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Abstract This paper studies the plane constrained shear problem for single crystals having one active slip
system and subjected to loading in both directions within the small strain thermodynamic dislocation theory
proposed by Le (J Mech Phys Solids 111:157–169, 2018). The numerical solution of the boundary value
problem shows the combined isotropic and kinematic work hardening, the sensitivity of the stress–strain
curves to temperature and strain rate, the Bauschinger effect, and the size effect.

Keywords Plane constrained shear · Configurational temperature · Work hardening · Bauschinger effect ·
Size effect

List of symbols

β Plastic slip
σ Stress tensor
ε Total strain tensor
εe Elastic strain tensor
εp Plastic strain tensor
χ Configurational temperature
χ0 Steady-state configurational temperature
γ (t) Shear amount (as control parameter)
γD Energy of one dislocation per unit length
μ Shear modulus
ν Poisson’s ratio
ρ Total density of dislocations
ρg Density of non-redundant dislocations
ρr Density of redundant dislocations
τ Resolved shear stress (Schmid stress)
τB Back stress
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τT Taylor stress
τY Flow stress
ϕ Angle between slip direction and x1-axis
m Unit vector normal to the slip plane
s Unit vector showing the slip direction
u Displacement vector
a2 The minimally possible area occupied by one dislocation
b Magnitude of Burgers’ vector
h, w, L Height, width, and depth of the slab
q Dimensionless plastic strain rate
q0 Dimensionless total strain rate
T Kinetic-vibrational temperature
t0 Time characterizing the depinning rate
TP Energy barrier expressed in the temperature unit
Dot over quantities Time rates
Bar over quantities Quantities averaged over the thickness
Tilde over quantities Rescaled (dimensionless) quantities

1 Introduction

When crystalline solids deform, dislocation entanglement together with thermal fluctuation determines the
kinetics of dislocation depinning and, thus, the rate of plastic deformation and the isotropic work hardening.
In addition, if there are obstacles in the form of grain boundaries or precipitates, some of the dislocations, after
being depinned and driven by the applied resolved shear stress, may become non-redundant (geometrically
necessary) dislocations that pile up near these obstacles giving rise to the non-uniform plastic deformation
and the size-dependent kinematic work hardening. Therefore, any plasticity theory aiming at predicting plastic
yielding, work hardening, and hysteresis must take the nucleation, multiplication, annihilation, and motion of
dislocations into account. The continuum approach to dislocation mediated plasticity is dictated by the high
dislocation densities accompanying plastic deformations as well as the disorder induced by the dislocation
network. The measure of the latter quantity in terms of the configurational entropy has been introduced into
dislocation mediated plasticity by Langer, Bouchbinder, and Lookman [21] (see also the earlier work by
Berdichevsky [8] where the entropy of microstructure has been defined in a somewhat different way). These
authors have formulated two fundamental laws of non-equilibrium thermodynamics applicable to the driven
configurational subsystem of dislocations: (i) The first law for the plastic slip rate containing the double
exponential function based on the kinetics of dislocation depinning and (ii) the second law necessitating the
increase in the configurational entropy toward the maximum achieved at the steady state. It was shown recently
by Langer and Le [20] and Le [23] that both laws are confirmed by the experiments conducted by Samanta [39]
for copper and aluminum. The so-called LBL theory [21] deduced from these laws predicts correctly the
stress–strain curves recorded by Kocks [14] and [39] during uniform plastic deformations of copper in the
wide range of temperatures and strain rates. Its extension that includes thermal softening and adiabatic shear
banding, proposed recently in [29,30], exhibits quantitative agreement with the experimental observations
by Abbod et al. [1], Marchand and Duffy [33], and Shi et al. [40]. The extension of LBL theory to non-
uniform plastic deformation that takes into account the non-redundant (geometrically necessary) dislocations
[11,12,17,18,27,35,36,41], called the thermodynamic dislocation theory (TDT),was proposed in [22].Among
various dislocation based plasticity theories, we mention here only those in [2,3,6,7,9,15,16,31,32,37,38]
which are closely relevant to our thermodynamic approach.

Le [22] solved the plane constrained shear problem within the small strain TDT approximately by first
neglecting the non-redundant dislocations in the loaded specimen. After obtaining the flow stress, the total dis-
location density, and the configurational temperature, the distribution of non-redundant dislocations appearing
in thin boundary layers near the grain boundaries is subsequently found by solving the variational problem
similar to that considered in [26]. Based on this solution, he showed that the stress–strain curves exhibit both
the isotropic hardening due to the redundant dislocations and kinematic hardening due to the pileups of non-
redundant dislocations against the grain boundaries which is size dependent (see also [10,26]). In view of the
approximate character of this solution, we aim in this paper at clarifying if this behavior is confirmed by the
rigorous numerical treatment. Besides, we aim at studying the load reversal leading to the Bauschinger effect
as well as its sensitivity with respect to the size of the specimen, the temperature, and the strain rate (cf. [28]).
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Fig. 1 Single crystal subjected to the time-dependent plane constrained shear γ (t) with an active slip system inclined under the
angle ϕ

The paper is organized as follows. The setting of the problem is outlined in Sect. 2 that contains also the
derivation of the governing equations of TDT. Section 3 develops its numerical implementation. In Sect. 4,
we present the results of simulations, the temperature, and strain rate sensitivity of the stress–strain curves as
well as the size and Bauschinger effects. Finally, Sect. 5 concludes the paper.

2 Plane constrained shear

Let a thin slab, made of a single crystal, with width w, height h and depth L , where 0 ≤ x1 ≤ w, 0 ≤ x2 ≤ h
and −L ≤ x3 ≤ 0, be subjected to a shear controlled test (see Fig. 1). We assume that the depth of the slab is
the dominant length scale, while the height of the slab is much smaller than its width (L � w � h), so that the
boundary effects can be neglected for x1 = 0 and x1 = w. Based on this assumption, the independent variables
are reduced to the spatial coordinate x2 and the time t . Besides, only one active slip system is admitted, whose
slip direction s forms the angle ϕ with the x1-axis, while the dislocation lines are oriented parallel to the x3-axis.

The slab is clamped on the lower side and deformed on the upper side with the given shear γ (t), so that
the temporal development of γ (t) evokes the changing load. Thus, the kinematic boundary conditions are

u1(0, t) = 0, u2(0, t) = 0, u1(h, t) = γ (t)h, u2(h, t) = 0, (1)

with u1(x2, t) and u2(x2, t) being the nonzero components of the displacement vector u(x2, t) (u3 ≡ 0). As
these hard conditions do not allow dislocations to reach the upper and lower boundaries, we set

β(0, t) = 0, β(h, t) = 0 (2)

for the plastic slip β(x2, t). Thus, the lower and upper sides act as grain boundaries that hinder the upward and
downward movement of edge dislocations.

For the underlying plane shear, the total strain tensor ε = 1
2 (∇u + u∇) takes the form

ε = 1

2

⎛
⎝

0 u1,2 0
u1,2 2u2,2 0
0 0 0

⎞
⎠ , (3)

where the comma denotes the derivative with respect to x2. The active slip system is characterized by two unit
vectors, where s indicates the slip direction and m the normal to the slip plane. They are given by

s =
⎛
⎝
cosϕ
sin ϕ
0

⎞
⎠ , m =

⎛
⎝

− sin ϕ
cosϕ
0

⎞
⎠ . (4)
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In terms of these vectors, the plastic distortion can be written as β = β(x2, t)s⊗m. In matrix form, this tensor
equation reads

β = β(x2, t)

⎛
⎝

− sin ϕ cosϕ cos2 ϕ 0
− sin2 ϕ sin ϕ cosϕ 0

0 0 0

⎞
⎠ . (5)

The plastic strain tensor εp = 1
2 (β + βT ) equals

εp = 1

2
β(x2, t)

⎛
⎝

− sin 2ϕ cos 2ϕ 0
cos 2ϕ sin 2ϕ 0

0 0 0

⎞
⎠ . (6)

Furthermore, the elastic strain tensor εe = ε − ε p is given by

εe = 1

2

⎛
⎝

β sin 2ϕ u1,2 − β cos 2ϕ 0
u1,2 − β cos 2ϕ 2u2,2 − β sin 2ϕ 0

0 0 0

⎞
⎠ , (7)

while for the Nye’s dislocation density tensor α = −β×∇, we have

α = β,2 sin ϕ

⎛
⎝
0 0 cosϕ
0 0 sin ϕ
0 0 0

⎞
⎠ . (8)

With this, the scalar density of non-redundant dislocations per unit area perpendicular to the x3-axis is quantified
according to

ρg = 1

b
|α·e3| = 1

b
|β,2 sin ϕ|, (9)

where b is the magnitude of the Burgers’ vector. Note that ρg can be measured by the high-resolution EBSD
technique (see, e.g., [13]). Since the total dislocation density ρ can be measured with the TEM [34] or the
XRD technique [4], the density of the redundant dislocation ρr = ρ − ρg can in principle also be measured.

With regard to this two-dimensional problem, the energy functional per unit depth from [22] takes the
following form

I
[
u1, u2, β, ρr, χ

] = w

∫ h

0

[1
2
λu22,2 + 1

2
μ

(
u1,2 − β cos 2ϕ

)2

+ 1

4
μβ2 sin2 2ϕ + μ

(
u2,2 − 1

2
β sin 2ϕ

)2

+ γDρr

+ γDρs ln
( 1

1 − 1
ρsb |β,2 sin ϕ|

)
− χ

L

(−ρ ln
(
a2ρ

) + ρ
)]
dx2. (10)

The four first terms in (10) describe energy of crystal due to the elastic strain, with μ and λ being Lamé
constants. (For simplicity of the analysis, the crystal is assumed to be elastically isotropic.) The fifth term is
the self-energy of redundant (statistically stored) dislocations, with γD being the energy of one dislocation
per unit length. The sixth term is the energy of non-redundant dislocations, where ρs denotes a saturated
dislocation density [7]. The last term has been introduced by Langer [19], with SC = (−ρ ln(a2ρ) + ρ) being
the configurational entropy of dislocations per unit area, a2 the minimally possible area occupied by one
dislocation, and χ/L the “two-dimensional” configurational temperature. For SC = ∂F/∂χ to be a function of
ρ and χ , we assume that a is a slowly increasing function of χ [24]. Note that Berdichevsky [5] has calculated
a similar term for anti-plane shear. However, his result cannot be applied here for two reasons: (i) In [5],
only screw dislocations of the same sign are considered, and (ii) the loading is assumed to be quasi-static. By
varying the functional with respect to u1 and u2 and integrating the resulting equations with the use of the
boundary conditions (1), a reduction of the arguments of energy to only β, ρr, and χ can be achieved with

u1,2 = γ + (β − 〈β〉) cos 2ϕ, u2,2 = κ(β − 〈β〉) sin 2ϕ, (11)
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where κ = μ
λ+2μ , and 〈β〉 = 1

h

∫ h
0 βdx2. Inserting the two equations for u1,2 and u2,2 into the energy functional

(10) yields its relaxed form

I = w

∫ h

0

[1
2
μκ〈β〉2 sin2 2ϕ + 1

2
μ(〈β〉 cos 2ϕ − γ )2 + 1

2
μ(1 − κ)β2 sin2 2ϕ

+ γDρr + γDρs ln
( 1

1 − 1
ρsb |β,2 sin ϕ|

)
− χ

L

(
−ρ ln(a2ρ) + ρ

)]
dx2. (12)

In addition to the energy, the dissipation potential must also be proposed. According to [22], we take it in
the form

D(β̇, ρ̇, χ̇) = τY β̇ + 1

2
dρρ̇2 + 1

2
dχ χ̇2, (13)

where τY is the flow stress, and dρ and dχ need be determined so that the governing equations are reduced to
those of the LBL theory for uniform plastic deformation.We formulate the following variational principle [22]:
The true plastic slips β̌(x2, t), the true density of redundant dislocations ρ̌r(x2, t), and the true configurational
temperature χ̌ (x2, t) obey the variational equation

δ I + w

∫ h

0

(∂D

∂β̇
δβ + ∂D

∂ρ̇
δρ + ∂D

∂χ̇
δχ

)
dx2 = 0 (14)

for all variations of admissible fields β(x2, t), ρr(x2, t), and χ(x2, t) satisfying the constraints (2).
For the considered problem of plane constrained shear the evolution equations of TDT for β, ρr and χ read

〈β̇〉 = q(τY, ρr, T )

t0
, q

(
τY, ρr, T

) = b
√

ρr
[
fP

(
τY, ρr, T

) − fP
(−τY, ρr, T

)]
,

ρ̇ = Kρ

a2μζ(ρr, q0, T )2
τ
q (τY, ρr, T )

t0

(
1 − ρ

ρs(χ)

)
, (15)

χ̇ = Kχ

μ
τ
q (τY, ρr, T )

t0

(
1 − χ

χ0

)
.

Here, t0 is the time characterizing the depinning rate, T is the ordinary temperature, τT(ρr) = μTb
√

ρr - is
the Taylor stress, and

fP
(
τY, ρr, T

) ≡ exp
[
−TP

T
e−τY/τT(ρr)

]
(16)

is the double exponential function originating from the kinetics of dislocation depinning, while the double
logarithmic function

ζ(ρr, q0, T ) = ln
(TP
T

)
− ln

[
ln

(b√ρr

q0

)]
(17)

has the meaning of the stress ratio τY/τT [21]. Note that when dealing with the load reversal, antisymmetry
is required in Eq. (15)1 for q(τY, ρr, T ) both to preserve reflection symmetry and to satisfy the second law
requirement that the energy dissipation rate, τY q/q0, is nonnegative. In contrary, in the balance of microforces
acting on non-redundant dislocations

τ − τB − τY = 0 (18)

obtained by varying (12) with respect to β, both the resolved shear stress (Schmid stress) τ = s·σ ·m and the
back stress τB must be

τ = −μ
(
κ〈β〉 sin2 2ϕ + (〈β〉 cos 2ϕ − γ ) cos 2ϕ + (1 − κ)β sin2 2ϕ

)
, (19)

τB = − C1(
1 − C2|β,2|

)2 β,22, C1 = γD

ρsb2
sin2 ϕ, C2 = 1

ρsb
| sin ϕ|. (20)

Note that the back stress τB , obtained by varying the energy term containing β,2 and integrating by parts using
the kinematic boundary condition (2), describes the interaction between non-redundant dislocations of equal
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sign. To derive the evolution equation for the flow stress τY, let us consider first the uniform total and plastic
deformations for which τY = τ . Taking the time derivative of τ from (19), we get

τ̇ = −μ
(
κ〈β̇〉 sin2 2ϕ + (〈β̇〉 cos 2ϕ − γ̇ ) cos 2ϕ + (1 − κ)β̇ sin2 2ϕ

)
. (21)

Using the evolution equation (15)1, we obtain for τ̇Y

τ̇Y = μ
(
γ̇ cos 2ϕ − q

t0

)
. (22)

As the flow stress τY determines the overall dislocation depinning process, we postulate that (22) is fulfilled in
the most general case of non-uniform plastic deformations. To obtain the system of equations directly in term
of the changing shear strain, a constant shear rate γ̇ = q0/t0 is assumed as [21] did. In this case, the time rate
in the system of PDEs can be replaced by the rate with respect to the total amount of shear γ according to the
relation t0∂/∂t = q0∂/∂γ , whereby the evolution equation for the average plastic slip can be transformed to

∂〈β〉
∂γ

= q(τY, ρr, T )

q0
. (23)

The final system of PDEs governing the evolution of loaded crystal reads:

∂τY

∂γ
= μ

(
cos 2ϕ − q(τY, ρr, T )

q0

)
,

∂χ

∂γ
= Kχ

μT
τ
q(τY, ρr, T )

q0

(
1 − χ

χ0

)
, (24)

∂ρ

∂γ
= Kρ

a2μζ(ρr, q0, T )2
τ
q(τY, ρr, T )

q0

(
1 − ρ

ρs(χ)

)
,

τ − τB − τY = 0.

These equations are subjected to the initial and boundary conditions (2).

3 Numerical implementation

In the previous section, the PDEs governing the plane constrained shear deformation of single crystal have
been derived. As mentioned in Introduction, the approximate solution of this system has been found in [22].
With the aim of verifying the obtained result, the numerical solution algorithm of these PDEs based on the
finite difference method is developed in the present section (cf. also [25,28]).

First, for the numerical integration of system (24), it is convenient to use the rescaled variables and unknown
functions according to

x̃2 = x2
b

, ρ̃ = a2ρ, χ̃ = χ

eD
, τ̃ = τ

μ
, τ̃Y = τY

μ
, τ̃B = τB

μ
. (25)

In terms of these variables and unknown functions, ρ̃g = |β,2̃ sin ϕ|, while ρ̃r = ρ̃ − |β,2̃ sin ϕ|. If μ̃T =
(b/a)μT = μr is used, with r being a dimensionless quantity independent of the loading rate as well as the
ordinary temperature, and the dimensionless ordinary temperature θ is defined as the ratio between T and the
activation temperature

θ = T

TP
, (26)

then the dimensionless plastic slip rate can be rewritten as

q
(
τY, ρr, T

) = b

a
q̃(τ̃Y, ρ̃r, θ), q̃(τ̃Y, ρ̃r, θ) = √

ρ̃r[ f̃P(τ̃Y, ρ̃r, θ) − f̃P(−τ̃Y, ρ̃r, θ)], (27)

where

f̃P (τ̃Y, ρ̃, θ) = exp
[
−1

θ
exp

(
− τ̃Y

r
√

ρ̃r

)]
. (28)
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For the target steady-state dislocation density ρs(χ) = (1/a2)e−eD/χ and configurational temperature χ , the
dimensionless quantities

ρ̃s(χ̃) = exp
(
− 1

χ̃

)
, χ̃0 = χ0

eD
(29)

should be used. Note that the saturated dislocation density is assumed to be equal to the steady-state dislocation
density at the maximum configurational temperature χ = χ0: ρs = ρs(χ0) = (1/a2)e−eD/χ0 . The dimension-
less plastic slip rate q̃ effectively leads to a rescaling of the time t0 by the factor b/a. Following the suggestion
made by Langer et al. [21], t̃0 = (a/b)t0 = 10−12s is assumed. Correspondingly, the shear rate γ̇ = q̃0/t̃0.

The set of governing PDEs of the present material model in the dimensionless form more accessible for
numerical integration is thus

∂τ̃Y

∂γ
= cos 2ϕ − q̃(τ̃Y, ρ̃r, θ)

q̃0
,

∂χ̃

∂γ
= Kχ τ̃Y

q̃(τ̃Y, ρ̃r, θ)

q̃0

(
1 − χ̃

χ̃0

)
, (30)

∂ρ̃

∂γ
= Kρ

ζ̃ (ρ̃r, q̃0, θ)2
τ̃Y

q̃(τ̃Y, ρ̃r, θ)

q̃0

(
1 − ρ̃

ρ̃s(χ̃)

)
,

τ̃ − τ̃B − τ̃Y = 0.

This system of PDEs comprises four equations in which both spatial and temporal derivatives occur. In order
to achieve a numerically accurate solution, the original overall problem is parceled out into a large number of
more easily solvable ODEs.With h̃ = h/b being the dimensionless height of the body, the interval 0 < x̃2 < h̃
is first decomposed into n subintervals of the length �h̃ = h̃/n. The first and second spatial derivatives of the
plastic slip β can then be calculated using the finite difference approximations

∂β

∂ x̃2
= βi+1 − βi−1

2�h̃
,

∂2β

∂ x̃2
= βi+1 − 2βi + βi−1

�h̃
2 , (31)

where βi = β(i �h̃). The mean value of β, entering the equation for τ , is calculated using the trapezoidal rule

〈β〉 = 1

n

n−1∑
i=1

βi .

Let us express the dimensionless back stress from (20) in terms of these dimensionless derivatives:

τ̃B = − k1(
1 − k2|β,2̃|

)2 β,2̃2̃, (32)

where β,2̃ and β,2̃2̃ are computed in accordance with (31), while

k1 = γD

μb2
k sin2 ϕ, k2 = k| sin ϕ|, k = 1

ρsb2
. (33)

This back stress enters equation (30)4, making it a coupled system of n algebraic equations. Altogether, this
procedure leads to a system of 4n ordinary differential-algebraic equations (DAE), which only have first
derivatives with respect to γ . In the present study, a spatial discretization of the interval (0, h̃) into n = 1000
subintervals as well as a temporal decomposition with a step size of �γ = 10−6 is applied, whereby the latter
is to be interpreted as a numerical shear increment. Finally, the usual DAE system is solved with the internal
MATLAB subroutine ode15s.

In order to examine the material behavior under load reversals, an entire loading path is simulated. This
starts with the unloaded initial state and leads first to the maximum value γ �, then to the minimum value γ�,
and finally again to complete unloading (see Fig. 2). The shear rate remains constant independent of the load
direction. The load reversal scenario finds its realization in the reversal of equation (27)2 for the dimensionless
plastic slip rate according to

q̄(τ̃Y, ρ̃r, θ) = √
ρ̃r[ f̃P(−τ̃Y, ρ̃r, θ) − f̃P(τ̃Y, ρ̃r, θ)]. (34)
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Fig. 2 A loading path

Table 1 Set of parameters

Material parameters
a b TP r χ̃0 Kρ Kχ γD μ ν

10b 0.255 nm 40822 K 0.0323 0.25 350 96.1 μb2 50GPa 0.33

Loading conditions Initial data

γ � γ� q̃0 t̃0 T τ̃Y(0) ρ̃(0) χ̃(0) β(0)

0.16 −0.01 10−12 10−12 s 298K 0 6.25 × 10−5 0.18 0

With (27) or (34), the solution is obtained for any load direction by integrating the equations (30) with the
corresponding q̃ or q̄ . In addition to the fulfillment of (30), the continuity requirements at the transition points
of the sections must be met in order to ensure the physical consistency of the solution. Therefore, when the
target value γ � or γ� is reached, the calculated end values of a section are taken as initial values for the following
section. In this way, a calculation algorithm is available that allows the variation of load modalities, such as
load direction or speed, as well as the simulation of numerous load cycles to a comprehensive degree.

After computing the unknowns τ̃Y, χ̃ , ρ̃, and β, further parameters can be quantified. The dimensionless
mean Schmid stress and the dimensionless mean back stress can be computed in an identical way by the
relations

τ̄

μ
= 1

h̃

∫ h̃

0
τ̃dx2,

τ̄Y

μ
= 1

h̃

∫ h̃

0
τ̃Ydx2. (35)

The total number of dislocations per unit width is given by

N =
∫ h

0
ρdx2 = b

a2

∫ h̃

0
ρ̃dx̃2, (36)

and the number of non-redundant dislocations per unit width is calculated by

N g = 2
∫ h

2

0
ρgdx2 = 2

b
| sin ϕ|

∫ h
2

0
|β,2|dx2 = 2

b
| sin ϕ|βm, (37)

where βm = β(h̃/2). In view of the symmetrical distribution of the non-redundant dislocations over the height,
the number from the only half of the height up to the center of the slab h̃/2 is computed, which should be
multiplied by 2 to get N g. Finally, the difference between N and N g gives the number of redundant dislocations
per unit width according to

N r = N − N g. (38)

Table 1 contains the set of parameters used in the numerical simulations. The list includes the parameters
characterizing the material model, the loading conditions, and the initial values. These data are consistent with
those for copper at room temperature [21,30]. From this table,we see that k = (a2/b2) exp(1/χ̃0) = 5.46×103.
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Fig. 3 (Color online) stress–strain curves at the strain rate q̃0 = 10−12 and room temperature, with h̃ = 20,000 and ϕ = 30◦:
(i) loading path OAB (black), (ii) load reversal BCD (red/dark gray), (iii) second load reversal DO (yellow/light gray), (iv) flow
stress versus strain (dotted black curve)

Note that copper is comparatively often the object of investigation in the numerical implementation of TDT,
which is explained by its high thermal conductivity: The fast rate at which heat flows to the surrounding
thermal bath during plastic deformations ensures an almost isothermal deformation process, so that the constant
temperature assumed in theory finds its physical justification. The final shear of the opposing load γ� is
specifically defined in such a way that the specimen is stress free after unloading. In addition, the dimensionless
initial dislocation density represents an actual density of ρ(0) = ρ̃(0)/(10b)2 ≈ 1013m−2, which corresponds
to a value typically found in metallic undeformed materials.

4 Results of simulations

4.1 Stress–strain curves

Figure 3 presents the rescaled averaged Schmid stress, τ̄ /μ (bold line), and rescaled averaged flow stress, τ̄Y/μ
(dotted line), versus the shear strain γ over the complete loading path shown in Fig. 2. The dimensionless
height of the slab h̃ = 20,000 and the angle ϕ = 30◦ are chosen. The plots of the two averaged stresses versus
the shear strain γ curves show identical behavior: Starting with the loading phase from the origin O, both
initially develop in an identical manner along the elastic region on the line OA, before moving on from the
identical initial yielding point A into the plastic region AB exhibiting the work hardening as γ goes further
to γ ∗. Remarkable for the plastic region are the different slops of the two curves (hardening rates). Note that
with increasing shear strain, the isotropic hardening due to τ̄Y decreases, while the kinematic hardening due to
the back stress τ̄B = τ̄ − τ̄Y increases. This first loading phase is followed by the load reversal phase in which
γ decreases from γ ∗ to γ∗. The stress–strain curve also begins with the elastic line BC. Note that the elastic
line of τ̄Y/μ is parallel to, but differs from that of τ̄ /μ at this stage. The yielding transition occurs at C, where
the magnitude of the stress is much lower than that at the end of the loading path exhibiting the Bauschinger
effect which will be explained later. Then, the stress–strain curve follows the plastic region on the line CD
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Fig. 4 (Color online) Stress–strain curves at three strain rates q̃01 = 10−4 (solid lines), q̃02 = 10−8 (dashed lines) and q̃03 = 10−12

(dotted lines) and at room temperature, with h̃ = 20,000 and ϕ = 30◦

which shows the increasing hardening as γ decreases to γ∗. The second load reversal phase, in which γ rises
from γ∗ to zero, again shows the elastic behavior on the line DO.

The stress–strain curves are sensitive with respect to the shear rate. In order to show this, we plot in Fig. 4
the rescaled averaged Schmid stress, τ̄ /μ versus the shear strain γ over the complete loading path for three
different shear rates, where the solid lines correspond to the rate q̃01 = 10−4, the dashed lines q̃02 = 10−8 and
the dotted lines q̃03 = 10−12. The resulting curves in Fig. 4 confirm the findings of the rate-dependent study,
according to which faster strain rates imply larger Schmid stresses. Moreover, this figure allows a statement
to be made regarding the sensitivity of isotropic and kinematic hardening to a variation in shear rate: The rate
dependence of the work hardening is mainly due to the isotropic hardening, whereas the kinematic hardening
proves to be relatively less sensitive to a variation of the shear rate.

We also study the sensitivity of the stress–strain curves τ̄ (γ )/μ with respect to the ordinary temperature
of the surrounding thermal bath. For a more detailed evaluation of the work hardening during the plastic
deformation, the rescaled averaged Schmid stress versus γ for the three ordinary temperatures of the thermal
bath T1 = 298K (solid lines), T2 = 498K (dashed lines), and T3 = 698K (dotted lines) accompanying a
complete load cycle is plotted in Fig. 5. This figure illustrates the physically reasonable tendency that, with
increasing T , the Schmid stress together with the work hardening decreases. The physical explanation is
simple: The increase in temperature facilitates the “triggering” of dislocations from the immobile to the free
state, which leads to an increase in the dislocation depinning rate and together with it the plastic strain rate.
Consequently, an increased T is reflected in the reduction of the work hardening. This explanation also justifies
the shortening of the elastic ranges as the initial yielding is reached faster with increasing temperature. Similar
to the strain rate sensitivity, the temperature sensitivity mainly concerns the isotropic hardening and to a much
lesser extent the kinematic hardening.

The next factor of interest is the height h of the sheared slab. To analyze the size effect, the stress–strain
curves τ̄ (γ )/μ over the complete loading path are plotted in Fig. 6 using three dimensionless slab’s heights
h̃1 = 10,000 (bold lines), h̃2 = 20,000 (dashed lines) and h̃3 = 100,000 (dotted lines). The simulation results
from this figure show the tendency that the decrease in the sample height causes the increase of τ̄ , an observation
which can be summarized in the relation τ̄ (h̃1) > τ̄ (h̃2) > τ̄ (h̃3) with h̃1 < h̃2 < h̃3. Besides, the hardening
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Fig. 5 (Color online) Stress–strain curves at the strain rate q̃01 = 10−12 and at three different (ordinary) temperatures T1 = 298K
(solid lines), T2 = 498K (dashed lines) and T3 = 698K (dotted lines), with h̃ = 20,000 and ϕ = 30◦

Fig. 6 (Color online) stress–strain curves at the strain rate q̃01 = 10−12 and room temperature, for three different sample heights
h̃1 = 10,000 (bold lines), h̃2 = 20,000 (dashed lines) and h̃3 = 100,000 (dotted lines), with ϕ = 30◦
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Fig. 7 (Color online) Normalized back stress τB/μ near the boundary versus γ at the strain rate q̃01 = 10−12 and room
temperature, with h̃ = 20,000 and ϕ = 30◦: (i) loading path (black), (ii) load reversal (red/dark gray), and (iii) second load
reversal (yellow/light gray)

rate in the plastic region increases with the reduction in the sample height (“smaller is stronger”). The more
detailed analysis of the flow stress τ̄Y shows that this size effect is solely due to the kinematic hardening and the
pileup of non-redundant dislocations. For instance, despite the increase of τ̄ after the end of the loading phase,
the spans of all three flow areas turn out to be almost invariant, which demonstrates the size independence
of the isotropic hardening. A further qualitative confirmation of this claim is the common intersection of all
three stress–strain curves at the onset of plastic yielding and after the load reversal. For heights greater than
100,000b, which correspond to almost macroscopic specimens, the size effect is less pronounced and only
becomes apparent at greater strains.

To explain the Bauschinger effect, we now show the evolution of the normalized back stress τB/μ computed
in the thin boundary layer as function of γ over the complete loading path in Fig. 7. After the starting point
O and the subsequent relatively short elastic line OA without the back stress, τB/μ increases with the applied
shear γ over the entire loading phase ending in the point B. The load reversal phase is also divided into a
constant elastic line BC with constant τB/μ and a falling plastic line CD. The positive back stress at C causes
the lower magnitude of the stress required for initiating the second yielding than that at the first yielding point
A. The plastic line ends with the reaching of the zero value for τB/μ in point D, from which the unloading
phase follows, until the initial state without applied shear is reached again in point O. Finally, the parameter
study on the back stress (see Sect. 4.5) is used to validate the hypotheses expressed in the investigations of the
rate, temperature, and sample size dependence for τ̄Y and τ̄ with respect to the hardening behavior. According
to this, a comparatively constant development of the back stress with respect to the variation of shear rate
and temperature witnesses the insensitivity of kinematic hardening to these parameters. On the other hand,
the change in sample size affects the back stress in the boundary layer in such a way that τB decreases with
increasing slab’s height.
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Fig. 8 (Color online) Evolution of β(x̃2) at the strain rate q̃0 = 10−12 and room temperature, with h̃ = 20,000 and ϕ = 30◦,
during the loading along AB: (i) γ = 0.04 (black), (ii) γ = 0.08 (red/dark gray), (iii) γ = 0.12 (yellow/light gray)

4.2 Distributions and evolution of plastic slip

Figure 8 represents the plastic slip β(x̃2, γ ) during the loading phase for the three shear amounts γ1 = 0.04,
γ2 = 0.08, and γ3 = 0.12, simulated with the use of the standard parameter set from Table 1. The plot results in
symmetrical, plateau-shaped curves, each of which reaches its plateau value starting and ending with the zero
valuewithin a comparatively short length of boundary layers. The solution also shows the basic relative increase
in plastic slip during increasing shear stress and agrees qualitatively with the approximate solution found in
[22]. The quantitative comparison is difficult due to the different choices for the energy of non-redundant
dislocations. On the background of the physical interpretation of β(x̃2, γ ), the result appears to make sense.
The non-uniformity of the plastic slip causes non-redundant dislocations whose Burgers vectors do not cancel
each other out. The relationship here is that the absence of non-redundant dislocations is characterized by the
zero slope of the curve in the middle, whereas the positive and negative slopes near the boundaries indicate
that non-redundant dislocations of opposite signs pile up against the lower and upper grain boundaries. The
plastically deformed specimen thus has two thin boundary layers on the top and bottom in which the non-
redundant (geometrically necessary) dislocations accumulate, whereas the predominant, central area does not
contain this type of dislocations.

Figure 9 shows the evolution of β(x̃2, γ ) during the load reversal phase, and, for comparison purpose, also
β(x̃2, γ ) during the loading phase. Again, the data from Table 1, h̃ = 20,000 and the angle ϕ = 30◦ are used
for the simulation. The load reversal phase is characterized by basically identical distribution of the plastic slip
as those of the load phase: In addition to the steep slopes near the boundaries, there is a plateau in the middle
section where non-redundant dislocations are not present. The values in the plateau have increased moderately
compared to those during the loading phase. The results show a physically reasonable behavior: Despite the
change in load direction, the distribution of non-redundant dislocations is maintained so that the β profile is
present in an analogous manner. The almost constant difference is explained by the fact that from the onset of
plastic flow, regardless of the direction of loading, non-redundant dislocations are formed at the same rate.
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Fig. 9 (Color online) Evolution of β(x̃2) at the strain rate q̃0 = 10−12 and room temperature, with h̃ = 20,000 and ϕ = 30◦,
during the loading (dotted lines) and load reversal (bold lines): (i) γ = 0.04 (black), (ii) γ = 0.08 (red/dark gray), (iii) γ = 0.12
(yellow/light gray)

4.3 Evolution of dislocations

Figure 10 shows the evolution of the number of non-redundant dislocations (per unit width) N g(γ ) during the
complete load cycle which is qualitatively identical to that of the back stress τB(γ ) in Fig. 7. At first, these
show a rising, then a falling tendency, whereby the rising line AB and falling line CD are separated by the
two horizontal lines BC and AD. While initially no non-redundant dislocations are present in the crystal, their
maximum number, when the maximum shear γ = 0.16 is reached, is about 3.1 × 108m−1. To obtain the
dislocation density ρg, we must divide this number by the height of the slab, resulting in 6.1× 1012m−2. This
number N g changes only during the plastic deformation, whereas it remains constant (frozen) during the elastic
deformation. The decrease of N g during the load reversal can be explained as follows: The presence of the
positive back stress reduces the magnitude of shear stress required for pulling the non-redundant dislocations
back to the center of the specimen. There, the non-redundant dislocations of opposite signs meet and annihilate
each other, so the number of non-redundant dislocations reduces gradually to zero along the curve CD.

Figure 11 shows the essentially different evolution of the number of redundant dislocations (per unit width)
N r(γ ) as compared to that of N g(γ ). The most remarkable difference between the behaviors of N r and N g is
that the former increases further along CD during the load reversal, while the latter decreases to zero. Thus,
along CD the material is closer to the steady state than along AB, and consequently, the hardening rate of the
stress–strain curve of CD shown in Fig. 3 must be less than that of AB. This asymmetry between loadings
in opposite directions becomes more pronounced as γ ∗ increases. Note that the total number of dislocations
N (γ ) behaves in exactly the same way as N r(γ ). The numerical difference between them is due to the number
of non-redundant dislocations, which, for small strains, is still much smaller than N r(γ ).

4.4 Evolution of configurational temperature

The evolution of χ̃(h̃/2) versus γ turns out to be similar to that of N r (or N ) and is shown in Fig. 12. In
addition to the small horizontal elastic lines, the plastic lines are characterized by the positive slops. Thus, after
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Fig. 10 (Color online) Number of non-redundant dislocations per unit width N g versus γ at the strain rate q̃0 = 10−12 and room
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Fig. 11 (Color online) Number of redundant dislocations per unit width N r versus γ at the strain rate q̃0 = 10−12 and room
temperature, with h̃ = 20,000 and ϕ = 30◦: (i) loading path (black), (ii) load reversal (red/dark gray), (iii) second load reversal
(yellow/light gray)
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Fig. 12 (Color online) The configurational temperature χ̃(c̃/2) versus γ at the strain rate q̃0 = 10−12 and room temperature,
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Table 2 Effect of the increase in the influencing parameters on the results

τ̄ τ̄Y τB N r N g χ̃ β kinem. hard. isotr. hard.

q̃0 ↑ + + + + + + − −− − ++ − − + + +
T ↑ −−− −−− + ++ + −− + + −−−
h̃ ↑ −−− 0 −−− + + + − 0 − −−− 0
ϕ ↑ −− −− ++ −− ++ −− −− ++ −−

a short stagnation along BC the configurational temperature increases further during the load reversal, what
moves the system closer to the steady state. Note that the correlation between the curves of the configuration
temperature χ̃ (γ ) and the dislocation number N (γ ) has its root in the mathematically comparable category of
the DE of these two quantities according to (30)2 and (30)3: Both right-hand sides are of limited decreasing
character, whereby the latter additionally depends on the weakly varying function ν, whose influence proves
to be negligible in the present context. From a thermodynamic point of view, the increase in ρ and χ causes
the dislocation multiplication to decrease or, in other words, the dislocation annihilation to intensify. Thus, the
higher the disorder temperature, the faster the saturation effect affects the number of dislocations.

4.5 Summary of the parameter study

We perform the detailed parameter study of all quantities in the previous subsections, the results of which are
summarized in Table 2. This table shows the qualitative changes of all variables during the increase in the four
influencing parameters. The binary evaluation scale represents the relations exclusively qualitatively, where a
“+” basically means the relative increase and a “−” the relative decrease. The “0” indicates an inert behavior
toward parameter variation.

In particular, the list demonstrates the significant sensitivity of the Schmid and flow stresses, the number
of redundant dislocation, and the configurational temperature on the variation of strain rate and temperature.
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The variation in the loading modality, however, has a comparatively marginal effect on the back stress and
the number of non-redundant dislocations. In contrary, the enlargement of the sample causes changes of
completely different characteristics which mainly concern the non-redundant dislocations and the kinematic
hardening. While the number of non-redundant dislocations does not change much, which leads to a reduction
in the density of this type of dislocations due to the increase in height, the number of redundant dislocations
increases simultaneously to the extent that the corresponding density remains constant, and therefore, no
noticeable change in the flow stress can be observed. Another remarkable feature is the analogy between the
Schmid stress and the back stress, both of which have the identical dependence on the change in height. The
last variable, the angle of inclination ϕ characterizing the orientation of the slip system, causes a manifold
change of the quantities: On the one hand, this is expressed in the relative reduction in the number of redundant
dislocations, the configurational temperature, and consequently the Schmid and flow stress, while on the other
hand, the number of non-redundant dislocations increases relatively, as does the back stress.

5 Conclusion

The thermodynamic approach, which incorporates configurational temperature and non-redundant disloca-
tions, is proving to be an effective tool for the construction of dislocation-based predictive plasticity. The
system of PDEs derived from the TDT has been transformed into a system of DAEs by discretization and
then solved numerically efficiently. Parameter studies prove the increase in the Schmid stress on the one hand
by increasing the shear rate and on the other hand by reducing the ordinary temperature, the grain size, and
the angle of inclination of the slip direction. The back stress is primarily a dominating factor for the size
effect, whereas the isotropic hardening is insensitive to the change in size. The physical explanation of the
Bauschinger effect, which is based on back stress and the retraction and annihilation of non-redundant dis-
locations, is convincing. Based on this theory, the asymmetry of work hardening between loads in opposite
directions could be explained and predicted.

The computer-aided implementation of the present study is characterized by a comparatively high numerical
performance, which strengthens the integration of the basic concept in higher-dimensional problems based on
finite element computation. The numerical realization presented in this paper can be used as a subroutine that
quantifies the development of the microstructure after each loading step from the structural–mechanical data
of the finite element calculation.

Compliance with ethical standards

Conflicts of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Abbod, M.F., Sellars, C.M., Cizek, P., Linkens, D.A., Mahfouf, M.: Modeling the flow behavior, recrystallization, and
crystallographic texture in hot-deformed Fe-30 Wt Pct Ni Austenite. Metall. Mater. Trans. A 38(10), 2400–2409 (2007)

2. Acharya, A.: New inroads in an old subject: plasticity, from around the atomic to the macroscopic scale. J. Mech. Phys.
Solids 58(5), 766–778 (2010)

3. Anand, L., Gurtin, M.E., Reddy, B.D.: The stored energy of cold work, thermal annealing, and other thermodynamic issues
in single crystal plasticity at small length scales. Int. J. Plast. 64, 1–25 (2015)

4. Ayers, J.E.: The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction. J. Cryst.
Growth 135(1–2), 71–77 (1994)

5. Berdichevsky, V.L.: Homogenization in micro-plasticity. J. Mech. Phys. Solids 53(11), 2457–2469 (2005)
6. Berdichevsky, V.L.: Continuum theory of dislocations revisited. Contin. Mech. Thermodyn. 18(3–4), 195–222 (2006a)
7. Berdichevsky, V.L.: On thermodynamics of crystal plasticity. Scripta Mater. 54(5), 711–716 (2006b)
8. Berdichevsky, V.L.: Entropy of microstructure. J. Mech. Phys. Solids 56(3), 742–771 (2008)
9. Berdichevsky, V.L.: Beyond classical thermodynamics: dislocation-mediated plasticity. J. Mech. Phys. Solids 129, 83–118

(2019)
10. Berdichevsky, V.L., Le, K.C.: Dislocation nucleation and work hardening in anti-plane constrained shear. Contin. Mech.

Thermodyn. 18(7–8), 455–467 (2007)
11. Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. J.

Appl. Math. Mech. 31(6), 989–1006 (1967)



2126 F. Günther, K. C. Le

12. Bilby B (1955) Types of dislocation source. In: Report of Bristol Conference on Defects in Crystalline Solids (Bristol 1954,
London: The Physical Soc.), pp. 124–133

13. Calcagnotto, M., Ponge, D., Demir, E., Raabe, D.: Orientation gradients and geometrically necessary dislocations in ultrafine
grained dual-phase steels studied by 2d and 3d ebsd. Mater. Sci. Eng. A 527(10–11), 2738–2746 (2010)

14. Follansbee, P.S., Kocks, U.F.: A constitutive description of the deformation of copper based on the use of the mechanical
threshold stress as an internal state variable. Acta Metall. 36(1), 81–93 (1988)

15. Groma, I., Csikor, F., Zaiser,M.: Spatial correlations and higher-order gradient terms in a continuumdescription of dislocation
dynamics. Acta Mater. 51(5), 1271–1281 (2003)

16. Hochrainer, T.: Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids 88, 12–22 (2016)
17. Kröner, E.: Der fundamentale zusammenhang zwischen versetzungsdichte und spannungsfunktionen. Z. Phys. 142(4), 463–

475 (1955)
18. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen, vol. 5. Springer, New York (1958)
19. Langer, J.S.: Statistical thermodynamics of strain hardening in polycrystalline solids. Phys. Rev. E 92(3), 032125 (2016)
20. Langer, J.S., Le, K.C.: Scaling confirmation of the thermodynamic dislocation theory. Proc. Natl. Acad. Sci. USA 117(47),

29431–29434 (2020)
21. Langer, J.S., Bouchbinder, E., Lookman, T.: Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58(10),

3718–3732 (2010)
22. Le, K.C.: Thermodynamic dislocation theory for non-uniform plastic deformations. J. Mech. Phys. Solids 111, 157–169

(2018)
23. Le, K.C.: Two universal laws for plastic flows and the consistent thermodynamic dislocation theory. Mech. Res. Commun.

109, 103597 (2020a)
24. Le, K.C.: Introduction to Micromechanics. Nova Science, New York (2020b)
25. Le, K.C., Piao, Y.: Thermodynamic dislocation theory: size effect in torsion. Int. J. Plast. 115, 56–70 (2019)
26. Le, K.C., Sembiring, P.: Analytical solution of plane constrained shear problem for single crystals within continuum dislo-

cation theory. Arch. Appl. Mech. 78(8), 587–597 (2008)
27. Le, K.C., Stumpf, H.: Amodel of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 12(5), 611–627

(1996)
28. Le, K.C., Tran, T.M.: Thermodynamic dislocation theory: bauschinger effect. Phys. Rev. E 97(4), 043002 (2018)
29. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of high-temperature deformation in aluminum and

steel. Phys. Rev. E 96, 013004 (2017)
30. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of adiabatic shear banding in steel. Scripta Mater.

149, 62–65 (2018)
31. Levitas, V.I., Javanbakht, M.: Thermodynamically consistent phase field approach to dislocation evolution at small and large

strains. J. Mech. Phys. Solids 82, 345–366 (2015)
32. Lieou CK, Bronkhorst CA (2020) Thermodynamic theory of crystal plasticity: formulation and application to polycrystal

FCC copper. J. Mech. Phys. Solids 103905
33. Marchand, A., Duffy, J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J.

Mech. Phys. Solids 36(3), 251–283 (1988)
34. Morito, S., Nishikawa, J., Maki, T.: Dislocation density within lath martensite in Fe–C and Fe–Ni alloys. ISIJ Int. 43(9),

1475–1477 (2003)
35. Mura, T.: Continuous distribution of dislocations and the mathematical theory of plasticity. Phys. Status Solidi B 10(2),

447–453 (1965)
36. Nye, J.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)
37. Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys.

Solids 47(2), 397–462 (1999)
38. Po, G., Huang, Y., Ghoniem, N.: A continuum dislocation-based model of wedge microindentation of single crystals. Int. J.

Plast. 114, 72–86 (2019)
39. Samanta, S.K.: Dynamic deformation of aluminium and copper at elevated temperatures. J. Mech. Phys. Solids 19(3),

117–135 (1971)
40. Shi, H., McLaren, A.J., Sellars, C.M., Shahani, R., Bolingbroke, R.: Constitutive equations for high temperature flow stress

of aluminium alloys. Mater. Sci. Technol. 13(3), 210–216 (1997)
41. Weertman, J.H.: Dislocation Based Fracture Mechanics. World Scientific Publishing Company, Singapore (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Plane constrained shear of single crystals
	Abstract
	1 Introduction
	2 Plane constrained shear
	3 Numerical implementation
	4 Results of simulations
	4.1 Stress–strain curves
	4.2 Distributions and evolution of plastic slip
	4.3 Evolution of dislocations
	4.4 Evolution of configurational temperature
	4.5 Summary of the parameter study

	5 Conclusion
	References




