transform (DTFT), a frequency-
domain version NARX model with physical parameter under rotating speed �1 can be written as:

Y (�1)( jω) �
n∑

i1�1

θi1 (ξ)×DTFT[xi1 (t)] + · · · +
n∑

i1�1

· · ·
n∑

il�il−1

θi1···il (ξ) × DTFT[
l∏

k�1

xik (t)]

�
N1∑

i1�1

θ
(�1)
i1

(ξ)P (�1)
i1

( jω) +
N2∑

i2�1

θ
(�1)
i2

(ξ)P (�1)
i2

( jω) + · · · +
Nl∑

il�1

θ
(�1)
il

(ξ)P (�1)
il

( jω) (4)

where DTFT[ · ] represent the Discrete-Time Fourier Transform, i.e., Y (�1)( jω) � DTFT[y(�1)(t)]; � is
rotation speed; jω represents the harmonics; and

Nl �

l−1∏
i�0

(n + i)

l!
(5)

Then, the frequency sweep process can then be described by the following:

Y (�1)( jω) �
N1∑

i1�1

θ
(�1)
i1

(ξ)P (�1)
i1

( jω) +
N2∑

i2�1

θ
(�1)
i2

(ξ)P (�1)
i2

( jω) + · · · +
Nl∑

il�1

θ
(�1)
il

(ξ)P (�1)
il

( jω)

Y (�2)( jω) �
N1∑

i1�1

θ
(�2)
i1

(ξ)P (�2)
i1

( jω) +
N2∑

i2�1

θ
(�2)
i2

(ξ)P (�2)
i2

( jω) + · · · +
Nl∑

il�1

θ
(�1)
il

(ξ)P (�2)
il

( jω)

· · ·

Y (�p)( jω) �
N1∑

i1�1

θ
(�p)
i1

(ξ)P
(�p)
i1

( jω) +
N2∑

i2�1

θ
(�p)
i2

(ξ)P
(�p)
i2

( jω) + · · · +
Nl∑

il�1

θ
(�p)
il

(ξ)P
(�p)
il

( jω) (6)

where jω is the harmonics corresponding to the rotating speed �s (s � 1, 2, . . . , p); P(�p) il(jω) represents
the lth-order model term corresponding to �p.

By characterizing system input and output signals by the frequency domain data corresponding to first-
order harmonics associated with the frequency sweep process, a general form of the modeling framework can
be written as:

Y (�1)( j1ω1) �
N1∑

i1�1

θ
(�1)
i1

(ξ)P (�1)
i1

( j1ω1) +
N2∑

i2�1

θ
(�1)
i2

(ξ)P (�1)
i2

( j1ω1) + · · · +
Nl∑

il�1

θ
(�1)
il

(ξ)P (�1)
il

( j1ω1)
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Y (�2)( j1ω2) �
N1∑

i1�1

θ
(�2)
i1

(ξ)P (�2)
i1

( j1ω2) +
N2∑

i2�1

θ
(�2)
i2

(ξ)P (�2)
i2

( j1ω2) + · · · +
Nl∑

il�1

θ
(�1)
il

(ξ)P (�2)
il

( j1ω2)

· · ·

Y (�p)( j1ωp) �
N1∑

i1�1

θ
(�p)
i1

(ξ)P
(�p)
i1

( j1ωp) +
N2∑

i2�1

θ
(�p)
i2

(ξ)P
(�p)
i2

( j1ωp) + · · · +
Nl∑

il�1

θ
(�p)
il

(ξ)P
(�p)
il

( j1ωp) (7)

where j1ωs (s � 1, 2, . . . , p) represent the first-order harmonics corresponding to rotating speed �s .
The frequency-domain version modeling framework of Eq. (7) can then be expressed as a matrix form as:

Ỹk � P̃kθk, k � 1, . . . , K (8)

where Ỹk represent system output vector in the frequency domain, Ỹk �
[Y (�1)

k ( j1ω1) , Y (�2)
k ( j1ω2) · · · Y (�l )

k ( j1ωl )]T, and P̃k is the frequency-domain version candidate
model term dictionary associated with the kth parameter values, where

P̃k � [ P̃k,i1�1( j1ω) · · · P̃k,i1�N1 ( j1ω) P̃k,i2�1( j1ω) · · · P̃k,i2�N2 ( j1ω) · · · P̃k,il�Nl ( j1ω) ]

�

⎡

⎢⎢⎢⎢⎣

P (�1)
k,i1�1( j1ω1) · · · P (�1)

k,i1�N1
( j1ω1) P (�1)

k,i2�1( j1ω1) · · · P (�1)
k,i2�N2

( j1ω1) · · · P (�1)
k,il�Nl

( j1ω1)

P (�2)
k,i1�1( j1ω2) · · · P (�2)

k,i1�N1
( j1ω2) P (�2)

k,i2�1( j1ω2) · · · P (�2)
k,i2�N2

( j1ω2) · · · P (�2)
k,il�Nl

( j1ω2)
...

...
...

...
. . .

...

P
(�p)
k,i1�1( j1ωp) · · · P (�p)

k,i1�N1
( j1ωp) P

(�p)
k,i2�1( j1ωp) · · · P (�p)

k,i2�N2
( j1ωp) · · · P (�p)

k,il�Nl
( j1ωp)

⎤

⎥⎥⎥⎥⎦
(9)

Remark 2 Different from the conventional time-domain model term dictionary Pk , data in the frequency
domain version model term dictionary P̃k are complex numbers, where the real and imaginary parts should be
separated and glued together. This process can be represented by the following:

Ŷk �
[
Re Ỹk

Im Ỹk

]
�

[
Re P̃k

Im P̃k

]
θk � P̂kθk (10)

where Re and Im are the real and imaginary parts, respectively, P̂k is the final candidate model term dictionary
used for dynamic parametrical model identification, P̂k � [ p̂k,1, p̂k,2, . . . , p̂k,M ].

3 Determination of the dynamic parametrical model

This section introduced the PRESS-based EFOR algorithm [32], which is proposed for the single-input
multiple-output scenarios, to obtain the CMS of the rotor system. Moreover, the parameter estimation method
and model validation criterion are also summarized. In the following, the identification process will be briefly
outlined.

Step 1 Orthogonalization of the models
To minimize the predicting error, the regression matrix P̂k needs to be orthogonalized [34], and then model

(10) can be rewritten as

Ŷk � P̂kθk�WkGk (11)

whereWk is the orthogonal matrix formed by the orthogonal vectors wk,1,wk,2, . . .wk,M;Gk is the matrix of
coefficients corresponding toWk ,Gk� [gk,1, gk,2, . . . , gk,M ]T. wk,m and gk,m can be calculated by Eqs. (12)
and (13), respectively.

wk,m � p̂k,m −
m−1∑

i�1

〈
p̂k,m,wk,i

〉
〈
wk,i,wk,i

〉wk,i, m � 1, 2, . . . , M (12)

gk,m �
〈
Ŷk,wk,m

〉

〈
wk,m,wk,m

〉 , m � 1, 2, . . . , M (13)
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where < ·, · > represents the inner product.
Step 2 The common model structure detection
In the searching process, the model terms are selected based on the mean squared PRESS error [32], which

can be calculated at the sth searching step by

J (s)k,m � 1

Z

< ε
(s)
k,m, ε

(s)
k,m >

< β
(s)
k,m, β

(s)
k,m >

, m � 1, 2, . . . , M (14)

where

β
(s)
k,m(t) � β

(s−1)
k,m (t) − (w(s)

k,m(t))
2

< w(s)
k,m,w(s)

k,m >
, t � 1, 2, . . . , Z (15)

ε
(s)
k,m(t) � ε

(s−1)
k,m (t) − w

(s)
k,m(t)

ŶT
kw

(s)
k,m

< w(s)
k,m,w(s)

k,m >
, t � 1, 2, . . . , Z (16)

With ε
(0)
k,m(t) � Ŷk , β

(0)
k,m(t) � 1, and w(1)

k,m � p̂k,m.

The selected vector can be chosen as pk,1 � p̂(1)k,ls
, where ls can be calculated by

ls � argmin

{
1

K

K∑

k�1

J (s)k,m

}
, k � 1, 2, . . . , K (17)

This step is repeated until the average Bayesian Information Criterion (BIC) [35] value at the sth step lager
than the (s − 1) step, the average BIC value at each searching step can be calculated by

BIC (s) � 1

K

K∑

k�1

[
1 +

s ln Z

Z − s

]
1

Z

Z∑

t�1

(ε(s)k (t))2 (18)

where Z represents the total number of sampling points of system output.
Step 3 Evaluation of the coefficients
The linearized representation of the detected model can be written as

Ŷk �
M0∑

m0�1

θk,m0pk,m0
, m0 � 1, 2, . . . , M0 (19)

wherepk,m0
is the selectedmodel terms from P̂k ;M0 is the number of the selectedmodel terms; The coefficients

θk,m0 can be evaluated by the Inverse-Gram-Schmidt algorithm [36]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

θk,M0 � gk,M0

θk,M0−1 � gk,M0−1 − aM0−1,M0θk,M0

θk,M0−2 � gk,M0−2 − aM0−2,M0−1θk,M0−1 − aM0−2,M0θk,M0
...

θk,m0 � gk,m0
−

M0∑
i�m0+1

am0,iθk,i

(20)

where

am0,i �
〈
pk,i ,wk,m0

〉
〈
wk,m0 ,wk,m0

〉 , 1 ≤ m0 ≤ M0 − 1 (21)

Step 4 Determinate the function of the coefficients of the NARX model by design parameter values



2588 Y. Li et al.

The relationship between the physical parameter ξ (ξ � [ξ1, ξ2, . . . , ξS]) and the coefficients of the NARX
model can be revealed by a polynomial function [14], which can be expressed as

θk,m0(ξ) �
J∑

j1�0

· · ·
J∑

jK�0

β j1,..., jSξ
j1
1 · · · ξ jK

K (22)

where J is the degree of the polynomial function; β j1,..., jS is the corresponding coefficients, which can be
estimated using the least square algorithm [37].

Step 5 Model validation
The objective of the identification is to find an approximation mathematical model that produces the

minimum errors comparing with the real responses under different design parameter values. This paper focus
on the Normalized Mean Square Error (NMSE) [38, 39] properties of the identified model, which can be
expressed as

NMSE �
∑Z

t�1 [yp(t) − y(t)]2
∑Z

t�1[yp(t)]
2

(23)

where yp(t) is the prediction output at time instant t, y(t) is the actual output at time instant t, Z is the total
number of sampling points.

The flow chart of the identification process is shown in Fig. 1.

Remark 3 Model (19) was obtained by the frequency domain data obtained by the frequency sweep process,
as described from Eq. (6) to Eq. (10). But the identified model can be used to predict the time domain system
output due to the linear properties of the DTFT.

4 Numerical case study

In aero-engines, a large number of bolted joints are applied to connect the disks [40], and the bolts are
distributed in the circumference to fasten the adjacent disks as shown in Fig. 2a, where the three-dimensional
model illustrates a simplified form of bolted-joint structure. As reported in the literature [41, 42], the bolted
joint structure plays an important role in the rotor dynamic characteristics. The piecewise linear stiffness [43]
affects system output significantly. Therefore, this section takes the turning point of piecewise linear stiffness
as a physical parameter to demonstrate the feasibility of the proposed approach, starting from the modeling of
the rotor system based on the finite element method.

4.1 Modeling and analysis of the rotor-bearing system with a bolted joint

According to the simplified bolted-disk joint rotor-bearing system shown in Fig. 2, the finite element model
shown in Fig. 3 is established. The shaft is discretized into 13 elements, the left shaft is divided into 5 elements,
and the right shaft is divided into 8 elements. There are many reports about modeling of the rotor system based
on the finite element modeling method (see [44–48]), the main task in this section is the modeling of the bolted
joint structure.

In this model, the simplified jointed structure is treated as a novel two-node element with four degrees of
freedom at each node (see Fig. 3b), where kθ and kS are the angular stiffness and shear stiffness between two
disks. And then the total displacement vector of the bolted joint can be determined as:

δeJ � [u1 w1 θ1 ϕ1 u2 w2 θ2 ϕ2]
T (24)

where u and w represent the lateral displacement, respectively; θ and ϕ are angular displacement about x and
y axes, respectively; the subscript 1,2 denote the nodes associated with disk 1 and disk 2, respectively.

The kinetic energy and potential energy of the bolted joint can be written as

T � 1

2
m1u̇

2
1 +

1

2
m1ẇ

2
1 +

1

2
m2u̇

2
2 +

1

2
m2ẇ

2
2 +

1

2
Jd1�

2 +
1

2
Jd2�

2

+
1

2
Jd1θ̇

2
1 +

1

2
Jd1ϕ̇

2
1 +

1

2
Jd2θ̇

2
2 +

1

2
Jd2ϕ̇

2
2 + �Jp1θ̇1ϕ̇1 + �Jp2θ̇2ϕ̇2 (25)
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1
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where m1 and m2 are the mass of disk 1 and disk 2, respectively; Jd1 and Jd2 are diametral moments of inertia
of disk 1 and disk 2, respectively; Jp1 and Jp2 are polar moments of inertia of disk 1 and disk 2, respectively.

By applying the Lagrange’ approach [49], the governing equation of jointed structure is obtained as

Me
J
ë
J − �Ge

J
ė
J +Ke

J δ
e
J � Qe

J (27)

where Me
J , G

e
J , and Ke

J are mass matrix, gyroscopic matrix, and stiffness matrix of the jointed element,
respectively;Qe

J is the external force matrix which mainly contains the unbalanced force of the disks; �
represents the rotational speed of the rotor system. The details of the matrices are given in “Appendix A”.

The general form of the finite element model of the shafts are established as

Mb
L̈
b
L + (Cb

L − �Gb
L )̇

b
L +Kb

LδbL � Qs
L (28)

Mb
R̈
b
R + (Cb

R − �Gb
R )̇

b
R +Kb

RδbR � Qs
R (29)
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Fig. 2 Bolted joint structure in the aero-engine and the simplified model: a bolted joint structure in the aero-engine and the
simplified bolted joint structure, b simplified rotor-bearing system with a bolted joint structure
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Fig. 3 Schematic diagram of the finite element model for the rotor systemwith a bolted joint: a neglecting the bolted joint, b finite
element of the bolted joint

whereMb
L ,M

b
R are mass matrices of the left and right shafts;Cb

L ,C
b
R are damping matrices of the left and right

shafts;Kb
L ,K

b
R are stiffness matrices of the left and right shafts;Qs

L ,Q
s
R are external force matrices acting on

both sides of the system; δb L and δb R are the displacement vectors of the left and right shafts, respectively.

Based on the governing equations of the bolted joint and shafts, the finite element model of the rotor system
can be established as

M δ̈ + (C − �G)δ̇ + Kδ � Q (30)

whereM is the mass matrix of the system; C is the damping matrix of the system; G is the gyroscopic matrix
of the system; K is the stiffness matrix of the system; δ is the displacement vector of the rotor system; Q
represents the external force matrix of the overall rotor system. The schematic diagram of the assembly of
matrices of the underlying system is shown in Fig. 4.

It should be stressed that the shaft ismodeled usingTimoshenkobeamelements, ofwhich themass, stiffness,
and gyroscopic matrices are given in the literature [50]. Moreover, the damping matrices are formulated by
using the Rayleigh damping matrix [51], and the external force vectors are mainly contained nonlinear forces
from ball bearings. The materials and dimensional parameter values of the rotor are listed in Table 1. The
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Fig. 4 Schematic diagram of the assembly of matrices of the rotor-bearing system with a bolted joint structure

Table 1 Dimensional parameter values of the rotor system

Contents Parameters Values

Density ρ (kg/m3) 7800
Elastic modulus E (Gpa) 210
Poisson ratio μ 0.3
Left shaft radius RL (mm) 50
Right shaft radius RR (mm) 50
Left shaft length IL (mm) 700
Right shaft length IR (mm) 840
Mass of disk 1 m1 (kg) 12
Mass of disk 2 m2 (kg) 12
The eccentric distance of disk 1 e1 (mm) 8×10−4

The eccentric distance of disk 2 e2 (mm) 0
Shear stiffness of the jointed structure kS (N/m) 2×109

Polar moment of inertia of disk 1 Jp1 (kg m2) 0.0212
Polar moment of inertia of disk 2 Jp2 (kg m2) 0.0212
Equatorial moment of inertia of disk 1 Jd1 (kg m2) 0.01063
Equatorial moment of inertia of disk 2 Jd2 (kg m2) 0.01063

Table 2 Dimensional parameter values of the ball bearing

Radius of outer race R
(mm)

Radius of inner race r
(mm)

Radial clearance
γ (μm)

Numbers of ball
elements Nb

Contact stiffness
kB(N/m3/2)

63.9 40.1 1 10 13.34×108

supporting bearings are deep groove ball bearings, both of which are the same and the parameter values are
shown in Table 2. The nonlinear force generated by the bearings can be calculated by [52, 53]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f bx � −kB
Nb∑
j�1

(
x cos θ j + y sin θ j − γ

)1.5
H

(
x cos θ j + y sin θ j − γ

)
cos θ j

f by � −kB
Nb∑
j�1

(
x cos θ j + y sin θ j − γ

)1.5
H

(
x cos θ j + y sin θ j − γ

)
sin θ j

(31)
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where kB is the contact stiffness; θ j is the angle location of the jth rolling ball; Nb is the number of balls; γ is
the radial clearance of the bearing; H (·) is the Heaviside function.

The angular stiffness characteristics of the bolted joint structure are piecewise linear, and the transition
takes place when the external force equal to preload [54, 55]. The relative rotation angle at the transition point
(denotes by the symbol�0) in the range of�0 � [8×10−6, 10×10−6, 12×10−6] rad is chosen to be studied
here, and then provide a basis for the dynamic parametrical model identification in Sect. 4.2. The relationship
between the angular stiffness kθ and �0 can be described by

kθ�
{
kθ1, |�| ≥ |�0|
kθ2, |�| < |�0| (32)

where kθ1 is the angular stiffness in the first stage; kθ2 is the angular stiffness in the second stage; � represents
the relative angular between disk1 and disk2, � � √

(θ1 − θ2)2 + (ϕ1 − ϕ2)2. The detailed description of kθ1,
kθ2, and � can be found in the literature [54].

In this section, kθ1 and kθ2 are assumed to keep the same in all the cases (kθ1 � 23 × 108 Nm/rad
and kθ2 � 2.3 × 108 Nm/rad). The angular stiffness with different transition points is shown in Fig. 5. The
Newmark-β method was used to solve the governing Eq. (30), while the critical speed of the rotor-bearing
system can be calculated as ω0 � 1140 rev/min, which is shown in Fig. 6. It can be seen that the critical speed
of the rotor system described in this section is not affected by the transition point, but the associated amplitude
is getting smaller as the transition point decreases. This is due to the degradation of the angular stiffness of the
bolted joint. Furthermore, the output spectrum of the rotor system, in the horizontal direction, is demonstrated
in Fig. 7, showing that the first harmonic is the main frequency component. Therefore, the identified model
should reveal the system output signals, as well as the first harmonic of the underlying system.



NARX model-based dynamic parametrical model 2593

0 33 66 99 132
Frequency (Hz)

360

945

1530

2115

2700

O
m

eg
a 

(r
ev

/m
in

)

-15

-10

-5

0

5

-20

fr

10

0 33 66 99 132
Frequency (Hz)

360

945

1530

2115

2700

O
m

eg
a 

(r
ev

/m
in

)

-15

-10

-5

0

5

-20

fr

10

0 33 66 99 132
Frequency (Hz)

360

945

1530

2115

2700

O
m

eg
a 

(r
ev

/m
in

)

-15

-10

-5

0

5

-20

fr

10

(a) (b) (c)Φ0=8×10-6 rad Φ0=10×10-6 rad Φ0=12×10-6 rad

Fig. 7 Spectrum of the rotor system with different transition points: a �0 � 8 × 10−6 rad; b �0 � 10 × 10−6 rad; c �0 �
12 × 10−6 rad

Table 3 The CMS identified by using the traditional EFOR algorithm and the associated coefficients

Step Term Coefficients for different physical parameter values

�0 � 8 × 10−6 rad �0 � 10 × 10−6 rad �0 � 12 × 10−6 rad

1 y(t − 1) 1.9998 1.9998 1.9998
2 y(t − 2) − 1.0001 − 1.0001 − 1.0001
3 u(t − 1) − 9.99×10−14 − 6.39×10−14 − 1.32×10−14

4 u(t − 2)u(t − 3) − 1.07×10−14 − 5.68×10−14 − 1.57×10−14

5 u(t − 1)u(t − 2) 1.104×10−14 5.924×10−14 1.614×10−14

6 u(t − 3) 9.753×10−14 6.214×10−14 1.301×10−14

7 u(t − 1)y(t − 1) 2.134×10−14 − 5.62×10−14 1.019×10−14

4.2 Identification of the rotor system based on the proposed approach

The aim here is to apply the proposed method to the rotor system described in Sect. 4.1 and identified a CMS
to represent the underlying system, and then validate it by using the model predicted output method [56]. The
input signals u(t) are chosen as the unbalanced force of disk 1 with � ∈ [360 : 60 : 2700] rev/min, 120 data
sets of displacement responses of disk 1, in the horizontal direction, corresponding to �0 � [8 × 10−6, 10 ×
10−6, 12×10−6] rad are collected for model identification. Moreover, the data sets corresponding to�0 � 9×
10−6 rad were used to test the proposed frequency sweep dynamic parametrical model identification approach.
In these cases, 25,600 data are collected under every operating speed.

The identification results are given in Table 3, where a total of 7 terms are selected according to the detecting
result at each searching step. Thus, a dynamic parametrical model for the rotor system is determined to be:

Ŷk(t) � θ1(�0)y(t − 1) + θ2(�0)y(t − 2) + θ3(�0)u(t − 1) + θ4(�0)u(t − 2)u(t − 3)

+ θ5(�0)u(t − 1)u(t − 2) + θ6(�0)u(t − 3) + θ7(�0)u(t − 1)y(t − 1) (33)

where the coefficients θm0 (�0), (m0 � 1, 2, . . . , 7) has a functional relationship with the physical parameters,
this study adopts the following three-order polynomial expression to describe the relationship between�0 and
θm0 (�0).

θm0 (�0)�βm0,0 + βm0,1�0 + βm0,2�
2
0 + βm0,3�

3
0 (34)

The coefficient βm0,i can be estimated by using the least square algorithm, which is shown in Table 4. The
datasets, corresponding to �0 � 9 × 10−6 rad are used to test the identified dynamic parametrical model.
The comparisons of the outputs (low rotation speed, critical speed, high rotation speed cases) of the identified
model and the real system are presented in Figs. 8 and 9, where the output in the frequency domain is obtained
by using the DTFT. Clearly, the proposed approach can provide an accurate model to represent the underlying
system in both the time and frequency domain.

The NMSEmodel validation criterion is used for assessing the accuracy of the identified model, the NMSE
values in the previous three validation cases are 2.8146 × 10−4, 7.4954 × 10−6, and 0.0016, proving that the
proposed identification approach can provide a reliable model to reveal the underlying system.

It should be stressed that the model structure obtained by using the proposed identification approach is
unique, to represent the rotor system under different rotation speeds and physical parameter value. This is a
significant advantage of this work, compared with our previous work reported in [29].
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Table 4 Results for the parameters βm0,i in Eq. (32)

m0 i

0 1 2 3

1 1.9998 − 0.0018 − 3.68×10−8 − 5.61×10−13

2 − 1 0.0015 3.06×10−8 4.66×10−13

3 − 1.07×10−14 − 8.14×10−9 − 1.63×10−13 − 2.47×10−18

4 1.90×10−15 − 1.26×10−9 − 2.52×10−14 − 3.83×10−19

5 − 1.72×10−15 1.28×10−9 2.55×10−14 3.88×10−19

6 1.51×10−14 8.15×10−9 1.63×10−13 2.48×10−18

7 − 1.79×10−9 2.01×10−4 4.03×10−9 6.12×10−14
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Fig. 8 Comparison of system output in the time domain: a low speed (� � 480 rev/min); b critical speed (� � 1140 rev/min);
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5 Experimental illustration

A bolted joint rotor-bearing test rig with an electric tightening wrench was taken for experimental validation
in this section, where the bolts are distributed circumferentially to connect two disk-drum structures. The
tightening torque can be controlled accurately by the electric tightening wrench through the controller. The
eddy current displacement sensor is arranged at the vibration shaft near the drum to measure the horizontal
responses for system identification. Moreover, the data are collected by the NI-9229 acquisition card. The
experimental setup is shown in Fig. 10. The parameters of the rotor-bearing test rig are shown in Table 5.

In this experimental case, the tightening torque f0 is chosen as a physical parameter. And then, a total of
3 × 11 × 15500� 511500 data of system response corresponding to f 0 � [4, 8, 12] Nm, under the rotation
speed � ∈ [1080 : 60 : 1200] rev/min are collected. Moreover, the data sets corresponding to f0 � 6 Nm
were used to test the identified dynamic parametrical model. Because of the difficulty of measuring the input
signals, u(t) � 0.3×106�2 cos(�t) is used to calculate the input signals. The identification results by using the
proposed approach are given in Table 6, where a total of 8 terms are selected. Thus, the dynamic parametrical
model for the underlying system is identified as

Ŷk(t) � θ1( f0)y(t − 1) + θ2( f0)y(t − 2) + θ3( f0)u(t − 1) + θ4( f0)u(t − 2)

+ θ5( f0)y(t − 2)2 + θ6( f0)u(t − 3) + θ7( f0)u(t − 4) + θ8( f0) y(t − 1)y(t − 2) (35)



NARX model-based dynamic parametrical model 2595

Bearing Displacement sensor Bolt MoterBearing

ControllerChassis Data acquisition card Electric tightening 
wrench

Disk

Fig. 10 Test rig of a rotor-bearing system with bolted joint structure and data collection setup

Table 5 Dimensional parameter values of the rotor system test rig

Parameters Values

Length of the left shaft (mm) 440
Length of the right shaft (mm) 222
Diameter of shaft (mm) 40
Mass of the disks (kg) 5
Mass of the bearing (kg) 0.12
Radius of the bearing outer race (mm) 56.51
Radius of the bearing inner race (mm) 41.05
Numbers of ball elements 12

Table 6 The CMS identified by using the traditional EFOR algorithm and the associated coefficients

Step Term Coefficients for different physical parameter values

f0 � 4 Nm f0 � 8 Nm f0 � 12 Nm

1 y(t − 1) 8.867×10−16 4.554×10−16 6.346×10−16

2 y(t − 2) 8.914×10−16 4.925×10−16 8.652×10−16

3 u(t − 1) − 6.26×10−9 − 4.49×10−9 − 5.30×10−9

4 u(t − 2) 1.918×10−8 1.374×10−8 1.622×10−8

5 y(t − 2)2 − 4.49×10−19 − 4.09×10−19 − 4.37×10−19

6 u(t − 3) − 1.95×10−8 − 1.40×10−8 − 1.65×10−8

7 u(t − 4) 6.679×10−9 4.787×10−9 5.651×10−9

8 y(t − 1) y(t − 2) − 4.77×10−19 − 4.39×10−19 − 4.91×10−19

The coefficients θm0 ( f0), (m0 � 1, 2, . . . , 8) are then fitted as a three-order polynomial function as

θm0 ( f0)�βm0,0 + βm0,1 f0 + βm0,2 f
2
0 + βm0,3 f

3
0 (36)

The coefficients βm0,i are estimated as shown in Table 7. The comparisons of the outputs of the identified
model and the real system under rotating speed �� [1080, 1140, 1200] rev/minare presented in Figs. 11 and
12. It can be found that the proposed identification approach can provide a reliable model for the underlying
system, while the identified NMSE were 0.009, 0.0032, and 0.0015, respectively.
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Table 7 Results for the parameters βm0,i in (34)

m0 j

0 1 2 3

1 1.928×10−15 − 3.37×10−13 1.907×10−11 4.577×10−13

2 2.062×10−15 − 3.88×10−13 2.409×10−11 5.784×10−13

3 − 1.06×10−8 1.413×10−6 − 8.07×10−5 − 1.93×10−6

4 3.252×10−8 − 4.32×10−6 0.0002 5.934×10−6

5 − 5.55×10−19 3.502×10−17 − 2.09×10−15 − 5.03×10−17

6 − 3.32×10−8 4.418×10−6 − 0.00025 − 6.06×10−6

7 1.133×10−8 − 1.5×10−6 8.609×10−17 2.066×10−6

8 − 6.05×10−19 4.299×10−17 − 2.79×10−15 − 6.71×10−17
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Fig. 11 Comparison of system output in the time domain: a case 1 (�� 1080 rev/min); b case 2 (�� 1140 rev/min); c case 3
(�� 1200 rev/min)
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Fig. 12 Comparison of system output in the frequency domain: a case 1 (�� 1080 rev/min); b case 2 (�� 1140 rev/min);
c case 3 (�� 1200 rev/min)

6 Conclusions

The frequency sweep system identification approach is proposed for the identification of the dynamic para-
metrical model for the rotor-bearing system, on the basis of the identification approach for the traditional
NARX model with a physical parameter. The corresponding frequency domain version modeling framework,
containing the physical parameter and frequency sweep data sets are derived. In this study, the PRESS-based
EFOR algorithm is introduced to accomplish the model structure detection, by shifting the application of the
algorithm from single-input multiple-output scenarios to single-input single-output scenarios corresponding
to different physical parameter values.

The numerical examples of the bolted joint rotor system and the experimental application both demonstrate
the feasibility of the proposed identification approach to the dynamic parametricalmodeling of the rotor system.
Hence, the new identification approach can be regarded as ameans bywhich to enrich themethod for theNARX
model-based dynamic parametrical modeling, and can be extended to the application of any other sinusoidal
excitation structures. Based on the cases reported in this paper, the proposed approach has the potential to
be used in industrial scenarios, to represent the underlying systems, and reveals rules for physical parameters
that affect dynamic behaviors. Moreover, revealing fundamental and interesting information to the user, by
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reproducing the system output in the time domain and then mapping to the frequency domain. The proposed
system identification method is originated in the control theory, which is only dependent on the system input
and output. Therefore, the proposed approach has the potential to be applied to the modeling of rotor systems
with other types of joints.
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Appendix A

The matrices represented in Eq. (27) are as follows:

Me
J�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
0 m2
0 0 Jd1 sym
0 0 0 Jd2
0 0 0 0 m1
0 0 0 0 0 m2
0 0 0 0 0 0 Jd1
0 0 0 0 0 0 0 Jd2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

Ke
J �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ks
0 ks
0 0 kθ sym
0 0 0 kθ

−ks 0 0 0 ks
0 −ks 0 0 0 ks
0 0 −kθ 0 0 0 kθ

0 0 0 −kθ 0 0 0 kθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

Ge
J�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −Jp1 0 0 0 0
0 0 Jp1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −Jp2
0 0 0 0 0 0 Jp2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)
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