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Abstract A solution in finite form for the screw dislocation interacting with the nanocrack incorporating
surface piezoelectricity under anti-plane loads is developed. By the boundary integration and the Cauchy’s
integral formula to convert the problem into a first-order differential equation, the finite-form solution in
physical region is established via the mapping technique. At the crack tip, the results from the present solution
indicate that the electric displacements and the stresses are finite and the singularities are removed when the
surface piezoelectricity is incorporated, which is against those in the classic solution and also different from
other reported solutions where the singularities are weakened but non-trivial. The numerical results shows
that the stresses, the electric displacements and the dislocation forces are strongly size dependent and their
magnitudes reduce with the decrease in crack length, and the results approach to those by the classic solution
with an increasing in the crack length.

Keywords Screw dislocation · Nanocrack · Surface piezoelectricity · Singularity · Anti-plane

1 Introduction

The existence of the defects such as inclusions, holes, dislocations, and cracks is inevitable and exhibits a
significant influence on the mechanical behaviors of the piezoelectric material when the size of these defects
reduces to nanometer. By regarding the surface layer as an elastic membrane without thickness but different
mechanical properties from the bonded bulk materials, Gurtin and Murdoch [7] firstly proposed a continuum
mechanics model of the surface elasticity to capture the surface/interface effects. During the past few decades,
the continuum mechanics model attracted much attention on the analysis of the structures with the nanoinho-
mogeneities [1,3,4,13,15,22–24], the nanohole problems [5,11,26,27] and the fracture problems [10,29,30].
For optimizing the nanodesign, Nanthakumar et al. [20] developed a computational method to capture the

Z. Li
College of Civil Engineering, Hunan University, Changsha 410082, China

W. Xiao (B)
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
E-mail: xwshndc@126.com

J. Xi
Hubei Huntkey Magna Seating System Co., Ltd, Xiangyang 441057, China

H. Zhu
School of Computing, Engineering and Mathematics, Western Sydney University, Locked, Bag 1797, Penrith, NSW 2751,
Australia

http://orcid.org/0000-0003-0189-7270
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-020-01838-5&domain=pdf


1528 Z. Li et al.

surface stress and surface elastic effects, and the boundary value problem was solved via the extended finite
element method.

Based on the existing experimental observations to define the surface stresses to be linearly to the electric
field, Huang and Yu [9] extended the Gurtin and Murdoch model to the surface piezoelectric analysis and
applied the model to the investigation of the effects of the surface piezoelectricity on the electric displacements
and the stresseswhen the size of the piezoelectric ringwas reduced to the nanometer level. This coupling surface
piezoelectric model was applied in the investigations of the nanostructures with the surface piezoelectricity.
For example, Nan and Wang [17,18] obtained the solution for the problem of a nanocrack in piezoelectric
materials with the effects of residual surface stress. Wang and Fan [31] studied the influence of the surface
piezoelectricity on the screw dislocation interacting with the interface between the hexagonal piezoelectric
materials. Zhang et al. [35] investigated the effects of the surface piezoelectricity on the wave propagation in
an infinite plate with nanothickness

During the past years, the issues of the interaction between the dislocation and the anti-plane nanocrack
incorporating the surface piezoelectricity were addressed. By using the conformal mapping method, Xiao et al.
[33] proposed a rigorous solution for the nanoelliptical holeswith surface piezoelectricity under infinite in-plane
electric field and anti-plane shear load, the solution was extended to the crack problem. Later, Xiao et al. [34]
developed a close-form solution for a nanoscale cracked equilateral triangle hole under infinite in-plane electric
load and anti-plane load. By applying the singular integral method, Nan and Wang [19] studied the crack with
surface elasticity and piezoelectricity in the piezoelectric materials under anti-plane load. Gao and Li (2018)
derived the exact solutions for the intensity factors of the anti-plane crack with surface piezoelectricity under
electrically permeable and impermeable boundary conditions via the technique of conformal mapping. By
simplifying the problem to the coupled Cauchy singular integrodifferential equations and using the collocation
method, Wang and Xu [31] studied the problem of a piezoelectric crystal with a screw dislocation and a finite
crack and established the complete solution for the problem. The hexagonal piezoelectric solid with a crack
incorporating the surface piezoelectricity under anti-plane deformation was studied by Wang and Zhou [32]

In general, the finite-form solution is essential for the exact evaluation of the stress and displacement fields.
The solutions in all the literature proposed by others so far were, however, derived by assuming previously one
or more functions in infinite series and then truncating finite terms for the following analysis or calculation,
and therefore their results were approximate near the crack tip.

In this paper, the conformal mapping technique was used to find the finite-form solution for the interaction
between an anti-plane nanocrack with the surface piezoelectricity and a screw dislocation. By integrating the
boundary equations and applying the conformal mapping technique as well as the Cauchy’s integral formula,
the problemwas transformed into a first-order differential equation in image plane. The finite-form solution for
the problemwas then obtained via the inverse mapping. The results by the present solution and the singularities
of the stresses and electric displacements at the crack tip were discussed.

2 Problem and formulation

In the Cartesian coordinate system O-xyz, consider the piezoelectric material (bulk) that is polarized in the
z-axis direction and the isotropic plane is in xy plane. In the anti-plane deformation, the equilibrium equations
in the absence of the body forces and the constitutive relations read [6]

τ j z, j = 0, Dj, j = 0 (1)

γ j z = w, j , E j = −ϕ, j (2)

τ j z = c44w, j + e15ϕ , j , Dj = e15w, j − d11ϕ , j (3)

in which j = 1, 2 corresponding to the Cartesian coordinate x and y, w denotes the anti-plane displacement,
γ j z and τ j z represent the anti-plane shear strains and shear stresses, respectively, ϕ is the in-plane electric
potential, E j and Dj are the in-plane electric fields and electric displacements, respectively, c44 represents the
shear modulus for the stable electric field, d11 stands for the dielectric modulus at the stable stress field ande15
denotes the piezoelectric modulus.

The equilibrium equations from the Gurtin and Murdoch [7] continuum mechanics model read
∥
∥σ jαn j

∥
∥ + σ s

βα,β = 0,
∥
∥σ j i ni n j

∥
∥ = σ s

αβkαβ (4)

where the superscript s denotes the surface, σ s
αβ is the surface stress tensor, kαβ stands for the surface curvature

tensor, and ‖∗‖ represents the jump across the surface.
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Fig. 1 The screw dislocation and the linear nanocrack

The surface electric displacement Ds
j and the surface stress τ sj z in the coupling surface piezoelectric model

read [2,9]
τ sj z = cs44w, j + es15ϕ, j , D

s
j = es15w, j − ds11ϕ, j (5)

in which cs44 is the surface shear modulus for the stable electric field, ds11 denotes the surface dielectric modulus
at the stable stress field and es15 represents the surface piezoelectric modulus.

Now consider a piezoelectric body (z-plane) subjected to the in-plane electric displacements D1, D2 and
the anti-plane shear stresses τ1, τ2 at infinity, there is a nanocrack of length 2a and a screw dislocation (Burgers
vector b = [bz bϕ]T) locating at any point z0 as shown in Fig. 1. Substituting (3) into (1) yields

M∇2U = 0 (6)

where

M =
[

c44 e15
e15 − d11

]

, U =
[

w
ϕ

]

(7)

and ∇2 = ∂2/∂x2 + ∂2/∂y2denotes the 2D Laplace operator.
The equilibrium Eq. (6) can be reduced to a harmonic equation∇2U = 0 and the general solution can be

expressed in a complex potential vector f(z) as [14]

U(z) = Re[f(z)] (8)

in which f(z) = [ fw(z) fϕ(z)]Tand z = x + iy represents the complex variable. From (3), (7) and (8), we
have

	x =
[

τxz
Dx

]

= M
2

[f ′(z) + f ′(z)], 	y =
[

τyz
Dy

]

= iM
2

[f ′(z) − f ′(z)] (9)

The boundary conditions for the two crack faces can be expressed as [32]

(τ sxz,x )
+ + (τyz)

+ = 0, (Ds
x,x )

+ + (Dy)
+ = 0 (10)

(τ sxz,x )
− − (τyz)

− = 0, (Ds
x,x )

− − (Dy)
− = 0 (11)

where the symbols “+” and “−” in (10) and (11) represent the upper crack face (y > 0) and the lower crack
face (y < 0) as shown in Fig. 1. Substituting (5) into (10) and (11), the boundary conditions are written as

(τyz)
+ = −cs44w

+
,xx − es15ϕ

+
,xx , (Dy)

+ = −es15w
+
,xx + ds11ϕ

+
,xx (12)

(τyz)
− = cs44w

−
,xx + es15ϕ

−
,xx , (Dy)

− = es15w
−
′xx − ds11ϕ

−
′xx (13)
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On the crack faces, U,xx = U′′(z) = [f ′′(z) + f ′′(z)]/2, the boundary conditions (12) and (13) are then
expressed equivalently in the form as

[

τyz
Dy

]+
= −Ms

[

w,xx
ϕ,xx

]+
= −MsU+

,xx = −1

2
Ms[f ′′(z) + f ′′(z)]+ (14a)

[

τyz
Dy

]−
= Ms

[

w,xx
ϕ,xx

]−
= MsU−

,xx = 1

2
Ms[f ′′(z) + f ′′(z)]− (14b)

where Ms denotes the stiffness matrix of the crack faces in stable electric field

Ms =
[

cs44 es15
es15 − ds11

]

(15)

With inserting of (9) into (14), the boundary conditions become

iM[f ′(z) − f ′(z)]+ = −Ms[f ′′(z) + f ′′(z)]+ (16a)

iM[f ′(z) − f ′(z)]− = Ms[f ′′(z) + f ′′(z)]− (16b)

Two boundary Eqs. (16a) and (16b) can be reduced to one via the loop integration [12] as follows: the upper
segment of the loop integration begins at the left end and finishes at the right end of the crack while the lower
segment of the loop integration begins at the right end and finishes at the left end of the crack, we thus have

1

i
M[f(z) − f(z)] = −Ms[f ′(z) + f ′(z)] z ∈ L (17)

The following mapping functions are employed to map the z-plane onto the ζ -plane

z = ω(ζ ) = a

2

(

ζ + 1

ζ

)

, ζ = ω−1(z) = z

a

⎡

⎣1 +
√

1 −
(
a

z

)2
⎤

⎦ (18)

where ζ = ξ + iη represents the complex variable in ζ -plane.
The mapping function pair (18) transforms the physical region (z-plane) into the image region (ζ -plane)

and the straight line nanocrack (Fig. 1) is mapped onto a circle with unit radius (Fig. 2). After transformation,
the boundary Eq. (17) becomes

1

i
M[f1(ζ ) − f1(ζ )] = −Ms

[

f ′
1(ζ )

ω′(ζ )
+ f ′

1(ζ )

ω′(ζ )

]

ζ ∈ γ (19)

ξ

η
s+

(ζ )

−1 1

−i

s−

O

i
⊥ ζ0

b

Fig. 2 The transformed .ζ -plane
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3 Solution

Consider an infinity plane (z-plane), which contains a piezoelectric screw dislocation (Burgers vector b =
[bz bϕ]T) and a nanocrack, is subjected to the in-plane electric displacements D1, D2 and the anti-plane loads
τ1, τ2 at infinity. For piezoelectric solid, the complex potential function can be expressed as

f(z) = �z + 1

2iπ
b ln(z − z0) + f0(z) (20)

where f0(z) is the analytic part in S+ (Fig. 1), and

� = M−1
[

τ1 − iτ2
D1 − iD2

]

(21)

in which the superscript “−1" represents the inverse of the matrix. The boundary conditions τxz = τ1, τyz = τ2
and Dx = D1, Dy = D2 at infinity require that f0(∞) = 0.

The following integration and conformal mapping techniques are used to find the unknown function f0(z).
In ζ -plane, (20) becomes

f1(ζ ) = a

2
�ζ + 1

2iπ
b ln(ζ − ζ0) + f10(ζ ) (22)

in which f10(ζ ) is the analytic part in s+ (Fig. 2). Substituting (22) into (19), we arrive at

1

i
M[f10(σ ) − f10(σ )] + Ms

[

f ′
10(σ )

ω′(σ )
+ f ′

10(σ )

ω′(σ )

]

= −1

i
M

[
a

2
�σ + 1

2iπ
b ln(σ − ζ0) − a

2σ
�̄ + 1

2iπ
b ln

(
1

σ
− ζ̄0

)]

− Ms

⎡

⎣

a
2� + 1

2iπ b 1
σ−ζ0

ω′(σ )
+

a
2 �̄ − 1

2iπ b 1
σ−1−ζ̄0

ω′(σ )

⎤

⎦ (σ ∈ γ ) (23)

In order to find the analytic function f10(ζ ) which satisfies (23) and the boundary condition at infinity,
the integration for both sides of (23) is performed on the boundary of the unit orifice (Fig. 2) and then the
application of the following Cauchy’s integral formula

1

2iπ

∮

γ

f (σ )

σ − ζ
dσ = − f (ζ ) + f (∞) (24)

This operation transforms the boundary Eq. (23) into a first-order differential equation as follows:

1

i
Mf10(ζ ) + 1

ω′(ζ )
Msf ′

10(ζ ) = a

2iζ
M�̄ + 1

1 − ζ 2 Ms� − 1

2π
Mb ln

(
ζ

ζ − 1/ζ̄0

)

+ 1

iπa
Msb

[

ζ + ζ0

(ζ 2 − 1)(ζ 2
0 − 1)

− 1

(ζ − 1/ζ̄0)(ζ̄ 2
0 − 1)

]

(25)

The solution of (25) can be derived as ([8], Chapter 5, Eq. (5.17))

f10(ζ ) = exp

{

−1

i
[Ms]−1Mω(ζ )

} ∫ ζ

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds (26)

in which

J(s) = a

4i
[Ms]−1M�̄

1

s

(

1 − 1

s2

)

− a

2
�
1

s2
− a

4π
[Ms]−1Mb

(

1 − 1

s2

)

ln

(
s

s − 1/ζ̄0

)

+ 1

2iπ
b

(

1 − 1

s2

)[

s + ζ0

(s2 − 1)(ζ 2
0 − 1)

− 1

(s − 1/ζ̄0)(ζ̄ 2
0 − 1)

]

(27)
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The unknown function f0(z) in (20) is then given by

f0(z) = f10[ω−1(z)] (28)

It can be verified that the value of f10(ζ ) in (26) vanishes as ζ → ∞ and thus the boundary condition f0(∞) = 0
is satisfied.

When the effects of the surface piezoelectricity are neglected, Ms = 0, the boundary Eqs. (17) and (19)
reduce to, respectively

f∗(z) − f∗(z) = 0 z ∈ L (29)

f∗
1 (ζ ) − f∗

1 (ζ ) = 0 ζ ∈ γ (30)

where the superscript “*” denotes the complex potential functions in the cases where the effects of the surface
piezoelectricity are not incorporated. After similar derivation, the complex potential function is obtained as

f∗
1 (ζ ) = a

2
�ζ + a

2ζ
�̄ + 1

2iπ
b[ln(ζ − ζ0) − ln(ζ − 1/ζ̄0) + ln ζ ] (31)

The solution (31) is the same as that in Muskhelishvili [16].

4 Stresses and electrical displacements

From (9), the electric displacement and the stress fields can be written as

	x − i	y = Mf ′(z) (32)

When the effects of the surface piezoelectricity are incorporated, substituting (26), (28), (20) and (18) into
(32) yields

	x − i	y = −1

i
M[Ms]−1M exp

{

−1

i
[Ms]−1Mω(ζ )

} ∫ ζ

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds

+ a

2i
M[Ms]−1M�̄

1

ζ
− 1

2π
M[Ms]−1Mb ln

(
ζ

ζ − 1/ζ̄0

)

+ 1

iπa
Mb

[

ζ 2
0

(ζ 2
0 − 1)(ζ − ζ0)

− 1

(ζ − 1/ζ̄0)(ζ̄ 2
0 − 1)

]

+ M� (33)

In the case where the effects of the surface piezoelectricity are excluded, substituting (31) and (18) into (32),
we have

	∗
x − i	∗

y = M
[
ζ 2� − �̄

ζ 2 − 1
+ 1

2iπω′(ζ )
b

(
1

ζ − ζ0
− 1

ζ − 1/ζ̄0
+ 1

ζ

)]

(34)

It can be verified that the stresses and the electric displacements represented by (33) exhibit the finite values
at the crack tip (as shown in Sect. 6) while those expressed by (34) tend to be infinity.

The intensity factors of the electric displacements and stresses are different from those of the classical
solution when the effects of the surface piezoelectricity are incorporated. Xiao et al. [33] developed a rigorous
solution of the piezoelectric materials with elliptic cavity under anti-plane deformation and extended the
solution to the crack problem, and later, Xiao et al. [34] proposed a closed-form solution for a cracked
equilateral triangle hole under in-plane electric load and anti-plane load. In their work, however, the potential
function was expanded in infinite Laurent series and then finite terms of the series were truncated for following
derivation. Their results showed that the intensity factors are size dependent but non-trivial at the crack tip.
Similar results can be found in Guo and Li [6] where the forms of the potential functions were taken in finite
terms previously.

Wang and Xu [31] investigated the screw dislocation interacting with the finite crack incorporating the
surface piezoelectricity in anti-plane shear deformation, andWang andZhou [32] studied the anti-plane problem
of a hexagonal piezoelectric solid containing a crack with the surface piezoelectricity. In their analysis, the
stresses and the electric displacements were presented in infinite series and then the finite terms were truncated
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for following calculation. Their results indicated that the singularities of the electric displacements and stresses
at the two crack tips are the strong square root and the weak logarithmic.

Walton [25] investigated the influence of the deformed crack-surface curvature and the stretching on the
stress singularity for mixed mode fracture problems when the surface elasticity was included, and concluded
that the stress at the crack tip was bounded (finite) for the straight line crack in mode-III deformation.

In present method, the problem is transformed into a first-order differential equation by the boundary
integration and the Cauchy’s integral formula, the differential equation is solved in image region and then
the solution in physical region is established via the inverse mapping. In this method, it is unnecessary in
derivation process to preset some functions in the infinite series and the solution is derived in nature. The
derived solution (33) shows that the electric displacements and the stresses at the crack tip are finite, and as a
result, the singularities at the crack tip are eliminated.

5 Dislocation forces

The perturbed stresses and electric displacements, which can be regarded as the increment of the stresses from
an operation that the crack is engendered in an infinite body with a stable dislocation and then the loads are
applied at infinity, are obtained by subtracting the stresses corresponding to an uncracked infinite elastic body
with a screw dislocation from (33) and (34) respectively, and then taking the limitation of z → z0

�̃x (z0) − i�̃y(z0) = lim
z→z0

(

�x − i�y − 1

2iπ
Mb

1

z − z0

)

(35)

where

	̃x1(z0) − i	̃y1(z0) = M� + 1

i
M [Ms]−1M · e

a

2i [Ms ]−1M
(

ζ0+ 1
ζ0

) ∫ ζ0

∞
e
− a

2i [M
s ]−1M

(

ζ+ 1
ζ

)

· J(s)ds (36)

With inserting of (33) and (34) into (35), respectively, the perturbed stresses and electric displacements become
With surface piezoelectricity

�̃x (z0) − i�̃y(z0) = −1

i
M[Ms]−1M exp

{

−1

i
[Ms]−1Mω(ζ0)

}∫ ζ0

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds

+ a

2i
M[Ms]−1M�̄

1

ζ0
− 1

2π
M[Ms]−1Mb ln

(
ζ0

ζ0 − 1/ζ̄0

)

+ 1

iπa
Mb

[

ζ0

(ζ 2
0 − 1)2

− 1

(ζ0 − 1/ζ̄0)(ζ̄ 2
0 − 1)

]

+ M� (37)

Without surface piezoelectricity

�̃
∗
x (z0) − i�̃

∗
y(z0) = M

�ζ 2
0 − �̄

ζ 2
0 − 1

− 1

iπa
Mb

[

ζ0

(ζ 2
0 − 1)(ζ0ζ̄0 − 1)

+ ζ0

(ζ 2
0 − 1)2

]

(38)

The dislocation forces from the Peach Koehler formula in [21] are expressed as

fx − i fy = ibT[�̃x (z0) − i�̃y(z0)] (39)

Substituting (37) and (38) into (39), respectively, the dislocation forces for both cases are
With surface piezoelectricity

fx − i fy = −bTM[Ms]−1M exp

{

−1

i
[Ms]−1Mω(ζ0)

} ∫ ζ0

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds

+ a

2
bTM[Ms]−1M�̄

1

ζ0
− i

2π
bTM[Ms]−1Mb ln

(
ζ0

ζ0 − 1/ζ̄0

)

+ 1

πa
bTMb

[

ζ0

(ζ 2
0 − 1)2

− 1

(ζ0 − 1/ζ̄0)(ζ̄ 2
0 − 1)

]

+ ibTM� (40)
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Without surface piezoelectricity

f ∗
x − i f ∗

y = ibTM
�ζ 2

0 − �̄

ζ 2
0 − 1

− 1

πa
bTMb

[

ζ0

(ζ 2
0 − 1)(ζ0ζ̄0 − 1)

+ ζ0

(ζ 2
0 − 1)2

]

(41)

For the case where the screw dislocation in z-plane is located on the x-axis and z0 = x0 > a, in ζ -plane, we
have

Fx1 − iFy1 = ibT M� + bT M[Ms]−1M · e
a

2i [M
s ]−1M

(

ξ0+ 1
ξ0

) ∫ ξ0

∞
e
− a

2i [M
s ]−1M

(

ζ+ 1
ζ

)

· J(s)ds (42)

In this case, the dislocation forces (40) and (41) reduce to, respectively

fx − i fy = −bTM[Ms]−1M exp

{

−1

i
[Ms]−1Mω(ξ0)

} ∫ ξ0

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds

+ a

2
bTM[Ms]−1M�̄

1

ξ0
− i

2π
bTM[Ms]−1Mb ln

(

ξ20

ξ20 − 1

)

+ ibTM� (43)

and

f ∗
x − i f ∗

y = ibTM
�ξ20 − �̄

ξ20 − 1
− 2

πa
bTMb

ξ0

(ξ20 − 1)2
(44)

6 Numerical analysis and discussion

In this section, the effects of the surface piezoelectricity on the stresses, the electric displacements and the
piezoelectric dislocation forces are analyzed and discussed, respectively. The material parameters suggested
by Xiao et al. (2015) for PZT-5H piezoelectric ceramic material are as follows:

c44 = 3.53 × 1010 N/m2, e15 = 17.0 C/m2, d11 = 1.51 × 10−8 C2/Nm2

and the stiffness matrix of the crack faces reads [4,9]

Ms =
[

7.56 N/m 3 × 10−8 C/m
3 × 10−8 C/m 0

]

(45)

6.1 Effects of the surface piezoelectricity on stresses and electric displacements

In the case without screw dislocation but the anti-plane shear stresses τ1, τ2 and electric displacements D1,
D2 at infinity, (33) and (34) reduce to, respectively

	x − i	y = M� − 1

i
M[Ms]−1M exp

{

−1

i
[Ms]−1Mω(ζ )

} ∫ ζ

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds

+ a

2i
M[Ms]−1M�̄

1

ζ
(46)

and

	∗
x − i	∗

y = M
ζ 2� − �̄

ζ 2 − 1
(47)

in which J(s) reduces to

J(s) = a

4i
[Ms]−1M�̄

1

s

(

1 − 1

s2

)

− a

2
�
1

s2
(48)

The dimensionless stress τyz /τ2 versus the ratio x /a in the case of τ1 = τ2 and D1 = D2 = 0 is shown in
Fig. 3a and the variation of the dimensionless electric displacement Dy/D2 near the crack tip for D1 = D2
and τ1 = τ2 = 0 is shown in Fig. 3b The results of the classical solution are also shown for comparison.
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(a)

(b)

Fig. 3 a the dimensionless stress τyz /τ2 versus x /a for τ1 = τ2 and D1 = D2 = 0; b the dimensionless electric displacement
Dy/D2 versus x /a for D1 = D2 and τ1 = τ2 = 0

It is seen that the dimensionless electric displacement and dimensionless stress decrease as the ratio x /a
increases, and the results from the classical solution are always higher than those with the surface piezoelec-
tricity.

The significant difference can be observed near the crack tip (x/a = 1) where the effects of the surface
piezoelectricity decrease as the crack length a increases. The shear stress and the electric displacement by the
present solution with surface piezoelectricity are finite, which is against that of the classical solution where
both of them tend to be infinity at the crack tip.

When the crack length is fixed as a = 5 nm, the variation of the dimensionless stress τyz/τ1 versus the
ratio x /a for D1 = D2 = 0 is shown in Fig. 4a while the dimensionless electric displacement Dy/D1 versus
the ratio x /a for τ1 = τ2 = 0 is plotted in Fig. 4b. It is similar to that observed in Fig. 3, i.e., at the crack
tip, both the stresses and the electric displacements for all cases are finite. It is also seen that the values of the
stress and the electric displacement increase with an increasing of the ratios τ2/τ1 and D2/D1, respectively.
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(a)

(b)

Fig. 4 a The dimensionless stress τyz/τ1 versus the ratio x /a for a = 5 nm and D1 = D2 = 0; b the dimensionless electric
displacement Dy/D1 versus x /a for a = 5 nm and τ1 = τ2 = 0

6.2 Effects of the surface piezoelectricity on dislocation forces

When the shear stresses τ1, τ2 and the electric displacements D1, D2 at infinity vanish in the piezoelectric
material, and the electric potential dislocation bϕ = 0, the position of the screw dislocation is x0(z0 = z̄0 =
x0 > a) on the x-axis, (43) and (44) reduce to, respectively

fx − i fy = −bTM[Ms]−1M exp

{

−1

i
[Ms]−1Mω(ξ0)

} ∫ ξ0

∞
exp

{
1

i
[Ms]−1Mω(s)

}

· J(s)ds

− i

2π
bTM[Ms]−1Mb ln

(

ξ20

ξ20 − 1

)

(49)

and

f ∗
x − i f ∗

y = − 2

πa
bTMb

ξ0

(ξ20 − 1)2
(50)

in which J(s) reduces to

J(s) = − a

4π
[Ms]−1Mb

(

1 − 1

s2

)

ln

(
s

s − 1/ζ̄0

)
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Fig. 5 The dimensionless dislocation force fxπa/2c44b2z versus the ratio x0/a

(a) (b)

τ1

D1

D2

τ2

α
α

D′2

D′1

τ′1
τ′2

Fig. 6 Element rotation replace crack rotation. a horizontal crack; b oblique crack

+ 1

2iπ
b

(

1 − 1

s2

) [

s + ζ0

(s2 − 1)(ζ 2
0 − 1)

− 1

(s − 1/ζ̄0)(ζ̄ 2
0 − 1)

]

(51)

The dimensionless dislocation force fxπa/2c44b2z versus the ratio x0/a (the relative position) is shown in
Fig. 5. It is seen that the magnitudes of the dislocation forces with the surface piezoelectricity are always
less than that from the classical theory and the effects of the surface piezoelectricity on the dislocation force
are localized, i.e., the dislocation force fxπa/2c44b2z approaches to zero as the ratio x0/a increases. The
dislocation forces are negative for all cases (thus the dislocation is always attracted by the crack), and their
magnitudes decrease with the reduction in the crack length.

7 Oblique crack problem

Certainly, oblique problems can also be solved by employing the same method as being used in the above
analysis on the horizontal crack problem. As shown in Fig. 6, the rotation of the crack can be replaced by the
rotation of the element or the coordinate system.

By virtue of the identical stress state element from (a) to (b), referring to Fig. 6, the relation between the
old element (a) to the new element (b) reads

{

τ ′
1 = −τ1 sin α + τ2 cosα

τ ′
2 = τ1 cosα + τ2 sin α

(52)

and {

D′
1 = D1 cos2 α + D2 sin2 α

D′
2 = D1 sin2 α + D2 cos2 α

(53)
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Therefore, the solution for the problem of the oblique crack with clockwise angle can be directly obtained by
replacing the loads {τ1, τ2; D1, D2}in equations of the horizontal crack with the associating forms of the loads
{

τ ′
1, τ

′
2; D′

1, D
′
2

}

.

8 Conclusions

A solution for the screw dislocation interacting with the nanocrack incorporating the surface piezoelectricity
under anti-plane loads was developed. The problem was reduced to a first-order differential equation by the
mapping function, the boundary integration and the Cauchy integral formula. The solution in physical region
was then established via the inverse mapping.

Compared to the solutions reported in the literature, the present solution was derived without pre-settings
and expressed in finite form. This is different from the solutions by others in which some functions were
assumed to be in the infinite series and then finite terms were truncated for following analysis and calculation.
The results by the present solution presented that the stresses and the electric displacements are finite at the
crack tip when the effects of the surface piezoelectricity are incorporated and, as a result, the intensity factors
of the stresses and electric displacements are zero.

In the case of incorporating the effects of the surface piezoelectricity, the numerical results indicated that
the stresses, the electric displacements and the dislocation forces are size dependent and their magnitudes are
always less than those by the classical solution.With an increasing in the crack length, the effects of the surface
piezoelectricity weaken and the electric displacements, the stresses, and the dislocation forces from the present
solution approach to those by the classical solution.
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