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Abstract The major goal of this work is to analyze the magnetic effect on the creeping viscous flow past
a porous spheroidal particle, a particle of slightly deformed spherical shape. Brinkman’s model is proposed
to govern the flow in the porous media. Boundary value problem considers the conditions of continuity of
velocity components, continuity of normal stresses, and stress jump boundary condition for tangential stress.
A transverse magnetic field of uniform nature is applied to the flow. An expression for the drag force acting
on the spheroidal particle is derived analytically. The effects of the physical parameters involved in the flow
like permeability, deformation, Hartmann number’s, viscosity ratio, and stress jump coefficient parameters
are visualized through graphs and tables. The applied magnetic field seems to suppress the flow of fluid that
leads to the increase in the drag experienced on the porous spheroid. It is also observed that the increase in the
deformation, stress jump, and permeability decreases the drag coefficient. Our results without magnetic effect
match with the results reported earlier in the literature.

Keywords Spheroidal particle · Hartmann number · Modified Stokes law · Modified Brinkman’s equation ·
Stress jump condition · Hydrodynamic drag

1 Introduction

In the era of modern science, the area concerned about the study of the interaction between an electrically
conducting fluid and magnetic field, generally known as magnetohydrodynamics, has been found to be of keen
interest. The presence of the magnetic field produces an electromagnetic force called Lorentz force which acts
on the fluid and has the tendency to alter the behavior of the flow. Due to its relation with various applications
of science and engineering, it has been in the limelight among many researchers. Some important areas of its
application are in the fields of biological science, astrophysics, geophysics, metallurgy, and many more. It is
also applied in generating hydrodynamic generator, micro-electronic devices, pumps, purifying molten metals,
meters, bearings, etc. The study of magnetohydrodynamic behavior of the boundary layers towards rigid or
moving surface under the action of the transverse magnetic field is one of the basic and important problems in
this area of fluid mechanics.

The class of problems concerned about convection in porous media is treated as an important area of
research over the centuries, notably due to its easy presence in natural and man-made flows. Instantly, such
flow can be found in flow through a sponge, the flow of oil through porous rocks, extraction of crude oils
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from earth’s surfaces, sedimentation of the particles, the filtration of solids from liquids, permeation of drugs
through human skin, transport of nutrients from synovial fluid to cartilages in synovial joints, and many more.
In view of its vast application, many investigations have been done by various authors. The pioneering work
of Stokes [1] provided knowledge on the drag force experienced by a moving or rigid particle of considerable
range. In view of modeling flow in porous media, Darcy’s law [2] provides an empirical formula in which the
viscous stress tensors are neglected. Importantly, this law is fruitful for the flow in porous media bearing low
permeability. However, this law is found to be inadequate for media with higher permeability. To overcome this
situation, Brinkman [3] introduced one additional effective viscosity term in Darcy’s equation and obtained the
relation between particle size density and permeability. Concentrating on the discrepancies in terms of choosing
boundary conditions while studying motion in porous media, we come across the following conditions. At the
porous fluid interface, the traditional no-slip condition which was used extensively earlier is later found to not
always hold true in real circumstances. Therefore, some slip may be experienced at the interface. Important
fluid-porous boundary conditions are proposed by Beavers-Joseph et al. [4–7].

The literature based on the motion of Newtonian flow past porous spherical or cylindrical particles is found
to be very rich and significant. On the contrary, under nature and engineering practices, porous particles are
found to be of shapes differing from that of spherical geometry, and the spheroidal-shaped particles are of
the simplest configuration allowing to explore the effect of geometrical shapes on the drag resistance and
their settling velocity. Despite the complex geometry, flow past spheroidal shape has gained the attention of
researchers over the last few centuries. However, some of the important works most relevant to our study are
pointed out. Zlatanovski [8] illustrated the axisymmetric flow of fluid past a porous prolate spheroid by using
Brinkman’s media. This analysis further took into consideration the eigenvalues and eigen functions of the
stream function for the porous medium. The translational and the rotational movement of porous spheroid
enclosed within a spheroidal cell was studied by Saad [9]. In this study, the small departure from a spherical
shape is considered for the spheroidal particles, and the expressions for the flow fields are presented to the
first order of the deformation parameter. Additionally, Saad [10] investigated the Stokes flow past a porous
spheroidal particle confined in a spheroidal container using cell models. He evaluated the analytical expressions
for the drag for all the chosen cell models. Srinivasacharya and Krishna Prasad [11–13] studied the Newtonian
fluid flow past and through porous approximate sphere, porous approximate sphere with deformed solid core,
and porous approximate spherical shell, respectively. In the article by Sherief et al. [14], the problem dealing
with the oscillating spheroidal particle in the micropolar fluid was reported, considering the slip condition.
The drag and the couple exerted on the particle are evaluated and expressed in terms of the prolate and oblate
spheroids. A steady rotation of a porous approximate sphere contained inside an approximate spherical vessel
using stress jump condition was handled by Srinivasacharya and Krishna Prasad [15]. The expression for the
torque on the porous approximate particle was also calculated. Krishna Prasad and Kaur [16] explored the
problem of a viscous fluid past a spheroid filled with micropolar fluid by using an analytical method. They
evaluated the hydrodynamic drag force experienced by the fluid spheroid. Recently, using the Beavers–Joseph–
Saffman–Jones condition, Krishna Prasad and Bucha [17] examined the problem of flow past a permeable
spheroidal particle. In their work, an analytical expression of drag force acting on the particle is derived.

Numerous early works contributing to the area of magnetohydrodynamics explained well its importance
in science and engineering. A basic review of this type of flow can be found in the following books [18,19].
Earlier, magnetohydrodynamic flow through a circular channel filled with a saturated porous medium was
investigated by Verma and Singh [20]. The expression of the velocity, average velocity, rate of volume flow,
and shear stress is obtained. Yadav et al. [21] found the dominating effect of Hartmann’s number on the
hydrodynamic permeability of membrane containing porous spherical shell. The problem through the swarm
of spherical particles was modeled by using the cell model method, and the effect of several important flow
parameters was studied. Saad [22] made a study to explore the effect of the magnetic field on the motion of
suspension of the porous particles of different geometry (sphere and cylinder) bounded by a cell.While making
a comparison, he found the value of the Kozeny constant which was derived during the study, to be smaller
for a sphere as compared to the parallel and perpendicular cylindrical flows in the voidage range. Nasir et al.
[23] worked on the natural convection flow of micropolar fluid inside a porous square conduit and studied
the effects of the magnetic field, heat generation/absorption, and thermal radiation on the flow. In the current
scenario, varieties of problems handling the vast range of fluids with magnetic influence and different particle
geometries have been studied [24–32]. Effects of velocity second slip model and induced magnetic field on
peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids were
carried out by Akram et al. [33]. Bilal and Nazeer [34] analyzed the motion of non-Newtonian fluid over a
stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Nabil et
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al. [35] tackled the MHD peristaltic flow of power-law nanofluid passing through a non-Darcy porous medium
inside a non-uniform inclined channel.

In the series of investigations made by Krishna Prasad and Bucha [36–41], the influence of magnetic field
on the flow through particles with different geometrical shapes has been carried out in detail. The influence of
imposed transverse magnetic field on the volumetric flow past a porous cylindrical shell is deeply studied by
using both analytical and numerical approaches [36]. At the interface of the fluid-porous region, the continuity
of velocity components, a stress jump condition for tangential stresses, and the Happel and Kuwabara cell
model are used. The volumetric flow rate of the fluid is also calculated. Moreover, the impact of MHD on the
drag force exerted on the semipermeable sphere due to the viscous flow has been discussed [37]. The explicit
expression for the drag on the semipermeable sphere is derived which shows the enhancement in the drag force
on the application of the magnetic field. The motion of fluid past bounded fluid sphere with a fluid of different
viscosity has been studied under the impact of the transverse magnetic field using Kuwabara cell model [38].
The drag acting on the inner fluid sphere is also derived. Thereafter, the MHD effect on the Stokes flow past a
weakly permeable sphere enclosed by a spherical cell using Happel and Kuwabara cell models together with
Saffman boundary condition is carried out [39]. The expressions for drag force, hydrodynamic permeability,
and Kozeny constant for the bounded spherical particle are found. The flow of magnetic fluid through the
porous cylindrical shell with a liquid core has been investigated, employing the unit cell models [40]. An
expression for the Kozeny constant on the cylindrical shell is presented. The flow dealing with magnetic fluid
past a weakly permeable cylindrical particle is studied [41]. Applying the Saffman’s slip condition, the drag,
hydrodynamic permeability, and Kozeny constant for the permeable cylinder are evaluated. All the mentioned
works emphasize the impact of MHD to be changing with altering shapes of the particle. Therefore, it is
significant to study the MHD effect on varying particle geometry.

The above-discussed literature survey indicates that the MHD effect on flow past a porous spheroidal
geometry has yet not been investigated. Several works have been carried out by researchers to predict the
parameters which are highly influencing the flows. The nature of fluid and the size, shape, and type of particles
are among the important factor involved in characterizing the amount of flow. Applying a magnetic field on
such flow produces a suppressive force which in turn reduces the flow velocity by increasing the resisting
force acting on the particle. To the best of our knowledge, magnetic influence on the low Reynolds flow past
a porous particle of deformed spherical shape is not been studied earlier, despite its application in different
fields of sciences. To address this scientific gap, we considered modeling the flow past a Brinkman governed
porous spheroid under the MHD effect. An expression for the drag acting on the spheroidal particle, to the first
order in a small parameter characterizing the deformation of the spheroidal surface from the spherical shape,
has been derived analytically. The influence of several dimensionless parameters that arises while pursuing
the analysis like permeability, stress jump coefficient, deformation, Hartmann number, and viscosity ratio on
the nature of the drag coefficient is discussed using graphs and tables. The obtained drag result without the
magnetic field and in the absence of stress jump is found in agreement with that of Saad’s result [9]. Also,
various other results produced in reduction cases are found to be agreeing with those available in the literature.

2 Modeling the problem

2.1 Physical and mathematical description

The geometry of the steady, axisymmetric flow of conducting fluid past a porous spheroid under the execution
of a transverse uniformmagnetic field is illustrated in Fig. 1. During this investigation, we assume themagnetic
Reynold’s number as Rem = U aμhσi to be extremely small where σi denotes the electric conductivity of the
fluid and μh the magnetic permeability of the fluid. Also, μh is supposed to be similar for both the fluid and
porous regions and any applied external electric field is ignored. Also, the induced magnetic field is neglected.

Now, the magnetic force called Lorentz force, denoted as F, comes into play while dealing with the
magnetohydrodynamic flow and is given as

F = μhJ × H. (1)

where J and H are the electric current density and the magnetic field intensity.
Therefore,

F = μ2
hσi (q × H) × H. (2)
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Fig. 1 Visualization of MHD flow past a porous spheroid

Obtained magnetic forces balance the pressure and the viscous stresses, in order to produce the modified
Stokes andmodifiedBrinkman’s equation, respectively. Therefore, themodified Stokes equation [22,37,38,43]
governs the flow in region I, and the modified Brinkman’s equation [3,36] governs the flow in region II.

The viscous fluid region I and porous region II are specified using i , where i = 1, 2 respectively. Further,
the transverse magnetic field is represented as H(i) = Hoer, i = 1, 2.

2.2 Basic flow equations

The present flow is supposed to be of low Reynolds number, and therefore, Stokes equation is considered to
be the flow governing equation in the fluid region, and Brinkman’s equation is used for the flow in the porous
region.

The equations for movement of a viscous fluid in the region I under MHD effect governed by modified
Stokes equation are given by

∇ · q (1) = 0, (3)

∇ p(1) + μ∇ × ∇ × q(1) − μ2
hσi

(
q (1) × H (1)

)
× H (1) = 0, (4)

Equations for motion in region II under MHD effect are defined by modified Brinkman’s equation

∇ · q (2) = 0, (5)

∇ p (2) + μe∇ × ∇ × q (2) + μ

k
q (2)

− μ2
hσe

ε

(
q (2) × H (2)

)
× H (2) = 0, (6)

where q (i), p (i) are velocity vector and pressure, σi and σe the electric conductivity and effective electric
conductivity, and μ and μe the viscosity and the effective viscosity with k and ε to be the permeability
and porosity of porous region, respectively. The effective viscosity theoretically takes into account the stress
within the fluid when it passes through a porous medium. Basically, the viscosity μ and effective viscosity
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μe are distinct [42]. Although at the macrolevel it can be treated as equal, it does not hold true at microlevel.
Furthermore, the electric conductivity of clear fluid and porous region is distinct [22,44].

To transform the flow equations into dimensionless form, the following non-dimensional variables come
into play

r = ar̃ , q(i) = U q̃(i), ∇ = ∇̃
a

, p(i) = μU

a
p̃(i), H (i) = Ho H̃

(i)
. (7)

Utilizing the above values in Eqs. (3)–(6) and then ignoring the tildes, we obtain the final equations as

∇ · q(1) = 0, (8)

∇ p(1) + ∇ × ∇ × q(1) − α2
(
q (1) × H (1)

)
× H (1) = 0, (9)

∇ · q(2) = 0, (10)

∇ p(2) + γ 2ξ21q
(2) + γ 2∇ × ∇ × q (2) − γ 2ξ22

(
q (2) × H (2)

)
× H (2) = 0, (11)

where the symbols represent the following

1. α =
√

μ2
hH

2
o σi a2

μ1
, the Hartmann number for viscous fluid region I.

2. γ 2 = μ2

μ1
, the viscosity ratio between the inner fluid in porous media and outer viscous fluid.

3. ξ21 = a2

k

1

γ 2 , the permeability parameter.

4. ξ2 =
√

μ2
hH

2
o σea2

εμ2
, the Hartmann number for Brinkman porous region II.

5. β2 = ξ21 + ξ22 .

Here, (r, θ, φ) denote spherical coordinate system. The flow is axially symmetric, which further indicates
the flow quantities are independence of φ. Thus, we assume velocity vectors as

q(i) = q(i)
r (r, θ)er + q(i)

θ (r, θ)eθ , i = 1, 2. (12)

The spheroidal surface is supposed to be of the form r = a [1 + f (θ)] [43], and its shape is slightly
deviated from that of the spherical surface r = a. Now, in general situation, the orthogonality relations of
Gegenbauer functions ϑm(ζ ), ζ = cos θ permit us to consider the expansion f (θ) = ∑∞

m=2 αmϑm(ζ ). In the
above equation, the Gegenbauer function in relation to Legendre function Pn(ζ ) is given as

ϑn(ζ ) = Pn−2(ζ ) − Pn(ζ )

2n − 1
, n ≥ 2. (13)

Therefore, the surface of the spheroid can be chosen as r = a[1 + αmϑm(ζ )]. The coefficient αm is assumed
to be very small so that their squares and higher powers can be ignored [43]. Subsequently, we have (r/a)y ≈
1 + yαmϑm(ζ ), where y is positive or negative.

Let us suppose ψ(i) to be the stream functions for fluid and porous regions, respectively, with i = 1, 2.
Considering the stream function, the velocity components are

q(i)
r = 1

r2
∂ψ(i)

∂ζ
, q(i)

θ = 1

r
√
1 − ζ 2

∂ψ(i)

∂r
; i = 1, 2. (14)

After the elimination of pressure terms p(1) and p(2) from Eqs. (9) and (11), we finally obtain

E2(E2 − α2)ψ(1) = 0, (15)

E2(E2 − β2)ψ(2) = 0, (16)

where E2 = ∂2

∂r2
+ 1 − ζ 2

r2
∂2

∂ζ 2 is the Stokes operator.
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3 Boundary conditions

The requirement of finding the closed-form solution of the boundary value problem arises the need for interface
conditions, which validate the problem both physically and mathematically. While dealing with flow past
Brinkman media, it was conveyed that the frequently considered continuity of stresses may not always be
appropriate; therefore, the discontinuity condition for shearing stresses was proposed by Ochoa-Tapia and
Whitaker [6,7]. Thus, continuity of the velocity components, continuity of the normal stresses, and stress jump
condition for the tangential stress components [22,36] are chosen to be applicable to the present problem.
Mathematically, at the spheroidal surface, we have the following boundary conditions

(q(1) − q(2)) · n = 0, (17)

(q(1) − q(2)) · s = 0, (18)

n · (τ (2) − τ (1)) · n = 0, (19)

n · (τ (2) − τ (1)) · s = σμ1√
k

(q(2) · s). (20)

where σ is the stress jump coefficient.
Moreover, n = er − αm

√
1 − ζ 2Pm−1(ζ )eθ , and s = −αm

√
1 − ζ 2Pm−1(ζ )er − eθ , are the unit normal

vector and an arbitrary tangential vector at the spheroidal surface r = a[1 + αmϑm(ζ )].
Boundary conditions at infinity (r → ∞) for the external flow are written as q(1)

r = −U cos θ and q(1)
θ =

U sin θ .
Substituting the above values of n and s in Eqs. (17)–(20), we get the boundary conditions in non-

dimensional form as

q(1)
r − q(2)

r = (q(1)
θ − q(2)

θ )αm

√
1 − ζ 2Pm−1(ζ ), (21)

q(1)
θ − q(2)

θ = 0, (22)

τ (1)
rr − τ (2)

rr = 2αm

(
τ

(1)
rθ − τ

(2)
rθ

)√
1 − ζ 2Pm−1(ζ ), (23)

τ
(2)

rθ − τ
(1)

rθ + αm

[(
τ (2)
rr − τ

(2)
θθ

)
−

(
τ (1)
rr − τ

(1)
θθ

)]

√
1 − ζ 2Pm−1(ζ ) = σξ1γ

(
q(2)
θ + q(2)

r αm

√
1 − ζ 2Pm−1(ζ )

)
. (24)

In terms of stream functions ψ(i); i = 1, 2, we have the expressions below
(

∂ψ(1)

∂ζ
− ∂ψ(2)

∂ζ

)
= rαm Pm−1(ζ )

(
∂ψ(1)

∂r
− ∂ψ(2)

∂r

)
, (25)

∂ψ(1)

∂r
− ∂ψ(2)

∂r
= 0, (26)

p(2) − p(1) − 2

r2

[
2

r

(
∂ψ(1)

∂ζ
− γ 2 ∂ψ(2)

∂ζ

)
−

(
∂2ψ(1)

∂r∂ζ
− γ 2 ∂2ψ(2)

∂r∂ζ

)]

− 2αm Pm−1(ζ )

r

[
2r

∂

∂r

{
1

r

(
∂ψ(1)

∂r
− γ 2 ∂ψ(2)

∂r

)}
+ E2

(
γ 2ψ (2) − ψ (1)

)]
= 0, (27)

2r
∂

∂r

[
1

r

(
γ 2 ∂ψ(2)

∂r
− ∂ψ(1)

∂r

)]
+ E2

(
ψ (1) − γ 2ψ (2)

)

+ 2αmϑ2(ζ )Pm−1(ζ )

[
4

r

(
γ 2 ∂2ψ(2)

∂r∂ζ
− ∂2ψ(1)

∂r∂ζ

)
− 6

r2

(
γ 2 ∂ψ(2)

∂ζ
− ∂ψ(1)

∂ζ

)

+ P1(ζ )

rϑ2(ζ )

(
γ 2 ∂ψ(2)

∂r
− ∂ψ(1)

∂r

)]
= σξ1γ

(
∂ψ(2)

∂r
+ 2

r
αm

∂ψ(2)

∂ζ
ϑ2(ζ )Pm−1(ζ )

)
. (28)
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4 Mathematical solution

The stream functions for the flow in region I and II are

ψ(1) =
[
r2 + a2

r
+ b2

√
r K3/2(αr)

]
ϑ2(ζ )

+
∞∑
n=3

[
Anr

−n+1 + Bn
√
r Kn−1/2(αr)

]
ϑn(ζ ) (29)

ψ(2) = [
c2r

2 + d2
√
r I3/2(βr)

]
ϑ2(ζ )

+
∞∑
n=3

[
Cnr

n + Dn
√
r In−1/2(βr)

]
ϑn(ζ ) (30)

The expression of the pressure terms is

p(1) = α2

[(
r − a2

2r2

)
P1(ζ ) −

∞∑
n=3

Anr−n

n
Pn−1(ζ )

]
(31)

p(2) = γ 2β2

[
c2r P1(ζ ) +

∞∑
n=3

Cn
rn−1

n − 1
Pn−1(ζ )

]
(32)

Initially, the results corresponding to the boundary r = 1 + αmϑm(ζ ) are evaluated. The comparison of
Eqs. (29) and (30) with the expression that are generated, while studying the flow of viscous fluid past a porous
sphere, shows that the quantities containing An , Bn ,Cn and Dn for the case n > 2 are extra terms which are not
present for the flow of porous sphere. Presently, we suppose the motion of fluid through a particle of spheroidal
shape which it is not much deviates from the shape of sphere. Therefore, flow through the spheroidal particle
is expected to be slightly varying from the case of flow through a porous sphere. While solving problem of
this kind, we consider

r = 1 +
∞∑

m=2

αmϑm(ζ ). (33)

Thereafter, using a similar technique for each m, the expressions for stream functions of the problem are
obtained.

5 Specific case of porous spheroid

As one of the cases of the mentioned flow, we examine the flow through a porous prolate and oblate spheroid.
The equation of the spheroidal surface in terms of a Cartesian coordinate system is

x2 + y2

c2
+ z2

c2(1 − ε)2
= 1 (34)

where c and ε are the radius of the equator and the deformation parameter, respectively. The ε is assumed so
small that its squares and higher powers can be neglected. In terms of polar coordinate, Eq. (34) is expressed
as

r = a[1 + 2εϑ2(ζ )] (35)

where a = c(1 − ε).
The surface given by Eq. (35) is an oblate spheroid for 0 < ε ≤ 1, and it represents a prolate spheroid for
ε < 0. Moreover, ε = 0, it is identical with the equation of the sphere having radius c.
By applying the above analysis, one has to choosem = 2; αm = 2ε. Thus, the expression for stream functions
are

ψ(1) = [
r2 + (a2 + A2)r

−1 + (b2 + B2)
√
r K3/2(αr)

]
ϑ2(ζ ) + [

A4r
−3 + B4

√
r K7/2

]
ϑ4(ζ ), (36)

ψ(2) = [
(c2 + C2)r

2 + (d2 + D2)
√
r I3/2(αr)

]
ϑ2(ζ ) + [

C4r
4 + D4

√
r I7/2

]
ϑ4(ζ ). (37)
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6 Hydrodynamic drag acting on porous spheriod

The flow of magnetoviscous fluid past a porous spheroidal particle generates a force opposite to the flow
direction known as drag force. It can be calculated by the formula below [10,14,22,43]

FD =
∫

S
(n · τ (1)) · kdS (38)

where n = er − ε sin 2θeθ ; dS = 2πa2(1 + 2ε sin2 θ) sin θdθ ; k is the unit vector acting in the z direction
and integrating over the surface of the body r = 1 + ε sin2 θ . we have

FD = 2πa2
∫ π

0
r2[(τrr − ετθr sin 2θ) cos θ − (τrθ − ετθθ sin 2θ) sin θ ]|r=1+ε sin2 θ sin θdθ. (39)

Simplifying it, by using stress components and stream function given in Eq. (36), we have

FD = 2

3
πμUaα2

×
[
a2 + A2 − 2 − 2(b2 + B2)K3/2(α) + 4ε

5

(
−5 + a2 + b2

α + 1

(
2α2 + α + 1

)
K3/2(α)

)]
(40)

The values of a2, b2, A2, and B2 are found by solving the system of equations obtained from boundary
conditions (Eqs. 25–28). As the expressions are too lengthy, we are not presenting it here.

By making use of these values and further substituting a = c(1 − ε), α = α1(1 − ε), ξ1 = χ1(1 − ε),
ξ2 = χ2(1 − ε), leading to β = β1(1 − ε) with β2

1 = χ2
1 + χ2

2 , we obtain the expression for the drag acting
on porous spheroid under MHD effect.

Where α1 =
√

μ2
hH

2
o σi c2

μ1
, χ2

1 = c2

k

1

γ 2 and χ2 =
√

μ2
hH

2
o σec2

εμ2
.

6.1 Some special results

Several results for drag in reduction cases as well as some new results are given below which validated our
work.

6.1.1 Magnetic effect

The following are the results in the presence of MHD effect:
Case 1: For deformation parameter ε = 0 in the results obtained after solving Eq. (40), the problem reduces
to flow past a porous sphere with stress jump and the drag is

FD = − 4πμ1Uc

[
�1γ δ1σ χ1 + β2

1

(
�2 δ1 − �3 γ 2 δ6

)

(�3γ δ4 + 2�4) σ χ1 − �3δ7 + �5γ 2 + 2�2 β2
1

]
(41)

Case 2: For σ = 0 in Eq. (41), the problem reduces to that of flow past porous sphere with continuity of
stress jump condition and the drag is given as

FD = − 4πμ1Uc

[
β2
1

(
�2 δ1 − �3 γ 2 δ6

)

�5γ 2 + 2�2 β2
1 − �3δ7

]
(42)

Case 3: If χ1 → ∞ leading β1 → ∞ in the simplified result of Eq. (40), the problem of flow past a solid
spheroid is obtained and the drag force is

FD = − 2πμ1Uc

[
(
α1

2 + 3α1 + 3
) − ε

(
3α1

2 + 6α1 + 3
)

5

]
(43)

Case 4: Substituting ε = 0 in Eq. (43), it resembles the case of flow past a solid sphere and the drag force
is

FD = −2πμ1Uc(α1
2 + 3α1 + 3) (44)

which supports the work of Krishna Prasad and Bucha given in [37,39].
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6.1.2 Absence of magnetic effect

The following are the results in the absence of MHD effect:

Case 1: If α1 → 0 and χ2 = 0 (i.e., β1 = χ1) with σ = 0 and γ = 1 in Eq. (40), we get the drag acting
on the porous spheroid with continuity of tangential stress is

FD = − 12πμ1Ucχ2
1

3 tanh χ1 − 2χ1
3 − 3χ1

[
tanh χ1 − χ1 + ε

5

(54χ1 tanh χ1 − (2χ4
1 + 27) tanh2 χ1 − 27χ2

1 )

(3 tanh χ1 − 2χ1
3 − 3χ1)

]

(45)
which agree with the results of Saad [9,10] for the drag on porous spheroid in unbounded medium.
Case 2: If the deformation ε = 0 together with α1 → 0 and χ2 = 0 in Eq. (40), flow past a perfect porous
sphere with the effect of stress is obtained as

FD = − 12πμ1Uc

[
χ1γ

(
γχ1

(
γ 2ν3 − 2ν2

) + (
4ν2 + γ 2ν1

)
σ
)

γ 2
(
2γ 2ν3χ

2
1 − 3ν4

) + γ
(
9ν2 + 2γ 2ν1

)
σχ1 − 18ν2

]
(46)

Case 3: From Equation (45) along with ε = 0, the flow past a porous sphere with continuity of tangential
stress is obtained. The evaluated drag is

FD = −12πμ1Ucχ2
1

[
tanh χ1 − χ1

3 tanh χ1 − 2χ1
3 − 3χ1

]
(47)

This drag expression is similar to the renowned results by Brinkman [3] and Neale et al. [45].
Case 4: Considering χ1 → ∞ (permeability k = 0) in Eq. (45), the drag expression gives the renowned
Stokes flow past a solid spheroid [43]

FD = −6πμ1Uc
[
1 − ε

5

]
(48)

Case 5: If ε = 0 in Eq.(48), the classical Stokes drag for viscous flow past a solid sphere [43] is obtained

FD = −6πμ1Uc (49)

All the expressions introduced are given in “Appendix B”.

7 Numerical representation and discussion

In this section, an effort is made to visualize the effect of several flow parameters, namely Hartmann number’s
α1, χ2 for fluid and porous region, stress jump coefficient σ , deformation parameter ε, non-dimensional

permeability parameter k1 = c2

γ 2χ2
1

, viscosity ratio γ on the drag force acting on the porous spheroid. The

drag force in the normalized form known as drag coefficient or the coefficient of drag is the ratio of the
drag on the porous spheroidal particle to that of the drag acting on a solid sphere in an unbounded medium.
Mathematically, it is expressed as

DN = FD

−6πμ1Uc
(50)

The graphical description of the drag coefficient versus permeability parameter showing the influence of several
pertinent parameters is plotted in Figs. 2, 3, 4, 5 and6. In Figs. 2 and 3, the plots relating to the variation of
the drag coefficient for a prolate (ε = − 0.3) and an oblate (ε = 0.3) porous spheroid are shown for increasing
values of Hartmann numbers α1 and χ2 acting on the fluid and porous region, respectively.

Examination of these plots shows that DN is affected by themagnetic field and is amonotonically increasing
function of the magnetic parameters or Hartmann number’s α1 and χ2, keeping the other dimensionless
parameters fixed. This clearly explains that the flow is restricted due to the applied transverse magnetic field
which generates a resisting force called Lorentz force. This force possesses a property to decrease the velocity
of the fluid flow. It is interesting to note that the drag is lower for the case of an oblate porous spheroid as
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Fig. 2 Drag coefficient with permeability k1 and Hartmann number α1 with χ2 = 3,σ = 0.3 and γ = 0.5 for a ε = − 0.3,b
ε = 0.3

Fig. 3 Drag coefficient with permeability k1 and Hartmann number χ2 with α1 = 2,σ = 0.1 and γ = 1.5 for a ε = − 0.3,b
ε = 0.3

compared to the prolate spheroid case. The drag is stronger when the permeability k1 of Brinkman’s media is
smaller.

The depiction of the drag coefficient for enhancing viscosity ratio γ for the case with and without theMHD
effect for different deformation values is presented in Fig. 4. It is observed that with increasing values of γ ,
the drag coefficient increases. The curves indicating α1 → 0 and χ2 → 0 demonstrates the situation when
there is no magnetic effect in both fluid and porous regions. The position of without magnetic effect curves is
lower to the curves having a magnetic effect. So, it shows that there is an increase in the drag coefficient for
increasing γ and is higher in the presence of the MHD effect. Moreover, the curve with γ = 1 represents the
case when the dynamic viscosity of the fluid region and effective viscosity of the porous region are equal.

The profile of drag coefficient versus permeability for varying deformation is visualized in Fig. 5. This
observation indicates that the resistance to the flow is decreased by increasing deformation parameters. The
curve for ε = 0 represents the flow past a perfectly spherical particle, and it signifies that the drag acting on a
porous spherical particle is higher than the drag on an oblate spheroid but comparatively lower than the drag
on the prolate spheroidal particle. Comparing both the plots of this figure, we arrive at the conclusion that the
curves for the drag force on the porous spheroidal particle under the magnetic force are situated higher than
the curve without magnetic force.

Figure6 presents the behavior of DN for altering values of stress jump coefficient σ corresponding to the
porous prolate and oblate spheroid. As proposed by Ochoa-Tapia and Whitaker [6,7], we have chosen the
range of σ between −1 and 1. For the increase in the stress jump σ , the drag coefficient noted to be decreasing
for considered values of α1, χ2, and γ . Besides, it is worth paying attention to both the curves of this figure
which represents oblate and prolate spheroids. This observation shows the drag forces to be higher on prolate
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Fig. 4 Drag coefficient with permeability k1 and viscosity ratio γ both in the presence of magnetic effect (α = 3, χ2 = 2) and
absence of magnetic effect (α → 0, χ2 → 0) with σ = 0.3 for a ε = − 0.3, b ε = 0.3

Fig. 5 Drag coefficient with permeability k1 and deformation ε with σ = 0.1 and γ = 1.5 for a α1 = 3, χ2 = 3, b α1 → 0,
χ2 = 0

spheroid in relation to that of an oblate spheroid. The discussed figures indicate the decrease in drag with the
enhancing permeability.

The numerical results of the altering values of DN are listed in Tables 1 and 2 for varying range of
parameters. In Table 1 the magnitude of drag coefficient for varying deformity in relation to permeability is
shown for the flow with and without the MHD effect. It prevails that the resistance to flow is higher for flow
under magnetic effect. Further, this resistance is found to be lower for the increasing ε.

Table 2 addresses the value of DN for increasing Hartmann numbers α1 and χ2. It indicates that the higher
the effect of magnetic parameters acting on the flow regime, the higher is the drag force acting on the particle
with constant values of the rest of the effective parameters. It’s value increases as the permeability parameter
increases.

By studying above numerical results, the concept of introducing the magnetic field in the motion of a
particle is found to have a dominant effect. Intensifying the magnetic forces leads to magnification in the drag
force.

8 Conclusions

The problem under consideration studies the motion of the conducting viscous fluid past a porous particle
of deformed spherical geometry, i.e., spheroidal particle under the transverse external magnetic field. In the
Stokes flow regime, Stokes andBrinkman’s equations are used for studying the flow in fluid and porous regions,
respectively. With the adequate knowledge of boundary conditions, i.e., continuity of velocities, continuity of
normal stress, and the stress jump condition for the tangential stresses, the analytical solution of the problem
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Fig. 6 Drag coefficient with permeability k1 and stress jump σ with α1 = 3,χ2 = 3, γ = 1.5 for a ε = − 0.3, b ε = 0.3

Table 1 Drag coefficient for flow past porous spheroid with varying deformation for the case with (α1 = 3, χ2 = 2) and without
(α1 → 0, χ2 = 0) MHD effect against permeability keeping other parameters as γ = 1.5, σ = 0.1

DN k1
ε = − 0.3 ε = − 0.1 ε = 0 ε = 0.1 ε = 0.3

With MHD
0.01 6.226586 5.591038 5.273265 4.955491 4.319943
0.1 3.76905 3.249943 2.990389 2.730836 2.211729
0.5 2.869953 2.440023 2.225059 2.010094 1.580164
1 2.72718 2.313304 2.106365 1.899427 1.485551
3 2.632353 2.229234 2.027674 1.826114 1.422995
Without MHD
0.01 0.970759 0.925313 0.902589 0.879866 0.83442
0.1 0.710146 0.652147 0.623148 0.594149 0.53615
0.5 0.3226 0.283157 0.263436 0.243715 0.204272
1 0.182593 0.158321 0.146185 0.134049 0.109777
3 0.057089 0.049298 0.045402 0.041507 0.033716

Table 2 Drag coefficient for flow past a porous spheroid with varying magnetic effect α1 (with χ2 = 2) and χ2 (with α1 = 3)
against permeability keeping other parameters as ε = 0.3, γ = 1.5, σ = 0.1

DN k1
α1 = 0 α1 = 2 α1 = 3 α1 = 5 α1 = 7

0.01 0.840115 2.897169 4.319943 7.618448 11.12357
0.1 0.659463 1.677317 2.211729 3.151952 3.861971
0.5 0.567545 1.255174 1.580164 2.107076 2.472583
1 0.551003 1.189181 1.485551 1.959826 2.284458
3 0.539813 1.145436 1.422995 1.862734 2.160585

χ2 = 0 χ2 = 1 χ2 = 2 χ2 = 3 χ2 = 4

0.01 4.231528 4.254677 4.319943 4.416624 4.531611
0.1 1.430455 1.661177 2.211729 2.835178 3.388652
0.5 0.349336 0.729276 1.580164 2.455083 3.165316
1 0.172482 0.580383 1.485551 2.402375 3.13646
3 0.051362 0.479294 1.422995 2.368802 3.118854

is presented. The effect of different significant parameters on the dynamics of fluid flow is studied through
graphs and tables.

The present analysis is summarized as follows:

– An explicit expression for drag is derived by adopting an analytical approach. The drag expressions for
several cases in reduction form are computed, which validates our work.
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– The imposed uniform magnetic field acting on the viscous fluid possesses the tendency to retard the fluid
velocity leading to an increase in the drag forces. It clearly signifies that the transverse magnetic field has
a property to opposes the transport phenomena.

– It is remarkably noticed that the drag coefficient is an increasing function of magnetic parameters α1, χ2
and a decreasing function of deformation ε, stress jump σ , and permeability k1.

– Therefore, we state that on the porous spheroid, the drag is higher for the flow under the magnetic effect.
– The results emphasize that the magnetic field plays an important role in determining the characteristic
of fluid flow and the imposed external magnetic field permits to explain more accurately the impact of
magnetic forces on the motion of fluid in porous particles.

The flexibility of the presented model permits its application for a varying range of fluids. The current work
can be further carried out by using different non-Newtonian fluid flows [16] passing through a homogenous
or heterogeneous [46] porous media. The current work deals with the steady flow of fluid, and the unsteady
flow problems can also be studied. Thus, there is a vast scope of future investigation, through which significant
effects on the fluid flow can be observed.
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Appendix A

On applying Eqs. (25) to (28) up to first order of αm , we obtain the following equations

[−1 − a2 − S2 b2 + c2 + T2 d2] P1(ζ ) + αmω1
[
ϑm(ζ )P1(ζ ) + ϑ2(ζ )Pm−1(ζ )

]

+
∞∑
n=3

[−An − S7 Bn + Cn + T7 Dn] Pn−1(ζ ) = 0 (A.1)

[2 − a2 − S3 b2 − 2 c2 + T3 d2]ϑ2(ζ ) + αmω2ϑm(ζ )ϑ2(ζ )

+
∞∑
n=3

[(1 − n)An − S8 Bn − n Cn + T8 Dn]ϑn(ζ ) = 0 (A.2)

[−α2 + (6 + α2/2) a2 + 2 S4 b2 + γ 2β2 c2 − 2γ 2 T4 d2
]
P1(ζ )

+ αmω3ϑm(ζ )P1(ζ ) + αmω4
[
P1(ζ )ϑm(ζ ) + ϑ2(ζ )Pm−1(ζ )

]

+
∞∑
n=3

[(
2(n + 1) + α2/n

)
An + 2 S9 Bn +

(
2γ 2(n − 2) + γ 2β2

(n − 1)

)
Cn − 2γ 2 T9 Dn

]
Pn−1(ζ ) = 0

(A.3)

[−6a2 − S5 b2 − 2σξ1γ c2 + (
γ 2 T5 + σξ1γ T3

)
d2]ϑ2(ζ )

+ αmω5ϑ2(ζ )ϑm(ζ ) + 2αmω6 P1(ζ )ϑ2(ζ )Pm−1(ζ )

+
∞∑
n=3

[2(1 − n2)An − S10 Bn + (nγ (2γ (n − 2) − σξ1))Cn + (
γ 2 T10 + σξ1γ T8

)
Dn]ϑn(ζ ) = 0

(A.4)
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where

S1 = K1/2(α), T1 = I1/2(β),

S2 = K3/2(α), T2 = I3/2(β),

S3 = S2 + α S1, T3 = T2 − β T1,

S4 = 3 S2 + α S1, T4 = 3 T2 − β T1,

S5 = (6 + α2) S2 + 2 α S1, T5 = (6 + β2) T2 − 2 β T1,

S6 = Kn−3/2(α), T6 = In−3/2(β),

S7 = Kn−1/2(α), T7 = In−1/2(β),

S8 = (n − 1) S7 + α S6, T8 = (n − 1) T7 − β T6,

S9 = (n + 1) S7 + α S6, T9 = (n + 1) T7 − β T6,

S10 = (2(n2 − 1) + α2) S7 + 2 α S6, T10 = (2(n2 − 1) + β2) T10 − 2 β T9,

ω1 = −2 + a2 + S3 b2 + 2 c2 − T3 d2,

ω2 = 2 + 2 a2 + (
2 + α2) S2 b2 − 2c2 − (

2 + β2) T2 d2,
ω3 = −α2 − (α2 + 12) a2 − 4 S4 b2 + γ 2β2 c2 + 4γ 2 T4 d2,

ω4 = −12 a2 − 2 S5 b2 + 2γ 2 T5 d2,

ω5 = 18a2 + (6 + α2) S4 b2 − 2σξ1γ c2 − (
γ 2(6 + β2) T4 + σξ1γ (2 + β2) T2

)
d2,

ω6 = −9a2 − 3 S4 b2 + σξ1γ c2 + (
3γ 2 T4 + σξ1γ T2

)
d2,

The leading terms of Eqs. (A.1)–(A.4) are equated to zero, and we get

−1 − a2 − S2 b2 + c2 + T2 d2 = 0 (A.5)

2 − a2 − S3 b2 − 2 c2 + T3 d2 = 0 (A.6)

−α2 + (6 + α2/2) a2 + 2 S4 b2 + γ 2β2 c2 − 2γ 2 T4 d2 = 0 (A.7)

−6a2 − S5 b2 − 2σξ1γ c2 + (
γ 2 T5 + σξ1γ T3

)
d2 = 0 (A.8)

Solving this system of Eqs. (A.5)–(A.8), the values of a2, b2, c2, and d2 are obtained. Now, Eqs. (A.1)–(A.4)
are

∞∑
n=3

[−An − S7 Bn + Cn + T7 Dn] Pn−1(ζ ) + αmω1
[
ϑm(ζ )P1(ζ ) + ϑ2(ζ )Pm−1(ζ )

] = 0 (A.9)

∞∑
n=3

[(1 − n)An − S8 Bn − n Cn + T8 Dn]ϑn(ζ ) + αmω2ϑm(ζ )ϑ2(ζ ) = 0 (A.10)

∞∑
n=3

[(
2(n + 1) + α2/n

)
An + 2 S9 Bn +

(
2γ 2(n − 2) + γ 2β2

(n − 1)

)
Cn − 2γ 2 T9 Dn

]
Pn−1(ζ )

+ αmω3ϑm(ζ )P1(ζ ) + αmω4
[
P1(ζ )ϑm(ζ ) + ϑ2(ζ )Pm−1(ζ )

] = 0 (A.11)
∞∑
n=3

[2(1 − n2)An − S10 Bn + (nγ (2γ (n − 2) − σξ1))Cn + (
γ 2 T10 + σξ1γ T8

)
Dn]ϑn(ζ )

+ αmω5ϑ2(ζ )ϑm(ζ ) + 2αmω6 P1(ζ )ϑ2(ζ )Pm−1(ζ ) = 0 (A.12)

To find the arbitrary constants An , Bn , Cn , and Dn , we use the following identities

ϑm(ζ )ϑ2(ζ ) = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
ϑm−2(ζ ) + m(m − 1)

(2m + 1)(2m − 3)
ϑm(ζ ) − (m + 1)(m + 2)

2(2m − 1)(2m + 1)
ϑm+2(ζ )

(A.13)

ϑm(ζ )P1(ζ ) + Pm−1(ζ )ϑ2(ζ ) = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
Pm−3(ζ )

+ m(m − 1)

(2m + 1)(2m − 3)
Pm−1(ζ ) − (m + 1)(m + 2)

2(2m − 1)(2m + 1)
Pm+1(ζ ) (A.14)
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P1(ζ )ϑ2(ζ )Pm−1(ζ ) = − (m − 1)(m − 2)(m − 3)

2(2m − 1)(2m − 3)
ϑm−2(ζ ) + m(m − 1)

2(2m + 1)(2m − 3)
ϑm(ζ ) + m(m + 1)(m + 2)

2(2m − 1)(2m + 1)
ϑm+2(ζ )

(A.15)

ϑm(ζ )P1(ζ ) = (m − 2)

(2m − 1)(2m − 3)
Pm−3(ζ ) + 1

(2m + 1)(2m − 3)
Pm−1(ζ ) − (m + 1)

(2m − 1)(2m + 1)
Pm+1(ζ ) (A.16)

In solving Eqs. (A.9)–(A.12), it is observed that

An = Bn = Cn = Dn = 0 for n 	= m − 2,m,m + 2 (A.17)

For n = m − 2,m,m + 2, we have the following system of equations

− An − S7 Bn + Cn + T7 Dn + ω1an = 0 (A.18)

(1 − n)An − S8 Bn − n Cn + T8 Dn + ω2an = 0 (A.19)
(
2(n + 1) + α2/n

)
An + 2 S9 Bn +

(
2γ 2(n − 2) + γ 2β2

(n − 1)

)
Cn − 2γ 2 T9 Dn

+ ω3cn + ω4an = 0 (A.20)

2(1 − n2)An − S10 Bn + (nγ (2γ (n − 2) − σξ1))Cn + (
γ 2 T10 + σξ1γ T8

)
Dn

+ ω5an + 2ω6bn = 0 (A.21)

where

an = n(n − 1)αn

(2n + 1)(2n − 3)
, (A.22)

bn = n(n − 1)αn

2(2n + 1)(2n − 3)
, (A.23)

cn = αn

(2n + 1)(2n − 3)
. (A.24)

Solving Eqs. (A.18)–(A.21) gives the expressions for An , Bn , Cn , and Dn when n = m − 2,m,m + 2.

Appendix B

The symbols present in Eqs. (41)–(47) are defined by

δ1 = α2
1 + 3α1 + 3,

δ2 = α1
2 + 3α1 − 9,

δ3 = α2
1 + 9α1 + 9,

δ4 = α2
1 + α1 + 9,

δ5 = α1
2 + 7α1 + 3,

δ6 = α1
3 + 3α2

1 + 6α1 + 6,

δ7 = α1
3 + 3α2

1 + 18α1 + 18,

δ8 = β4
1 − 3β2

1 − 12,

δ9 = β2
1 + 3,

δ10 = β2
1 + 2,

�1 = 4 (sinh β1 δ9 − 3β1 cosh β1) + γ 2 (
sinh β1 δ8 − β1

(
β2
1 − 12

)
cosh β1

)
,

�2 = γ 4 (
3 sinh β1δ10 − β1

(
β2
1 + 6

)
cosh β1

)
,

�3 = sinh β1δ9 − 3β1 cosβ1

�4 = γ 3 (
sinh β1δ8 − β1

(
β2
1 − 12

)
cosh β1

)
,

�5 = sinh β1
(
3β12δ5 + 6δ3 − 2 (α1 + 3) β1

4) − cosh β1
(
6δ3 + β1

2δ2
)
β1,
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ν1 = (
χ4
1 − 3χ1

2 − 12
)
sinh χ1 − χ1

(
χ2
1 − 12

)
cosh χ1,

ν2 = (
χ2
1 + 3

)
sinh χ1 − 3χ1 cosh χ1,

ν3 = 3
(
χ2
1 + 2

)
sinh χ1 − χ1

(
χ2
1 + 6

)
cosh χ1,

ν4 = (
2χ4

1 − 3χ1
2 − 18

)
sinh χ1 − 3χ1

(
χ2
1 − 6

)
cosh χ1.
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