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Abstract In this study, a novel criterion known as the comprehensive transmissibility is proposed to esti-
mate the isolation performance of nonlinear isolation systems under complex loading excitations. A combined
quasi-zero-stiffness (QZS) isolator is enumerated, and the comprehensive performance of other common iso-
lator systems and the existing QZS system is analyzed. Based on the normalized differential equations of the
isolation system, the isolation performances of different isolation systems are studied by using the compre-
hensive transmissibility criterion, showing that the combined QZS isolator has better isolation performance
than others. In addition, the output frequency response function (OFRF) representation of the comprehensive
transmissibility is derived, and the optimal design of the QZS isolation system is developed by using the OFRF.
The simulation results demonstrate that the design can meet the requirements of the vibration isolator with
both the force and displacement excitations and is promised to be applied to the design of nonlinear isolation
systems in engineering practice.

Keywords Nonlinear systems · Vibration isolator · Comprehensive transmissibility · Design

1 Introduction

Vibration isolation systems have been widely applied to reduce the vibration transmission between the foun-
dation and the equipment in engineering practice [1–3]. For example, Rao [4] introduced the theory and
application of vibration isolation technology. Liu et al. [5] introduced the research progress of micro-vibration
isolation in recent years. Basically, the limitations of linear isolation systems are obvious to have narrow iso-
lation range and unsatisfied isolation performance over frequency wideband frequency ranges [6]. In order to
solve the aforementioned issues, various nonlinear isolation systems were discussed to solve the problems in
recent years [7, 8].
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In general, the nonlinear isolation system is combined with nonlinear stiffness and nonlinear damping to
achieve more abundant dynamic properties than a linear isolation system [5]. For instance, Kink [9] examined
the influence of cubic spring and tangent spring on the performance of the vibration isolator. Dutta and
Chakraborty [10] investigated the performance of the nonlinear vibration isolator, in which the softened
nonlinear spring was proved to have a good isolation performance. Reducing the stiffness of the system would
contribute to obtaining the low frequency vibration isolation performance and the low carrying capacity. The
quasi-zero-stiffness (QZS) concept was proposed with the aim of achieving the improvement in both the
isolation range and the carrying capacity of the system. Basically, buckled beams [11], inclined springs [12],
etc., can all be applied to achieve the QZS property to build a nonlinear isolation system [13–15]. Although
such nonlinear stiffness can be applied to broaden the isolation range, it is difficult to suppress the resonant
vibration. In order to address this issue, geometric nonlinear damping [16], nonlinear viscous damping [17,
18], etc., were applied to isolate the vibration over the resonant frequency range but they do not affect the
isolation performance over the high frequency range. However, the applicability of vibration isolators with
damping nonlinearity is still limited. For example, the Coulomb friction applied in the vehicles’ suspension
would result in the poor experience of driving on the flat surface of the small amplitude excitation [19]. And
for the cubic damping, when the strength of the disturbing force is related to the square of the frequency,
increasing the cubic damping would increase the force transmissibility in the high frequency region [20]. To
address the above issues, researchers paid their attention to sophisticated nonlinear technologies and used them
in nonlinear vibration isolation systems. Sun et al. [21] analyzed and designed a scissor system with nonlinear
stiffness and damping for the advantageous isolation effect. Ho et al. [22] designed a vibration isolator with
two auxiliary springs and viscous damping, which increased the vibration isolation range and the vibration
isolation capability at the resonance.

In practice, vibration isolators may be subjected to different types of excitation signals [1], but vibration
isolators are usually designed and analyzed based on the force and the base displacement excitations [23, 24]. In
order to investigate the integral characterizes of the system under complex excitations including both the force
and displacement excitations, scholars have completed many research works [25–28]. For example, Carrella
et al.[25] investigated the force and displacement transmissibility of the QZS systemwith auxiliary springs. Lv
and Yao [26] studied the performance of vibration isolation systems which are based on the harmonic force and
base excitations. Xiao et al. [27] investigated the transmissibility of vibration isolators with cubic nonlinear
damping under the complex load. Guo et al. [28] investigated both the force and displacement transmissibility
of the force isolation systems and displacement isolation systems. However, given the multifarious input loads,
using the force transmissibility and the base displacement transmissibility is not comprehensive to estimate and
design vibration isolator systems, which needs a new evaluation indicator to consider the vibration isolation
effect of the force and displacement at the same time.

The desired isolation performance of a nonlinear isolation system is usually achieved by properly designing
the system characteristic parameters [22, 29]. In general, the design of linear vibration isolation systems is
conducted by using the frequency response function (FRF) approach in the frequency domain [30–32]. For
nonlinear systems, many techniques have been applied for the analysis and design of nonlinear systems
[33–37]. For example, the generalized frequency response function (GFRFs) can facilitate the analysis of the
nonlinear in the frequency domain [33, 34]. However, the GFRFs method is multidimensional, which causes
the GFRFs to be difficult to be used in practice [35]. To address these issues, the OFRF was proposed and
applied to formulate a one-dimensional relationship between the output responses and nonlinear characteristic
parameters of a general class of nonlinear Volterra systems [36], so as to be applied for the design of nonlinear
systems [37]. Lv and Yao [26] used the OFRF to study the effect of damping on the force and displacement
transmissibility.

In this paper, a new criterion named as the comprehensive transmissibility is proposed to assess the isolation
performanceby consideringboth the force and the base displacement excitations.AQZS isolator combinedwith
both QZS and horizontal damping is introduced. A comparison study is conducted based on the comprehensive
transmissibility criterion, showing that the combined QZS isolator has better isolation performance than other
nonlinear isolators.Moreover, the design of the combinedQZS isolator is discussed based on the comprehensive
transmissibility criterion, where theOFRF representation of the comprehensive transmissibility of the vibration
isolation system is derived, so as to conduct the design of the nonlinear isolation system.

This paper is organized as follows. In Sect. 2, a new criterion known as the comprehensive transmissibility
for vibration isolators subject to complex excitations is described. The isolation effect of a combined QZS
isolator is asserted by using the new criterion in Sect. 3. The OFRF expression of the comprehensive trans-
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missibility and the detailed system design procedure using the OFRF method are discussed in Sect. 4. Next, a
numerical example of the design process is described in Sect. 5. Finally, in Sect. 6, conclusions are drawn.

2 Assessment and design of vibration isolators

2.1 A comprehensive transmissibility criterion

A single-degree-of-freedom (SDOF) vibration isolation system is illustrated in Fig. 1,where the input excitation
displacement signal d in(t) or the force signal f in(t) can be considered as a force u(t) to the system, the absolute
displacement of the mass is dout(t), and the relative displacement of the mass generated by the excitation is
x(t). M is the total mass, and the nonlinear force in the isolation system is defined by fn(x, t). The system
dynamics equation can be written as

Mẍ(t) + Cẋ(t) + Kx(t) + fn(x, t) � u(t) (1)

where the force transferred to the foundation denoted by fout(t) is written as

fout(t) � Cẋ(t) + Kx(t) + fn(x, t) (2)

In practice, a vibration isolator can have beneficial effects on the input signals of the displacement [17] and
the force[38] from the base, respectively. The vibration isolator can be excited by different kinds of loadings,
wherein this study, both the displacement and force input loadings, which are usually used to study vibration
isolators [25–28], are considered.

When the input excitation of the system in Fig. 1 is the harmonic displacement signal din(t) � HD sin(ωt),
u(t) in Eq. (1) can be obtained that

u(t) � −Md̈in(t) � MHDω2sin(ωt) (3)

where HD is the amplitude of the excitation and ω is the excitation frequency. The input force u(t) in Eq. (1)
is achieved from the second-order derivative of the displacement din(t) and the mass M.

When the input is din(t), the displacement x(t) of the mass in Eq. (1) generated by the displacement input
signal is obtained as x(t) � dout(t) − din(t). And the system dynamics equation can be written as

Mẍ(t) + Cẋ(t) + Kx(t) + fn(x, t) � MHDω2sin(ωt) (4)

where the right-hand side of Eq. (4) MHDω2sin(ωt) is the equivalent for −Md̈in(t).
The displacement input excitations are usually evaluated from uneven roads [39], etc. Both the Displace-

ment–force (DF) transmissibility TDF(ω) and the displacement–displacement (DD) transmissibility TDD(ω)
are considered to assess the isolation performance of a vibration isolator on the system output force and
displacement, respectively, defined as

TDF(ω) � |F{ fout(t)}|
|F{din(t)}| � |Fout( jω)|

HD
(5)

and

TDD(ω) � |F{dout(t)}|
|F{din(t)}| � |Dout( jω)|

HD
(6)
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where DD is expressed by absolute displacement transmissibility and the absolute displacement is dout(t) under
displacement excitation [13].F{.} represents the Fourier Transform, and Fout( jω) and Dout( jω) are the spectra
of fout(t) and dout(t), respectively.

When the input excitation of the system in Fig. 1 is the harmonic force loading

fin(t) � HF sin(ωt) (7)

where HF is the amplitude of the excitation, for the force input systems, there is u(t) � fin(t) � HFsin(ωt).
When inputting the pure force signal fin(t) [38], so din(t) � 0, then in Eq. (1) the vibration relative

displacement generated by the force input signal is x(t) � dout(t). Therefore, the system dynamics equation
can be written as

Mẍ(t) + Cẋ(t) + Kx(t) + fn(x, t) � HF sin(ωt) (8)

The force input excitations are usually evaluated from wind or water wave loadings [28], etc. Both the
force–displacement (FD) transmissibility TFD(ω) [28] and the force–force (FF) transmissibility TFF(ω) are
considered to assess the isolation performance of a vibration isolator on the system output displacement and
force, respectively, defined as [28]

TFD(ω) � |F{dout(t)}|
|F{u(t)}| � |Dout( jω)|

|U ( jω)| � |X ( jω)|
HF

(9)

where X ( jω) is the Fourier transform of x(t), and for the force input system x(t) � dout(t) and

TFF(ω) � |F{ fout(t)}|
|F{u(t)}| � |Fout( jω)|

|U ( jω)| (10)

In general, the force and displacement transmissibilities are separately discussed to study the displacement
isolation performance and the force isolation performance [13–15, 25], respectively. However, it is a fact that
both the displacement and force output exist in either the displacement or force loading input, and both the
displacement and force transmissibility should be considered to assess the performance of a vibration isolator.
A more comprehensive criterion is therefore needed in practice to solve this issue. In the present study,
considering the displacement and force input signals on both the displacement and force vibration isolation
and the effect of the energy of different input signals, we use the energy of E1 and E2 of the displacement
and force input signals and the energy ratio E2/E1 of both to determine the proportional coefficient of the two
signals in the overall criterion, and based on these, a new comprehensive transmissibility criterion is defined
as TC (ω), which is proposed below to assess the isolation performance of a vibration isolator systematically

TC(ω) � E1[TDF(ω) + TDD(ω)] + E2[TFD(ω) + TFF(ω)]

2(E1 + E2)

� TDF(ω) + TDD(ω)

2(� + 1)
+
TFD(ω) + TFF(ω)

2(�−1 + 1)

(11)

where � � E2/E1, E1 and E2 represent the energy of the displacement signal and force signal defined as

Ei � lim
Ti→∞

∫ +Ti

0
|vi (t)|2dt, i � 1, 2 (12)

with vi (t) being either a displacement signal or a force signal, Ti is the period of the signals of the displacement
or force, respectively.
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Fig. 2 Design requirements for the comprehensive transmissibility of the vibration isolator system

2.2 The comprehensive design of the vibration isolator

In order to achieve good vibration isolation performance for both output force and displacement, the param-
eters of the vibration isolation system can be designed based on the comprehensive transmissibility proposed
in Eq. (11). The comprehensive transmissibility curve of a system that meets all design requirements in Fig. 1
can be generally represented in Fig. 2. In Fig. 2, Tm is the maximum allowable value of the comprehensive
transmissibility at the resonance frequency. Point L is the limiting position of the high frequency transmissi-
bility. Point s is the limiting positions at the beginning isolation frequency of the corresponding linear system;
the value of fn(x, t) in Eq. (1) is assumed zero. The design of the comprehensive transmissibility should meet
the following design requirements to ensure a good isolation performance.

(1) In the resonance region: max TC ≤ Tm.
(2) When ω � ωs, TC ≤ Ts.
(3) When ω � ωl, TC ≤ Tl.

Remark 1 The high frequency comprehensive transmissibility may begin to increase because the DF trans-
missibility is related to the input frequency. However, in practice, the input signal frequency is not very
large, especially for the displacement excitation. Therefore, according to the actual excitation conditions, the
comprehensive transmissibility can be designed and evaluated within a certain frequency range.

The OFRF derived from the Volterra series gives the direct relationship between the output frequency
response and the nonlinear parameters of the system, and the Volterra series is based on the weak nonlinear
systems; therefore, OFRF method is suitable for the weakly nonlinear systems. By using the OFRF method,
the values of system parameters can be determined to achieve the desired output frequency response of the
system. In the following studies, the OFRF representation will also be applied to conduct the design of the
nonlinear isolation system.

3 Analysis of vibration isolators with damping and stiffness nonlinearities

3.1 Limitations of the linear isolation systems

The isolation performance of force and displacement signals of linear vibration isolation systems has been
studied extensively. For the DD and FF transmissibility, linear systems start isolation at the cutoff frequency
that is the

√
2 times of natural frequency of the systems; large linear damping can reduce the resonance peak,

but it will increase the value of the displacement and force transmissibility at high frequencies [1–6].
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Fig. 4 Comprehensive transmissibility of the linear system. a Change in the damping coefficient of the linear system, where
C � 50N sm−1 (solid), C � 7N sm−1 (dashed), C � 90N sm−1 (dot-dashed). b Change in the stiffness coefficient of the linear
system, where K � 1500Nm−1 (solid), K � 1800Nm−1 (dashed), K � 2000Nm−1 (dot-dashed)

An SDOF linear vibration isolation system is illustrated in Fig. 3, where the input force excitation is defined
as u(t), and the relative displacement of the mass is x(t). M is the total mass. The system dynamics equation
can be written as

Mẍ(t) + Cẋ(t) + Kx(t) � u(t) (13)

Let� � 1, the influence of linear damping and stiffness on the comprehensive transmissibility of the linear
isolator is shown in Fig. 4. From Fig. 4, it can be seen that: (1) increasing the damping of the linear system
can reduce the peak of the transmissibility at the resonance frequency, but can increase the comprehensive
transmissibility at the high frequency, (2) increasing the stiffness of the linear system can increase the cutoff
frequency of the vibration isolation system and reduce the vibration isolation interval of the system. In order
to overcome the limitations of linear isolation systems, the study of nonlinear systems is increasing.

3.2 Mathematical modeling for the nonlinear isolator systems

3.2.1 Horizontal stiffness and damping elements

For the nonlinear stiffness vibration isolator with a vertical spring and two auxiliary springs [12], when the
vibration isolator is in the balanced position, the negative stiffness provided by the inclined spring and the
positive stiffness provided by the vertical spring make the whole mechanism in the state of near-zero stiffness;
that is, the isolator is a QZS isolation system; because of its low dynamic stiffness, this type of vibration
isolation system can decrease the frequency which starts isolation compared with cubic nonlinear stiffness
and linear stiffness isolation system. For the nonlinear damping vibration isolators, when the excitation is the
displacement signal, comparing the displacement isolation performance of the horizontal damping vibration
isolator with the equivalent vertical cubic damping vibration isolator, the vibration isolator with the horizontal
damping has a superior isolation performance at high frequencies, and the isolation effect of the vibration
isolator with the vertical cubic damping is not good because the damping force generated by the equivalent
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cubic damping is related to the frequency [23]. For obtaining the vibration isolator systems with excellent
integrated isolation performance, it is necessary to analyze the effects of nonlinear stiffness [12] and damping
[23] on the comprehensive transmissibility.

Figure 5 shows the schematic modes with two nonlinear stiffness and the nonlinear damping, respectively,
where fns(x, t) and fnd(x, t) are the nonlinear stiffness and damping force, respectively, Kh is the spring
stiffness coefficient, Ch is the damping coefficient, l is the horizontal distance between the ends of each
element and l0 is the original length of the spring.

In Fig. 5a, the nonlinear spring force along the vertical direction is described by [22]

fns(x, t) � 2Kh

(
1 − l0√

x(t)2 + l2

)
x(t) (14)

And in Fig. 5b, the nonlinear damping force along the vertical direction is expressed as [23]

fnd(x, t) � Ch
x(t)2

l2 + x(t)2
ẋ(t) (15)

3.2.2 Nonlinear isolation systems

To study the vibration isolation performance of the two nonlinear components demonstrated above, three types
of nonlinear isolation systems composed of horizontal springs and damping shown in Fig. 6 are discussed.
System (a) described in Fig. 6a is the nonlinear stiffness and damping system [40], which has a vertical spring
Kv, a pair of horizontal auxiliary spring Kh, a vertical damping Cv and the horizontal linear damping Ch.
Systems (b) and (c) illustrated in Fig. 6b, c are the nonlinear isolation systems composed of horizontal stiffness
and damping, respectively.

Consequently, given the harmonic displacement of Eq. (3), the dynamic equation of the nonlinear Systems
(a), (b), and (c) can be obtained according to Eq. (4) as

Mẍ(t) + Cv ẋ(t) + Ch
x(t)2

l2 + x(t)2
ẋ(t) + Kvx(t) + 2Kh

(
1 − l0√

x(t)2 + l2

)
x(t) � u(t) (16)
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where given the harmonic displacement input of Eq. (3) u(t) � HDω2 sin(ωt) and the harmonic force of Eq. (7)
u(t) � HF sin(ωt), the dynamic equations of Systems (b) and (c) are obtained by setting Kh � 0 and Ch � 0
in Eq. (16), respectively.

3.2.3 Approximate analysis of the mathematical modeling

The system parameters can be designed based on the design requirements of the comprehensive transmissibility
by utilizing theOFRFmethod, because theOFRFmethod can establish the polynomial function between output
spectrumand nonlinear coefficients; for facilitating the design of systemparameters by using theOFRFmethod,
it is necessary to simplify the nonlinear force as the polynomial function of the displacement and velocity to
the power of n. Therefore, the equations of the nonlinear stiffness, nonlinear damping force and the system
dynamic are simplified, respectively, in this section.

Rewrite Eq. (16) in a dimensionless form as follows

¨̂x(τ ) + ξ1 ˙̂x(τ ) + ξ2 ˙̂x(τ )
[

x̂(τ )2

(l̂/σ )2 + x̂(τ )2

]
+ 2kx̂(τ ) +

⎛
⎝1 − 2k√

[σ x̂(τ )]2 + l̂2

⎞
⎠x̂(τ ) � r sin(�τ ) (17)

where

ω0 �
√

Kv

M
, τ � ω0t, � � ω

ω0
, l̂ � l

l0
, k � Kh

Kv
, x̂(τ ) � x(t)

HD
, ξ1 � Cv√

KvM
, ξ2 � Ch√

KvM
.

where the normalized dynamic equation of system (b) is obtained by setting k � 0 in Eq. (17) and the
normalized dynamic equation of system (c) is obtained by setting ξ2 � 0 in Eq. (17). When the system is
stimulated the by harmonic displacement r � �2, σ � χ � HD

lo
, x̂(τ ) � x(t)

HD
, when the system is excited by

the harmonic force r � 1, σ � λ � HF
Kvlo

, x̂(τ ) � Kvx(t)
HF

.

The dimensionless nonlinear spring force of spring in Eq. (14) can be expressed by the Taylor formula for
small x̂(τ )

f̂ns(x̂, τ ) � (1 − 2k√
[σ x̂(τ )]2 + l̂2

)x̂(τ )

≈ f̂ns(0) + f̂ (1)
ns (0)[x̂(τ )] +

f̂ (3)ns (0)

3!
[x̂(τ )]3 +

f̂ (5)ns (0)

5!
[x̂(τ )]5 + ...

(18)

where f̂ns(x̂, τ ) is the dimensionless expression for fns(x, t). The superscript (i) represents the i derivative of
the function.

In order to use the OFRF to design the system parameters under displacement and force excitations, for
the simplified system dynamics equation, the system parameters designed need to be independent of the type
of excitation. Therefore, the expressions are simplified as follows.

When |x(t)/ l| < 0.2, the dimensionless nonlinear damping force in Eq. (15) can be approximated as [23]

f̂nd(x̂, τ ) � ξ2(σ/l̂)2 x̂(τ )2 ˙̂x(τ ) � σ 2ξ3 x̂(τ )
2 ˙̂x(τ ) (19)

where ξ3 � ξ2/l̂2.
Assuming the nonlinear stiffness is expanded by a fifth-order Taylor series, the dimensionless nonlinear

force and output force of system (a) are simplified as

f̂n(x̂, τ ) � f̂ns(x̂, τ ) + f̂nd(x̂, τ ) � α1 x̂(τ ) + σ 2α2[x̂(τ )]
3 + σ 4α3[x̂(τ )]

5 + σ 2ξ3 x̂(τ )
2 ˙̂x(τ ) (20)

where

α1 � −2k

(
1 − l̂

l̂

)
(21)

α2 � k

l̂3
(22)
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α3 � − 3k

4l̂5
� −3α2

4l̂2
(23)

and

f̂out(τ ) � α x̂(τ ) + σ 2α2[x̂(τ )]
3 + σ 4α3[x̂(τ )]

5 + ξ1 ˙̂x(τ ) + σ 2ξ3 x̂(τ )
2 ˙̂x(τ ) (24)

where

α � 1 − 2k

(
1 − l̂

l̂

)
� α1 + 1 (25)

where the nonlinear force and output force of system (b) are obtained by setting α � 1, α2 � 0, α3 � 0,
and the nonlinear force and the output force of system (c) are obtained by setting ξ3 � 0. When the harmonic
displacement signal stimulates the system, σ � χ . When the system is excited by the harmonic force, σ � λ.

Substituting Eq. (24) into Eq. (17), the dynamic equation of the nonlinear systems (a), (b) and (c) can be
written as

¨̂x(τ ) + ξ1 ˙̂x(τ ) + σ 2ξ3 x̂(τ )
2 ˙̂x(τ ) + α x̂(τ ) + σ 2α2 x̂(τ )

3 + σ 4α3 x̂(τ )
5 � r sin(�τ ) (26)

where the normalized dynamic equation of system (b) is obtained by setting α � 1, α2 � 0, α3 � 0 in
Eq. (26), and the normalized dynamic equation of system (c) is obtained by setting ξ3 � 0 in Eq. (26). When
the input signal is the displacement, σ � χ , r � �2, x̂(τ ) � x(t)

HD
; when the input signal is the force, σ � λ,

r � 1, x̂(τ ) � Kvx(t)
HF

.

Remark 2 When the direction of the excitations to the system is horizontal, this is equivalent to the system
being rotated. For this condition, the structure of system (a) subjected to the horizontal inputs is the same as
that of Eq. (26) of the system subjected to the vertical input, except that the coefficients in front of each term
are different. Therefore, the vibration isolation effect of the system with horizontal input excitation is similar
to the vertical ones. The specific content will be discussed in a future paper.

3.3 Analysis of the nonlinear force on the comprehensive transmissibility

Byusing the fourth-orderRunge–Kuttamethod, the transmissibility curves of TDF(�), TDD(�), TFD(�), TFF(�)
and TC(�) are shown in Figs. 7 and 8, where systems (a), (b) and (c) are, respectively, the systems described
in Fig. 6a–c, and for comparing the performance of linear and nonlinear vibration isolators, an SDOF linear
vibration isolation system is defined as system (d) which is illustrated in Fig. 3. Weak and strong nonlinear
systems belong to two kinds of common nonlinear problems [41]. The OFRF can be used for the design of
weakly nonlinear systems, so this section only compares the systems in the weakly nonlinear region and then
selects the best isolation effect system, so as to design the selected system in the area using the OFRF method
and the fourth-order Runge–Kutta.

In Fig. 7, compared with systems (b) and (d), system (a) with nonlinear stiffness and damping has beneficial
performance as shown by (1) a large isolation frequency range, (2) the low energy of themass at high frequency
and (3) a relatively small resonance peak.

Figure 8 shows the comprehensive transmissibility of the four systems. Compared with the resonance of
systems (b), (c) and (d), system (a) in Eq. (26) has lower maximum transmissibility in the resonance interval
and a larger vibration isolation interval. So the type of vibration isolation system with the nonlinear stiffness
and damping force has good isolation performance on the whole. Based on the beneficial effects of horizontal
stiffness and damping, parameters of system (a) can be designed by using the OFRF method according to
actual vibration isolation requirements and excitation amplitude.

For the convenience of the design of system (a) by the OFRF method, system parameters on the vibration
isolation effect on the comprehensive transmissibility curves of system (a) are analyzed by the Runge–Kutta
method as shown in Fig. 9. Figure 9a, b shows the effect of the linear and nonlinear damping on the com-
prehensive transmissibility of the system expressed in Eq. (26). At the high frequency, the increase in linear
damping will cause the improvement in the comprehensive transmissibility, and when the value of the non-
linear damping increases, the comprehensive transmissibility is unaffected. Figure 9c shows the effect of the
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Fig. 7 Four types of transmissibilities for systems (a), (b), (c) and (d), where � � 1, ξ1 � 0.18, ξ3 � 10,χ � 0.03, λ � 0.06.
a DF transmissibility. b DD transmissibility. c FD transmissibility. d FF transmissibility
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Fig. 8 Comprehensive transmissibility for systems (a), (b), (c) and (d), where � � 1, ξ1 � 0.18, ξ3 � 10,χ � 0.03, λ � 0.06

nonlinear stiffness on the comprehensive transmissibility; nonlinear stiffness can decrease the peak value and
the vibration isolation range. The effect of both the nonlinear stiffness and damping is shown in Fig. 9d. It
can be seen that the combination of them can reduce the initial frequency of vibration isolation, the degree of
system nonlinearity and the peak value of the system.

4 Optimization design

For letting the comprehensive transmissibility to meet the design requirements described in Sect. 2, it needs
to establish the relationship between both system parameters and the comprehensive transmissibility first, and
then by using theOFRF design the system according to requirements. In the paper, the OFRFmethod is suitable
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Fig. 9 Effects of system parameters on the comprehensive transmissibility for system (a), where � � 1, χ � 0.04, λ � 0.05.
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for the design of thementionedweakly nonlinear system. In this section, the representation of theOFRFmethod
will be introduced at first. Then, the expression of the OFRF of the comprehensive transmissibility is derived,
and the design process of the weakly QZS isolation system is developed based on the OFRF method. Due to
the good comprehensive isolation performance of system (a), system (a) is selected as the system designed.

4.1 The OFRF representation

For nonlinear systems, the OFRFmethod defines the explicit analytic relationship between the output spectrum
of the system and the nonlinear parameters of the system; the expression can be described by a polynomial
differential equation model, which is written as [36]

Y ( jω) �
∑

( j1... js)∈J

Q j1... js ( jω)η
j1
1 . . . η js

s

�
M1∑
j1�0

M2∑
j2�0

. . .

Ms∑
js�0

Q j1... js ( jω)η
j1
1 . . . η js

s

(27)

where the polynomial Q j1... js ( jω) is the function of frequency. M1 . . . Ms are the orders of the nonlinear
parameter with η1 . . . ηs, respectively, ji � 0, 1, . . . , Mi , for i � 1 . . . s.

DefiningM as the number of Q j1... js ( jω), then M can be obtained from the following equations

M � (M1 + 1)(M2 + 1) . . . (Ms + 1) (28)
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Fig. 10 Design process of the nonlinear vibration isolation system

The evaluation values of Q j2 j3... js ( jω) can be calculated by

⎡
⎢⎣

Q0...0( jω)
...

QM2...Ms ( jω)

⎤
⎥⎦ � X−1

M

⎡
⎢⎢⎣

Y(1)( jω)
Y(2)( jω)

...
Y(M)( jω)

⎤
⎥⎥⎦ (29)

where

XM �

⎡
⎢⎢⎢⎣

(
η01(1) . . . η

0
s(M)

)
· · ·

(
η
M1
1(1) . . . η

Ms
s(1)

)
...

...
...(

η01(M) . . . η
0
s(M)

)
· · ·

(
η
M1
1(M) . . . η

Ms
s(M)

)

⎤
⎥⎥⎥⎦ (30)

4.2 The OFRF-based design of the isolation system

In the design of system (a), the values of the mass of the system M , the vertical spring Kv and the original
length of spring l0 are preset. The system physical parameters to be designed are the horizontal stiffness Kh,
the horizontal damping Ch, the vertical spring Cv and the horizontal length between two ends of the nonlinear
element l. According to Eq. (26), these design parameters are combined in dimensionless parameters ξ1, ξ3,
α, α2 and α3, where ξ1 and α are linear parameters, while ξ3, α2 and α3 are nonlinear parameters. The basic
process of the parameters’ design can be summarized into two parts: firstly, using the frequency response
function (FRF) approaches [30, 31] to design linear parameters and secondly, designing nonlinear parameters
by using the OFRF approach [36]. The flowchart of the design process of system (a) is illustrated in Fig. 10.

The program process is divided into four stages, and detailed discussions of each stage are studied as
follows.

4.2.1 Stage 1: Determine the preset values

In this stage, the values of requirements and part of the parameters are determined. The determination of the
preset values follows two steps. First, the thresholds of the design, given as Tm, Tl and �s, �l, are designed.
Next, the input signals used for the design are prepared by taking the input force and displacement amplitudes
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HF and HD, respectively, under a specific energy ratio �. Moreover, presetting the physical parameters of M ,
Kv and l0, then the values of dimensionless parameters χ and λ in Eq. (26) are determined.

4.2.2 Stage 2: The FRF-based design of linear parameters

In the second stage of the design, the linear parameters α and ξ1 are determined by using the FRF of the
vibration isolation system (a) as below.

Without considering the nonlinear effects of α2, α3 and ξ3, the FRF on the comprehensive transmissibility
is obtained as

TC,0(�) � TDF,0(�) + TDD,0(�)

2(� + 1)
+
TFF,0(�) + TFF,0(�)

2(�−1 + 1)
(31)

where TDD,0(�), TDD,0(�), TDF,0(�), TFD,0(�) are the FRF on the DD, FF, DF, FD transmissibility obtained
as

TDD,0(�) � TFF,0(�) �
√√√√ α2 + (ξ1�)2(

α − �2
)2 + (ξ1�)2

(32)

TDF,0(�) � �2

√√√√ α2 + (ξ1�)2(
α − �2

)2 + (ξ1�)2
(33)

TFD,0(�) �
√

1(
α − �2

)2 + (ξ1�)2
(34)

The linear parameters can be designed by considering the following steps.
Step 1: Design the value of α.
According to Eqs. (32)–(34), when � � �s which is defined as the cutoff frequency of the linear system,

four linear transmissibilities are TDD,0(�s) � TDD,0(0) � 1, TFF,0(�s) � TFF,0(0) � 1, TDF(�s) �
TDF,0(0) � �2

s and TFD,0(�s) � TFD,0(0) � 1
α
.

Therefore, the comprehensive transmissibility at the cutoff frequency �s can be obtained as

TC,0(�s) � (�+1+�2
s )

2(�+1)

√√√√ α2 + (ξ1�s)
2

(
α − �2

s

)2 + (ξ1�s)
2
+

1

2
(
�−1+1

)
√

1(
α − �2

s

)2 + (ξ1�s)
2

�1 + � + �2
s

2(� + 1)
+

1

2α(�−1 + 1)
� Ts (35)

In practice, the linear damping ratio in isolation systems is usually small to achieve desired isolation
performance over the isolation frequency range [1–6], and ξ21 is extremely small. As illustrated in Appendix

A, the value of α can be evaluated as α ≈ �2
s
2 .

Step 2. Design the value of ξ1.
According to the design requirement, ξ1 can then be evaluated by substituting the estimated value of α into

Eqs. (32), (33), (34) and (11) which gives

TC,0(�l) � (�+1+�2
l )

2(�+1)

√√√√ α2 + (ξ1�l)
2

(
α − �2

l

)2
+ (ξ1�l)

2
+

1

2
(
�−1+1

)
√

1(
α − �2

l

)2
+ (ξ1�l)

2
� 0.9Tl (36)

where 0.9 is to compensate for the possible influence of nonlinear parameters on the comprehensive transmis-
sibility.
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4.2.3 Stage 3: The OFRF-based design of nonlinear parameters

According to the OFRF theory [36], it is known that when linear parameters α and ξ1 are determined in Stage
2, the transmissibilities of system (a) can be represented using the OFRF as

TDF(�) �
Mα2∑
j1�0

Mα3∑
j2�0

Mξ3∑
j3�0

QDFj1 j2 j3
(�)α j1

2 α
j2
3 ξ

j3
3 (37)

TDD(�) �
Mα2∑
j1�0

Mα3∑
j2�0

Mξ3∑
j3�0

QDDj1 j2 j3
(�)α j1

2 α
j2
3 ξ

j3
3 (38)

TFD(�) �
Mα2∑
j1�0

Mα3∑
j2�0

Mξ3∑
j3�0

QFDj1 j2 j3
(�)α j1

2 α
j2
3 ξ

j3
3 (39)

TFF(�) �
Mα2∑
j1�0

Mα3∑
j2�0

Mξ3∑
j3�0

QFFj1 j2 j3
(�)α j1

2 α
j2
3 ξ

j3
3 (40)

Substituting Eq. (37) to Eq. (40) into Eq. (11), the OFRF equation of the comprehensive transmissibility
can be written as

TC(�) �
Mα2∑
j1�0

Mα3∑
j2�0

Mξ3∑
j3�0

QC j1 j2 j3
(�)α j1

2 α
j2
3 ξ

j3
3 (41)

where QC j1 j2 j3
(�) � QDFj1 j2 j3

(�)+QDD j1 j2 j3
(�)

2(�+1) +
QFD j1 j2 j3

(�)+QFFj1 j2 j3
(�)

2(�−1+1)
.

Then, the value of l̂is selected and the values of ξ3, α2 and α3 are determined. Moreover, the value of k is
calculated. The specific design process is described as follows.

Step 1. Prepare a set of simulation data for use in the OFRF calculations.
First, the order of the OFRF M is determined according to Eq. (28). Second, the M groups of l̂,ξ3, α2

and α3 are set. Third, M groups of TDF(i)(�), TDD(i)(�), TFD(i)(�) and TFF(i)(�) are obtained by taking the
values of M groups of parameters, and then the M sets of values of TC(i)(�) are obtained by using Eq. (11),
for i � 1, 2 . . . M . Finally, the values of QC j1 j2 j3

(�) are calculated according to Eqs. (41) and (29).
Step 2. Determine the value of α2 and α3.
Rearranging Eq. (25), k can be written as

k � l̂(1 − α)

2(1 − l̂)
(42)

Substituting Eq. (42) into Eq. (22) and Eq. (23) gives,

α2 � 1 − α

2l̂2(1 − l̂)
(43)

α3 � − 3(1 − α)

8l̂4(1 − l̂)
(44)

Then, the value of l̂ is selected within the range of the above M groups values, and the values of α2 and α3
are calculated by using Eqs. (43) and (44).

Step 3. Find �max and determine ξ3.
The value of comprehensive transmissibility TC(�) is obtained, and the value of�maxis found, which is the

frequency at the maximum comprehensive transmissibility in the resonance region, where ξ3 is the maximum
value of ξ3(i) for i � 1, 2 . . . M .

Then, ξ3 is defined by calculating Eq. (45).
Mξ3∑
j3�0

⎡
⎣

Mα2∑
j1�0

Mα3∑
j2�0

QC j1, j2, j3
(�max)α2α3

⎤
⎦ξ3 � 0.9Tm (45)

where 0.9 is to compensate for the inaccurate value of �max.
Step 4. Determine k.
The value of k can be obtained by substituting the values determined in the above steps into Eq. (42)
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Table 1 Values of parameters for estimation

Set l̂ α2 α3 ξ3

1 0.6 1.29 − 2.70 3.845
2 0.7 1.27 − 1.94 3.845
3 0.8 1.46 − 1.71 3.854
4 0.9 2.30 − 2.13 3.845
5 0.6 1.29 − 2.70 11.534
6 0.7 1.27 − 1.94 11.534
7 0.8 1.46 − 1.71 11.534
8 0.9 2.30 − 2.13 11.534

4.2.4 Stage 4: Validation requirements

The parameters of the system are obtained through the above stages, and the value of Ts is calculated according
to Eq. (35). Then, it is checked whether the system can meet the design requirement after obtaining all design
parameters. If the comprehensive transmissibility cannot meet requirements at the same time, the iteration is
repeated until the design requirements are met simultaneously; the specific process can be described as below.

(i) If it does not meet requirement 2), repeat from stage 3 to get a smaller value of l̂. If it still cannot satisfy
requirement 2) when l̂ is the minimum value in the range, repeat from Stage 2 to reduce the value of α.

(ii) If it does not meet requirement 3), repeat from step 3 to get a smaller value of ξ1.

5 Numerical simulation study

In this section, in order to obtain parameters that can meet the requirements, a numerical example of the design
of system (a) following the steps in the previous section will be carried out to prove the effectiveness of the
above design steps. The specific process of the numerical example is as follows.

Stage 1: Determine the preset values

1. Let Tm � 2.5, Tl � 0.55 and �s � 1.12, �l � 3.1.
2. Define χ � 0.12, λ � 0.1, � � �2

/
�1 � 0.8.

Stage 2: The FRF-based design of linear parameters

Calculating the value of α gives α��2
s
2 � 0.627. Then, substituting α into Eq. (36) gives ξ1 � 0.38.

Stage 3: The OFRF-based design of nonlinear parameters
Step 1. Prepare a set of simulation data for use in the OFRF calculations.
First, set Mα2 � Mα3 � Mξ3 � 1, and get M � 23 � 8. Next, give the eight groups of the parameters’

value. Because α2 and α3 are dependent on l̂ and α, eight groups of l̂ are given first, and then eight groups of
α2 and α3 are obtained which are calculated by substituting l̂ and α into Eqs. (43) and (44). The values of these
parameters are shown in Table 1. Then, the eight groups values of TDF(i)(�), TDD(i)(�), TFD(i)(�), TFF(i)(�)
and TC(i)(�) are obtained, for i � 1, 2 . . . 8 by taking the values of the parameters shown in Table 1. Finally,
the values of QC j1 j2 j3

(�) are obtained according to Eqs. (41) and (29).
Step 2. Determine the value of α2 and α3.
Let l̂ � 0.61, get α2 � 1.463 and α3 � −4.217.
Step 3. Find �max and determine ξ3.
Taking these values of the parameters obtained so far, the value of TC(�) is calculated by using Eq. (11),

and get �max � 0.781 as presented in Fig. 11. Next, the value ξ3 � 7.266 is obtained by calculating Eq. (45).
Step 4. Determine k.
By substituting the values of α and l̂ into Eq. (42), the value of k can be obtained as k � 0.194.
Stage 4: Validation requirements
Get the value of Ts � 1+0.8+1.122

3.6 + 1
4.5α � 1.202. The curve of the comprehensive transmissibility when

α � 0.627, ξ1 � 0.38, l̂ � 0.61, k � 0.194, ξ3 � 7.266, α2 � 1.463 and α3 � −4.217 is presented in Fig. 12.
Comparing the result in Fig. 12 with the design requirements, it can be seen that all requirements are

satisfied. The values of other physical parameters can be obtained according to these dimensionless parameters
and preset values of the physical parameter values set before programming.



2174 Y. Qiu et al.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frequency

Tr
an

sm
is

si
bi

lit
y

(0.781,1.880)

Fig. 11 Design result in step 3 of stage 3, where l̂ � 0.61, α2 � 1.463 and α3 � −4.217
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Fig. 12 Final design result of the comprehensive transmissibility, where l̂ � 0.61,ξ3 � 7.266

Figure 13 compares the designed final optimized system by using the comprehensive transmissibility
with an arbitrary undesigned system. The two systems are evaluated by DD, DF, FD and FF to highlight the
superiority of the design using the comprehensive transmissibility. In Fig. 13, the coefficients of the suboptimal
system are set as 4 in Table 1.

In Fig. 13, for DD, FF, FD and DF, the system using the comprehensive transmissibility to design has a
lower amplitude than the unoptimized one at the resonance frequency, and the isolation range of the optimized
one is greater than the other. At high frequency, the vibration isolation level of the suboptimal system is slightly
improved due to the increase in the nonlinear stiffness, but the performance difference between the two is very
small. For DF, the reason for the slightly larger gap is as mentioned in Remark1 and the DF transmissibility is
related to the frequency. Therefore, in general, the performance of the system designed with the comprehensive
transmissibility is good for four transmissibilities.

The final design results illustrate that the nonlinear parameters of the vibration isolator system can be
designed according to the requirements under the multi-input condition by the OFRF method and the compre-
hensive transmissibility. In the case of multi input in reality, if using one or two kinds of the transmissibilities
to design system, which leads to that a final designed system cannot concurrently have good overall vibration
isolation effect under the complex input, using the comprehensive transmissibility is more effective. The use
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Fig. 13 Comparison of four transmissibilities of the final designed optimized system (blue solid line) and an undesigned subop-
timal system (pink dashed line): a DF transmissibility. b DD transmissibility. c FD transmissibility. d FF transmissibility

of the OFRF method can effectively design the parameters of the nonlinear vibration isolation system under
multiple inputs. The method can also be applied to the design of the other type of nonlinear isolator system.

6 Conclusions

For linear isolators, it is necessary to make a choice between good-resonance suppression effect and high-
frequency isolation effect, and the cutoff frequency of the linear vibration isolators is also large. Nonlinear
stiffness and damping can be used to address these issues. Nonlinear damping can address the first issue
mentioned. Nonlinear stiffness can solve the last problem.

When analyzing and designing the nonlinear vibration isolator, it is hoped that the vibration isolator has a
good isolation effect of both the displacement and force. However, the performance of the vibration isolator
is usually evaluated by methods based on one kind of transmissibility, which is not well adapted to the actual
usage situation. In order to solve this problem, it is necessary to evaluate the comprehensive isolation effect
of the system by the new criterion.

There are many ways to analyze nonlinear systems, and some traditional analytical methods such as the
harmonic balance method can establish implicit expressions of the output spectrum and system parameters.
But the OFRFmethod can provide the explicit expression characterization for the output frequency response of
nonlinear isolator systems, so as to offer the convenience for the analysis and design of the nonlinear systems.

In this paper, a new criterion is proposed to evaluate the isolation effect of the vibration isolator under
the displacement and force excitations. Then, a combined nonlinear isolator system is introduced, and several
vibration isolators with other different nonlinear forces are listed. The normalized mathematical differential
equations of the systems are established, and the isolation performances are studied with the new criterion.
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It is theoretically shown that the system with the nonlinear stiffness and damping has a good isolation effect.
Moreover, the polynomial function of the OFRF of the comprehensive transmissibility is derived, and the
design procedure of the combined vibration system by using the OFRFmethod is proposed. Simulation results
demonstrate that the system can meet the proposed requirements. In the case of multiple input signals, the
vibration isolation system can be designed easily to meet the specified design requirements by using the OFRF
approach. Future studies will examine the method in real applications and study the isolation performance of
other nonlinear damping and stiffness forms under the displacement and force excitations.
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Appendix A

The greater value of linear damping ratio ξ1 causes the greater beginning isolation frequency; usual systems
are the little linear damping ratio systems; if the reasonable formulas for ξ21 are neglected, Eq. (35) is rewritten
as

TC,0(�s) � 1 + � + �2
s

2(� + 1)
+

1

2α(�−1 + 1)

≈ (�+1+�2
s )

2(�+1)

√√√√ α2

(
α − �2

s

)2 +
1

2
(
�−1+1

)
√

1(
α − �2

s

)2
(A.1)

Simplifying Eq. (A.1) gives

1 + �2
s

2(�+1)

(α + 1)(2α − �2
s )

α(�2
s − α)

≈ 0 (A.2)

In order for Eq. (A.2) to be true, 2α − �2
s ≈ 0. From this, the value of α can be written as

α ≈ �2
s

2
(A.3)

On the other hand, α ≈ �2
s
2 can be also drawn. For the DD, FF and DF transmissibilities, note that

TDD,0(�s) � TDD,0(0) � 1, TFF,0(�s) � TFF,0(0) � 1 and TDF,0(�s) � TDF,0(0) � �2
s , and the transmissi-

bilities at the cutoff frequency �s can be obtained as

TDD,0(�s) � TFF,0(�s) �
√√√√ α2 + (ξ1�s)

2

(
α − �2

s

)2 + (ξ1�s)
2

� 1 (A.4)

TDF,0(�s) � �2
s

√√√√ α2 + (ξ1�s)
2

(
α − �2

s

)2 + (ξ1�s)
2

� �2
s (A.5)

Equations (A.4) and (A.5) can be simplified as

α � �2
s

2
(A.6)

And for FD transmissibility, when � � �s, TFD,0(�s) � TFD,0(0) � 1
α
, then substituting the value into

Eq. (34) gives

TFD,0(�s) �
√

1(
α − �2

s

)2 + (ξ1�s)
2

� 1

α
(A.7)
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Equation (A.7) can be simplified as

α � �2
s + ξ21

2
(A.8)

Because the usual systems are the little linear damping ratio systems, the greater value of α causes the
greater beginning isolation frequency; therefore, the value of ξ21 /2 can be ignored. So for the comprehensive

transmissibility, the value of α is considered as α ≈ �2
s
2 .
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