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Abstract Motivated by experimental findings on deformation induced microcracks in thin metal films and by
their influence on the effective macroscopic electrical conductivity, a computational multiscale formulation for
electrical conductors is proposed in this contribution. In particular, averaging theorems for kinematic quantities
and for their energetic duals are discussed, an extendedversion of theHill–Mandel energy equivalence condition
is proposed and suitable boundary conditions for the microscale problem are elaborated. The implementation
of the proposed framework in a two-scale finite element environment is shown and representative boundary
value problems are studied in two- and three-dimensional settings.

Keywords Flexible electronic devices · Electro-mechanical coupling · Conductors · Anisotropic conductiv-
ity · Heterogeneous microstructures · Multiscale modelling · Scale-bridging

1 Introduction

Advances inmaterial science and fabrication technologies enable the development of flexible electronic devices
like wearable sensors [1,22] and foldable displays [3,15], which are in the focus of many engineering applica-
tions. To ensure the functionality of these devices, detailed knowledge is required on the electro-mechanical
material properties for various loading conditions. However, the experimental characterization of material
thin films, especially the study of failure mechanisms, is difficult and requires the development of advanced
measuring technologies as discussed in [4]. Computational multiscale homogenization schemes are promising
numerical approaches to support these developments as they allow material microstructures and their evolu-
tions to be resolved in numerical simulations. On the other hand, complex deformation processes which are
difficult to study experimentally are accessible using suitable numerical multiscale formulations that were
calibrated on the basis of experiments.

More specifically speaking, processes at different material length- and timescales are considered in finite
element-based computationalmultiscale simulationswith the evaluation of classic constitutivematerial models
being replaced by finite element calculations of the underlying material microstructures. The latter ones are
represented by representative volume elements (RVEs) that take distinct microstructural features like grains
and microcracks into account [9,27]. The boundary conditions on the microscale are prescribed based on the
macroscopic material state. Vice versa, effective energetic duals to the kinematic quantities on the macroscale
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are calculated based on their microscopic counterparts by using computational homogenization schemes.
First-order computational multiscale formulations for mechanical problems have in the meanwhile been well-
established and are for example discussed in [10,11,16,19–21]. Homogenization methods for generalized
continua, in particular, second-order homogenization methods that account for the macroscopic deformation
tensor and for its gradient, are elaborated in [12,17,18,23].Moreover, extensions to thermomechanical coupling
are presented in [2,6,24,28,29] and electro-mechanically coupled multiscale formulations for piezo- and
ferroelectric materials are discussed in [13,14,26].

The present contribution establishes an electro-mechanically coupled computational multiscale framework
for electrical conductors. In contrast to the theoretical developments on (dielectric) electro-active solids dis-
cussed in [13,26], the electro-mechanical coupling in the electrical conductors considered is rather implicit.
In particular, changes in electrical conductivity due to mechanically induced microcracks motivate the present
contribution. Against this background, assume for now a homogeneous, quasi-one-dimensional electrical prob-
lem for which the effective macroscopic electrical resistance is given by

R = 1

κ

L

A
= Rspe Rgeo, Rspe = 1

κ
, Rgeo = L

A
. (1)

Whereas the geometrical contribution Rgeo to the electrical resistance is defined by the macroscopic length
L and cross-sectional area A of the conductor, the specific resistance Rspe which is defined as the inverse
conductivity κ is an effective macroscopic material parameter that accounts for the (possibly inhomogeneous)
material microstructure. The different contributions to the effective macroscopic resistance are exemplified in
Fig. 1 for a material featuring microstructural imperfections. Furthermore, the influence of plastic deformation
and of grain boundaries on the electrical conductivitymay be taken into account.With regard to the influence of
the electrical field quantities on themechanical field quantities, it is observed that the dissipation associatedwith
the electric current contributes to the balance equation of energy and that the induced changes in temperature,
in turn, influence the mechanical properties. Finally, mechanically induced deformations directly influence the
geometric part of the electrical resistance in finite deformation processes.

The article is organized as follows: After a brief summary of the governing field equations for electro-
mechanical problems in Sect. 2, Sect. 3 focuses on the electro-mechanically coupledmultiscale formulation. In
particular, averaging theorems for kinematic quantities and for their energetic duals are elaborated, generalized
Hill–Mandel conditions are derived and suitable boundary conditions are discussed. Based on these develop-
ments, a finite element implementation of the proposed theory is presented in Sect. 4. A study of representative
boundary value problems in Sect. 5 eventually shows the applicability of the proposed formulation.

1.1 Notation

Let α, β, γ and δ denote arbitrary first-order tensors, let the standard dyadic product be indicated by ⊗
and let single tensor contractions be given by [α ⊗ β] · [

γ ⊗ δ
] = [

β · γ
]
[α ⊗ δ]. Based on the latter defi-

nitions, the generalized dyadic products [α ⊗ β]⊗ [
γ ⊗ δ

] = [
α ⊗ γ

] ⊗ [β ⊗ δ] and [α ⊗ β]⊗ [
γ ⊗ δ

] =[
α ⊗ γ

]⊗ [δ ⊗ β] are introduced to shorten notation. Moreover, these serve as the basis for the introduction of
higher-order identity tensors based on suitable combinations of second-order identity tensors I . Double tensor
contractions are defined as [α ⊗ β] : [

γ ⊗ δ
] = [

α · γ
]
[β · δ] and gradient, divergence and curl operators,

VVV

Rspe = Rref
spe

Rgeo < Rref
geo

Rspe < Rref
spe

Rgeo = Rref
geo

Fig. 1 Differences in the geometric dimensions and in the underlying microstructures of the idealized wire-like structures
(left, right) manifest themselves in different geometric and specific resistances compared to the reference specimen (middle).
Microstructure images courtesy of Megan J. Cordill, Erich Schmid Institute of Materials Science, Austrian Academy of Sciences
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indicated by ∇•, by ∇ · • and by ∇ × •, respectively, are used in sense of right-gradient, right-divergence and
right-curl operations.

2 Continuum thermodynamics

This section provides a summary of the thermodynamic fundamentals of the (thermo-)electro-mechanically
coupled multi-field formulation. To this end, let the region that is occupied by the body under consideration at
some reference time t0 ∈ Rbedenoted byB0 ⊂ R

3.Moreover, define the deformationfield as the pointmapping
ϕ (X, t) : B0×R → Bt ⊂ R

3 that relates the referential position of a particle X ∈ B0 to its counterpart x ∈ Bt
in the current configuration Bt ⊂ R

3 at time t ≥ t0. As is customary for infinitesimal deformation processes
which are assumed in the following, the displacement field u = ϕ (X, t) − X is additionally introduced and
the reference and current configuration will not be distinguished, e.g., when defining integrals or derivatives,
such that the respective superscripts are omitted in the following.

2.1 Mechanical field equations

Considering mass to be conserved, the mechanical response is governed by the balance equation of linear
momentum

d

dt

∫

B
ρ u̇ dv =

∫

B
ρ f dv +

∫

∂B
t da (2)

with the mass density per unit volume ρ, the velocity vector u̇ and the body force density (per unit mass) f .
By invoking Cauchy’s theorem to relate the stress vector t to the stress tensor σ and to the outward unit surface
normal n according to

t = σ · n (3)

and by applying Gauss’s theorem, (2) can be localized

∇ · σ + ρ f = ρ ü. (4)

Using (3) and (4), the balance equation of angular momentum

d

dt

∫

B
x� × ρ u̇ dv =

∫

B
x� × ρ f dv +

∫

∂B
x� × t da (5)

with x� = x − xref denoting the difference vector to a fixed but otherwise arbitrary reference point xref ,
reduces to the symmetry condition of the stress tensor

σ = σ t. (6)

2.2 Electrical field equations

General electro-magnetic problems are described in terms of Maxwell’s equations. Being more specific, these
are

Gauss’s electric law
∫

∂B
d · n da =

∫

B
ρf dv (7a)

Gauss’s magnetic law
∫

∂B
b · n da = 0 (7b)

Faraday’s law of induction
∫

∂A
e · ds = − d

dt

∫

A
b · n da (7c)

Ampère’s circuital law
∫

∂A
h · ds =

∫

A
j · n da + d

dt

∫

A
d · n da (7d)



1512 T. Kaiser, A. Menzel

with the electric field vector e, the dielectric displacement vector d, the electric current density vector j , the
magnetic field vector h, the magnetic flux density vector b and with the free charge density ρf . Unlike ∂B, area
A needs not to be, and is generally not, closed. However, evaluating (7d) for a closed surface and inserting
(7a) gives rise to the continuity equation for the electric current

0 =
∫

∂B
j · n da + d

dt

∫

B
ρf dv, (8)

which is of particular importance for the developments to be presented in this contribution. Localizing the set
of equations (7) by using Gauss’s and Stokes’ theorem yields

Gauss’s electric law ∇ · d = ρf (9a)

Gauss’s magnetic law ∇ · b = 0 (9b)

Faraday’s law of induction ∇ × e = −ḃ (9c)

Ampère’s circuital law ∇ × h = j + ḋ (9d)

and the localization of (8) results in

∇ · j + ρ̇f = 0. (10)

Focusing on (quasi-)stationary electrical processes of conducting materials, Faraday’s law (9c) reduces to

∇ × e = 0 (11)

and the continuity equation for the electric current density is given by

∇ · j = 0 (12)

while the evaluation of Gauss’s electric law (9a) yields the free charge density at every point of the continuum.

2.3 Conservation of energy

The balance equation of energy which governs the temperature evolution is given by

d

dt

∫

B
ρ e dv + d

dt

∫

B
1

2
ρ u̇ · u̇ dv =

∫

B
u̇ · ρ f dv +

∫

∂B
u̇ · t da +

∫

B
ρ r dv −

∫

∂B
q · n da +

∫

B
j · e dv

(13)

where, in addition to the mechanical working by body forces and surface tractions, thermal and electrical con-
tributions are assumed to contribute to the (mass-specific) internal energy density e. The thermal contributions
are given in terms of the heat source (per unit mass) r , which may, e.g., be related to chemical reactions, as
well as in terms of the heat flux vector q. The electrical contribution is given in terms of the electric current
density vector j and its energetic dual, the electric field vector e, see [5,8,25]. Localizing (13) by invoking
Gauss’s theorem and by making use of (3), (4) and (6) yields

ρ ė = σ : ε̇ + ρ r − ∇ · q + j · e (14)

where the definition of the small strain deformation tensor

ε = 1

2

[∇u + [∇u]t
]

(15)

was used.



An electro-mechanically coupled computational multiscale formulation 1513

2.4 Dissipation inequality

By introducing the (mass specific) entropy density s, the dissipation inequality characterizing the
(thermo-)electro-mechanically coupled continuum reads

d

dt

∫

B
ρ s dv ≥

∫

B
ρ r

θ
dv −

∫

∂B
q · n
θ

da. (16)

The localization of (16) by using Gauss’s theorem yields

ρ ṡ ≥ ρ r

θ
− 1

θ
∇ · q + 1

θ2
q · ∇θ. (17)

Moreover, introducing the (mass-specific)Helmholtz free energy density functionψ ,making use of the convex–
concave Legendre(–Fenchel) transformation

ψ (ε, θ, •) = inf
s

{e (ε, s, •) − θ s} (18)

with the dual variables θ and −s defined as

θ = ∂e

∂s
(19a)

s = −∂ψ

∂θ
(19b)

and inserting the local form of the balance equation of energy (14) yields

σ : ε̇ − ρ
[
ψ̇ + s θ̇

] − 1

θ
q · ∇θ + j · e ≥ 0. (20)

In addition to the well-established Clausius–Planck and Fourier inequalities, (20) poses restrictions on the
specific form of the constitutive equation relating the electric field vector to the electric current density vector.
In particular, it is observed that the (volume-specific) dissipation contribution j · e is associated with the
electric current. The physical processes of electrodynamics, analyzed in the present contribution, are thus
fundamentally different from the (possibly) reversible processes that occur in electro-active solids and that are
studied in, e.g., [26].

3 Multiscale modelling

In computational multiscale formulations effective quantities at the macroscale are related to their counterparts
at the microscale. This procedure is intrinsically based on averaging theorems for stresses, strains, electric
current densities, and electric field strengths as discussed in Sect. 3.1. In addition, requiring micro-macro
energy equivalence gives rise to the extended Hill–Mandel conditions presented in Sect. 3.2. Different sets of
boundary conditions which a priori fulfil the averaging theorems and the extended Hill–Mandel conditions are
finally established in Sect. 3.3. Due to the structural similarity of the continuity equation for the electric current
density and the balance equation of linear momentum, and since the electric field is derived from a potential
analogous to the derivation of the strain tensor from the displacement field, the ensuing derivations for the
electrodynamic problem are similar to those of mechanical problems as documented in, e.g., [10,16,19–21].
Moreover, the structure of the underlying set of equations shares similaritieswith thermo-mechanically coupled
problems as discussed in, e.g., [24] and with electro-mechanically coupled problems (for dielectric solids) as
discussed in, e.g., [26]. Despite these structural similarities, there are significant differences between the
present theory and the developments on electro-active solids presented in, e.g., [26]. The derivations presented
in [26] are for example based on the assumptions of electrostatics while the present formulation relies on the
fundamentals of electrodynamics such that different balance equations are solved, different field quantities
occur, and different constitutive equations are postulated. In particular, the electric current is intrinsically
dissipative as opposed to the (possibly) reversible processes in dielectric solids analyzed in [26].
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In order to distinguish micro- and macroscale quantities, subscripts m(icro) and M(acro) are introduced.
Moreover, quasi-static and quasi-stationary processes are assumed at the microscale. By additionally assuming
negligible body forces, the set of balance equations to be solved at the microscale takes the form

∇m · σm = 0, (21a)

∇m · jm = 0, (21b)

with Faraday’s law (11) being accounted for by the introduction of an electric potential φm such that

em = −∇mφm. (22)

The assumptions that give rise to (21) are well-established for the mechanical problem and are for example
discussed in [28].

3.1 Averaging theorems

In computational multiscale formulations, effective macroscopic quantities are defined as volume averages of
their microscopic counterparts. For the evaluation of the generalized Hill–Mandel conditions, cf. Sect. 3.2,
and from an implementation point of view it is moreover beneficial to rewrite the occurring volume integrals
as surface integrals using Gauss’s theorem. Invoking the identity

∫

Bm

∇m • dv =
∫

Bm

[∇m•] · I t dv =
∫

Bm

∇m · [• ⊗ I] dv =
∫

∂Bm

• ⊗ nm da, (23)

and introducing the RVE-volume

vm =
∫

Bm

dv, (24)

the effective macroscopic strain tensor may be specified in terms of boundary displacements, namely,

εM = 1

vm

∫

Bm

εmdv = 1

vm

∫

Bm

1

2

[∇mum + [∇mum]t
]
dv = 1

vm

∫

∂Bm

1

2
[um ⊗ nm + nm ⊗ um] da. (25)

Analogously, the effective macroscopic electric field vector is given by

eM = 1

vm

∫

Bm

em dv = 1

vm

∫

Bm

−∇mφm dv = 1

vm

∫

∂Bm

−φm nm da. (26)

Moreover, the governing equation for the effective macroscopic stress tensor reads

σM = 1

vm

∫

Bm

σm dv = 1

vm

∫

Bm

σm · [∇mxm]t dv (27a)

= 1

vm

∫

Bm

∇m · [
σm ⊗ xm

]
dv − 1

vm

∫

Bm

∇m · [σm] ⊗ xm dv (27b)

= 1

vm

∫

∂Bm

σm · nm︸ ︷︷ ︸
= tm

⊗ xm da − 1

vm

∫

Bm

∇m · [σm]︸ ︷︷ ︸
= 0

⊗ xm dv (27c)

and the one for the electric current density vector results in

jM = 1

vm

∫

Bm

jm dv = 1

vm

∫

Bm

jm · [∇mxm]t dv (28a)

= 1

vm

∫

Bm

∇m · [
xm ⊗ jm

]
dv − 1

vm

∫

Bm

∇m · [
jm

]
xm dv (28b)

= 1

vm

∫

∂Bm

xm ⊗ jm · nm︸ ︷︷ ︸
= im

da − 1

vm

∫

Bm

∇m · [
jm

]

︸ ︷︷ ︸
= 0

xm dv (28c)
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3.2 Hill–Mandel conditions

The micro-macro energy equivalence condition, known in the literature as the Hill–Mandel condition, states
that the volume average of the microscopic power in the RVE equals the local power on the macroscale.
Focusing on the electro-mechanical problem introduced in Sect. 2 and denoting variations of field quantities
• by δ•, the classic Hill–Mandel condition for the mechanical problem reads

σM : δεM = 1

vm

∫

Bm

σm : δεm dv = 1

vm

∫

Bm

σm : ∇mδum dv (29a)

= 1

vm

∫

Bm

∇m · [δum · σm] dv − 1

vm

∫

∂Bm

δum · [∇m · σm] dv (29b)

= 1

vm

∫

∂Bm

δum · σm · nm︸ ︷︷ ︸
= tm

da − 1

vm

∫

Bm

δum · ∇m · [σm]︸ ︷︷ ︸
= 0

dv (29c)

and the one for the electrical problem is given by

jM · δeM = 1

vm

∫

Bm

jm · δem dv = − 1

vm

∫

Bm

jm · ∇mδφm dv (30a)

= − 1

vm

∫

Bm

∇m · [
δφm jm

]
dv + 1

vm

∫

Bm

δφm
[∇m · jm

]
dv (30b)

= − 1

vm

∫

∂Bm

δφm jm · nm︸ ︷︷ ︸
= im

da + 1

vm

∫

Bm

δφm ∇m · [
jm

]

︸ ︷︷ ︸
= 0

dv (30c)

Comprehensive discussions of the Hill–Mandel conditions for thermo-mechanically coupled problems, which
are not in the focus of the present contribution, are presented in, e.g., [6,28,29].

3.3 Boundary conditions

Different types of boundary conditions for the microstructural representative volume element can be defined
which ensure that theHill–Mandel conditions and the averaging theorems are fulfilled a priori. In the following,
the classic three types of boundary conditions, i.e., affine and periodic as well as uniform flux boundary
conditions, are briefly recapitulated for mechanical problems and the extension to electrical problems is shown.

3.4 Affine boundary conditions

Based on the macroscopic deformation state, affine displacement boundary conditions for the representative
volume element are given by

um = εM · xm on ∂Bm. (31)

Analogously, taking into account the macroscopic electric potential and the macroscopic electric field strength,
affine boundary conditions for the electric potential are defined as

φm = φM − eM · xm on ∂Bm. (32)

The particular form (32) has been chosen in accordance with thermo-mechanical multiscale formulations
as discussed in [2,6]. However, in contrast to the temperature, the electric potential is assumed to enter the
constitutive equations only in terms of its gradient, i.e., the electric field vector, such that alternative definitions
that do not account for φM are possible.

The boundary conditions (31) and (32) a priori fulfil the averaging theorem for the strain tensor (25) and
for the electric field vector (26) as well as the mechanical and the electrical Hill–Mandel condition, (29)
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respectively (30). More specifically speaking, by evaluating (25) for the boundary displacements given by (31)
one arrives at

1

vm

∫

Bm

εmdv = 1

vm

∫

∂Bm

[[εM · xm] ⊗ nm]sym da = 1

vm

[
εM ·

∫

∂Bm

xm ⊗ I · nm da

]sym

= 1

vm

[
εM ·

∫

Bm

∇m · [xm ⊗ I] dv
]sym

= εM

(33)

and by inserting (32) into (26) at

1

vm

∫

Bm

em dv = 1

vm

∫

∂Bm

− [φM − eM · xm] nm da = 1

vm

∫

∂Bm

− [φM − eM · xm] I · nm da

= 1

vm

∫

Bm

∇m · [− [φM − eM · xm] I] dv = eM.

(34)

By additionally inserting (32) into the Hill–Mandel condition for the mechanical problem (29) and by making
use of (27) one finds

1

vm

∫

Bm

σm : δεm dv = 1

vm

∫

∂Bm

tm · [δεM · xm] da = 1

vm

∫

∂Bm

tm ⊗ xm da : δεM = σM : δεM. (35)

Likewise, the evaluation of (30) for (32), using (28), yields

1

vm

∫

Bm

jm · δem dv = − 1

vm

∫

∂Bm

im [δφM − δeM · xm] da = 1

vm

∫

∂Bm

im xm da · δeM = jM · δeM. (36)

3.5 Periodic boundary conditions

Indicating quantities at two opposing parts of the boundary, ∂B+
m and ∂B−

m, with superscripts •+ and •−, the
periodicity conditions for the mechanical problem are given by

u+
m − u−

m = εM · [
x+
m − x−

m

]
on ∂Bm, (37a)

t+m = −t−m on ∂Bm, (37b)

the ones for the electrical problem read

φ+
m − φ−

m = −eM · [x+
m − x−

m

]
on ∂Bm, (38a)

i+m = −i−m on ∂Bm, (38b)

and the classic geometric constraint for the unit outward surface normal vectors is stated as

n+
m = −n−

m on ∂Bm. (39)

The set of equations (37) and (38) implies periodicity of the displacements and of the electric potential as well
as anti-periodicity of the tractions and of the electric current densities.

Inserting (37a) into the averaging theorem for the strain tensor (25), using (39) and applying Gauss’s
theorem in the same way as in (33), yields

1

vm

∫

Bm

εmdv = 1

vm

[∫

∂B+
m

u+
m ⊗ n+

mda +
∫

∂B−
m

u−
m ⊗ n−

m da

]sym
= 1

vm

[∫

∂B+
m

εM · [
x+
m − x−

m

] ⊗ n+
m da

]sym

= 1

vm

[
εM ·

∫

∂Bm

xm ⊗ I · nm da

]sym
= εM.

(40)
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Analogously, by inserting (38a) into (26) one finds

1

vm

∫

Bm

em dv = − 1

vm

[∫

∂B+
m

φ+
m n+

mda +
∫

∂B−
m

φ−
m n−

m da

]
= 1

vm

[∫

∂B+
m

eM · [
x+
m − x−

m

] ⊗ n+
m da

]

= 1

vm

[
eM ·

∫

∂Bm

xm ⊗ I · nm da

]
= eM. (41)

Evaluating the mechanical and electrical Hill–Mandel conditions, (29) and (30), for the periodic boundary
conditions (37) and (38) eventually yields

1

vm

∫

Bm

σm : δεm dv = 1

vm

[∫

∂B+
m

t+m · δu+
m da +

∫

∂B−
m

t−m · δu−
m da

]
= 1

vm

∫

∂B+
m

t+m · [
δεM · [

x+
m − x−

m

]]
da

= 1

vm

∫

∂Bm

tm ⊗ xm da : δεM = σM : δεM

(42)

and

1

vm

∫

Bm

jm · δem dv = − 1

vm

[∫

∂B+
m

i+m δφ+
m da +

∫

∂B−
m

i−m δφ−
m da

]
= 1

vm

∫

∂B+
m

i+m
[
δeM · [

x+
m − x−

m

]]
da

= 1

vm

∫

∂Bm

im xm da · δeM = jM · δeM.

(43)

3.6 Uniform flux boundary conditions

Asopposed to affine andperiodic boundary conditions,Neumann-typeboundary conditions in termsof tractions
and electric current densities are prescribed at the boundary of the representative volume element when uniform
flux boundary conditions are applied. For the mechanical boundary value problem these are given by

tm = σM · nm on ∂Bm, (44)

and those for the electrical problem read

im = jM · nm on ∂Bm. (45)

The equality of the macroscopic stress tensor σM and of the averaged microscopic stress tensor for uniform
traction boundary conditions follows immediately by inserting (44) into (27), to be specific

1

vm

∫

Bm

σm dv = 1

vm

∫

∂Bm

σM · nm ⊗ xm da − 1

vm

∫

Bm

∇m · [σM] ⊗ xm dv = 1

vm

∫

Bm

σM dv = σM.

(46)

Analogously, the insertion of (45) into (28) yields

1

vm

∫

Bm

jm dv = 1

vm

∫

∂Bm

xm ⊗ jM · nm da − 1

vm

∫

Bm

∇m · [
jM

]
xm dv = 1

vm

∫

Bm

jM dv = jM. (47)

The evaluation of the Hill–Mandel conditions (29) and (30) furthermore results in

1

vm

∫

Bm

σm : δεm dv = 1

vm

∫

∂Bm

δum · σM · nm dv = σM : 1

vm

[∫

∂Bm

δum ⊗ nm dv

]sym
= σM : δεM

(48)

and in

1

vm

∫

Bm

jm · δem dv = − 1

vm

∫

∂Bm

δφm jM · nm da = jM ·
[
− 1

vm

∫

∂Bm

δφm nm da

]
= jM · δeM (49)

where (25) and (26) were used.
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4 Finite element implementation

This section focuses on the finite element implementation of the electro-mechanically coupled multiscale
formulation proposed in Sect. 3. In particular, the homogenization of effective macroscopic stresses and
electric current densities is discussed inSect. 4.1, and the corresponding algorithmic tangent stiffness tensors are
derived in Sect. 4.2. The ensuing derivations rely on and are direct extensions ofwell-established computational
homogenization procedures. For a detailed elaboration of these fundamentals, the reader is referred to, e.g.,
the pioneering work [19] which focuses on the purely mechanical case. The extension to thermo-mechanically
coupled multi-field problems is moreover discussed in [24,28] and electro-mechanically coupled problems (of
dielectric materials) are for instance studied in [13,14].

The subsequent derivations apply to affine and periodic boundary conditions. In the case of periodic
boundary conditions, however, the generalized stiffness matrix Km and the generalized reaction force vector
fm must be substituted by the reduced generalized stiffness matrix K∗

m and by the reduced generalized
reaction force vector f ∗

m that result from the application of linear constraints when enforcing (anti-)periodicity.
Specifically speaking, the system

Km · �Xm = � fm (50)

is rewritten in each iteration step in the form

K∗
m · �Xmi = � f ∗

m (51)

with

K∗
m = T t · Km · T , f ∗

m = T t · fm,

[
Xmi
Xmd

]
= T · Xmi (52)

using the transformation matrix T that relates dependentXmd and independentXmi degrees of freedom, see
[30].

4.1 Homogenization

Following standard procedure, the discrete version of (27) is given by

σM = 1

vm

∫

∂Bm

tm ⊗ xm da ≈ 1

vm

npn∑

i=1

(i) f um ⊗ (i)xm, (53)

with npn denoting the number of nodes where the corresponding degrees of freedom are prescribed, and with
(i)xm and (i) f um denoting the position vector and the reaction force vector of node i . Analogously, the discrete
version of (28) is given by

jM = 1

vm

∫

∂Bm

imxm da ≈ 1

vm

npn∑

i=1

(i) f φ
m

(i)xm, (54)

with (i) f φ
m denoting the generalized reaction force of node i , corresponding to the electrical problem.

4.2 Generalized algorithmic tangent stiffness tensors

In order to derive generalized algorithmic tangent stiffness operators, changes in the generalized reaction
forces � fmp due to perturbations of the prescribed degrees of freedom �Xmp are studied. To this end, the
partitioned system of equations

[
Kmpp Kmpf
Kmfp Kmff

]
·
[
�Xmp
�Xmf

]
=

[
� fmp

0

]
, (55)
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with subscripts •p and •f referring to prescribed and free degrees of freedom is considered. Solving the second
set of equations for �Xmf and inserting the result into the first set of equations results in

K̂m · �Xmp = � fmp with K̂m = Kmpp − Kmpf · Km
−1
ff · Kmfp. (56)

For affine as well as for periodic boundary conditions, the kinematic relations

� ( j)ump = �εM · ( j)xm (57)

and

� ( j)φmp = �φM − �eM · ( j)xm (58)

hold for nodeswhere the respective degrees of freedomare prescribed. In the case of affine boundary conditions,
these are the boundary nodes while the set consists of three corner nodes in a two-dimensional setting, respec-
tively, of four corner nodes in a three-dimensional setting, when periodic boundary conditions are applied. By
partitioning (56) into mechanical and electrical contributions and after inserting the kinematic relations (57)
and (58), it is observed that changes in the generalized reaction force vectors at the microscale due to changes
in εM and eM are given by

� (i) f um =
npn∑

j=1

(i j)K̂uu
m · � ( j)ump +

npn∑

j=1

(i j)K̂uφ
m � ( j)φmp (59a)

=
npn∑

j=1

(i j)K̂uu
m · �εM · ( j)xm −

npn∑

j=1

(i j)K̂uφ
m ⊗ �eM · ( j)xm (59b)

and

� (i) f φ
m =

npn∑

j=1

(i j)K̂φu
m · � ( j)ump +

npn∑

j=1

(i j)K̂φφ
m � ( j)φmp (60a)

=
npn∑

j=1

(i j)K̂φu
m · �εM · ( j)xm −

npn∑

j=1

(i j)K̂φφ
m �eM · ( j)xm (60b)

In accordance with (53) and (54), superscripts •u and •φ refer to mechanical and electrical field equations and
fields, respectively. Moreover, it is assumed that the electric potential enters the field equations and constitutive
equations only via its gradient, i.e., via the electric field vector, such that changes in φM are neglected in (59),
(60) and in the following. A dependence of the constitutive equations on the electric potential would lead to
problems analogous to those of the thermal case, as discussed in [29].

Eventually, the insertion of (59) into (53) gives rise to the definition of the macroscale algorithmic tangent
stiffness tensors

�σM ≈
⎡

⎣ 1

vm

npn∑

i=1

npn∑

j=1

(i j)K̂uu
m ⊗

[
(i)xm ⊗ ( j)xm

]
⎤

⎦

︸ ︷︷ ︸

= dσM

dεM

:�εM+
⎡

⎣− 1

vm

npn∑

i=1

npn∑

j=1

(i j)K̂uφ
m ⊗ (i)xm ⊗ ( j)xm

⎤

⎦

︸ ︷︷ ︸

= dσM

deM

· �eM.

(61)

Likewise, inserting (60) into (54) yields

� jM ≈
⎡

⎣ 1

vm

npn∑

i=1

npn∑

j=1

(i)xm ⊗ (i j)K̂φu
m ⊗ ( j)xm

⎤

⎦

︸ ︷︷ ︸

= d jM
dεM

: �εM +
⎡

⎣− 1

vm

npn∑

i=1

npn∑

j=1

(i j)K̂φφ
m

(i)xm ⊗ ( j)xm

⎤

⎦

︸ ︷︷ ︸

= d jM
deM

· �eM.

(62)
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5 Representative simulation results

This section focuses on the application of the proposed electro-mechanical multiscale formulation to two- and
three dimensional quasi-static and quasi-stationary boundary value problems. To this end, the material model
that is used at the microscale is briefly discussed in Sect. 5.1. In a second step, the calculation of effective
electrical conductivity tensors for two-dimensional microstructures is discussed in Sect. 5.2, before tension
test samples with different microstructures are subjected to detailed three-dimensional multiscale analyses in
Sect. 5.3.

5.1 Microscale material models

On the microscale, constitutive models that characterise the material behavior need to be developed subject
to the restrictions posed by the dissipation inequality (20). Moreover, the specific form of the constitutive
equations is decisive for the coupling between the electrical and the mechanical field equations. Different
physical effects that result in an explicit and implicit coupling of the field equations were outlined in Sect. 1
and motivate the present contribution. However, since the focus of the present work lies on the fundamentals
of the electro-mechanically coupled computational multiscale formulation and not on the development of
a particular microscale material model, we restrict ourselves to isotropic, linear electrical and mechanical
microscale material models and postpone the analysis of more elaborated material models to future works.
Thus, for the particular material model considered, the electrical and the mechanical field equations remain
uncoupled. Moreover, superscripts •m referring to the microscale are neglected in the following for the sake
of brevity.

By introducing the volume-specific Helmholtz free energy density function Ψ (ε, θ, •) = ρ ψ (ε, θ, •),
the evaluation of the dissipation inequality (20) yields the standard definition of the stress tensor

σ = ∂Ψ

∂ε
. (63)

In conjunction with the specific quadratic form of the volume specific Helmholtz free energy density function

Ψ̃ (ε) = 1

2
ε : E : ε, (64)

with E denoting the fourth-order elasticity tensor

E = E ν

[1 + ν] [1 − 2 ν]
I ⊗ I + E

2 [1 + ν]

[
I ⊗ I + I ⊗ I

]
, (65)

and with E and ν denoting the Young’s modulus and Poisson’s ratio, the evaluation of (63) results in

σ = E : ε. (66)

In addition, by introducing the positive definite electrical conductivity tensor

S = κ I, (67)

with the idealized scalar-valued conductivity κ , a suitable choice for the electric current density vector that is
in accordance with (20) is given by

j = S · e. (68)
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Table 1 Material parameters of an idealized material used in the simulations

E ν κ

130,000 N/mm2 0.35 58,100 A/[Vmm]

e1

e2

0.2 0.6 0.2

(a) circular

e1

e2

0.20.2 0.10.1 0.4

(b) groove-shaped

e1

e2

0.7 0.1 0.10.1

(c) diagonal

Fig. 2 Sketch of different two-dimensional microstructures analyzed with the electro-mechanical multiscale finite element for-
mulation

5.2 Two-dimensional representative simulations

This section focuses on the application of the proposed electro-mechanical multiscale formulation in a two-
dimensional plane strain setting. To this end, idealized material parameters of copper are assumed at the
microscale, and effectivemacroscopic conductivity tensors are exemplarily calculated for different microstruc-
tures. The material parameters are summarized in Table 1 and three different microstructures to be analyzed
are depicted in Fig. 2.

The microstructures are assumed to be periodic and the representative volume elements which form the
basis for the finite element simulations are indicated by dashed lines. For the sake of clarity, only the dimensions
in e1-direction are provided. However, since symmetry with respect to the e1- and e2-direction or to the space
diagonals is assumed, the remaining dimensions follow implicitly.

The application of the homogenization scheme with periodic boundary conditions as discussed in Sect. 4
to the microstructures depicted in Fig. 2 yields the macroscopic conductivity tensors

[SM]ciri j =
[
0.5592 0.0000
0.0000 0.5592

]
κ (69a)

[SM]groi j =
[
0.8575 0.0000
0.0000 0.6445

]
κ (69b)

[SM]diai j =
[
0.3126 0.0716
0.0716 0.3126

]
κ (69c)

with superscripts referring to the respective microstructure. Comparing the effective macroscopic conductivity
tensor of a material with circular voids (69a) with the conductivity tensor of an idealized material (67), it is
observed that the effective macroscopic constitutive response remains isotropic whereas a reduction in the
conductivity of about 45% is observed. In contrast, the effective macroscopic conductivity tensor (69b) that
results from a microstructure with a groove-shaped void as depicted in Fig. 2b is significantly anisotropic.
However, the principal material axes are aligned with the e1- and e2-coordinate axes such that the conductivity
tensor is in diagonal form. In the case of the microstructure of diagonal type depicted in Fig. 2c, the e1- and e2-
coordinate axes are not aligned with the principal material axes. Thus, the effective macroscopic conductivity
tensor (69c) is not in diagonal form but features off-diagonal components.

The previous examples demonstrate the applicability of the electro-mechanical multiscale formulation to
extract effective macroscopic conductivity tensors for given microstructures. This approach may be interesting
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Fig. 3 Tension test specimen of type E according to DIN50125, see [7], used in the electro-mechanical multiscale finite ele-
ment simulations. Dark grey color indicates regions where Dirichlet boundary conditions are applied. The light grey colored
60mm×10mm×6mm region in the center of the specimen resembles material featuring microscale imperfections. All dimen-
sions are given in mm

Table 2 Multiscale finite element simulations of tension test samples with different microstructures according to Fig. 3. The
difference in the axial reaction force and the difference in the electric current for prescribed displacements and prescribed electric
potential differences is provided

Electric current Electric current difference
Voltage Perfect material Material with voids Absolute Relative

0.1mV 5458mA 5368mA −90mA −1.65%

Axial reaction force Axial reaction force difference
Elongation Perfect material Material with voids Absolute Relative

0.21mm 25.63kN 25.12kN 0.51kN −1.99%

for electrical engineering applications to developed tailored microstructures with specific electrical properties.
Moreover, regarding electro-mechanical coupling, changes in effective macroscopic conductivities that are
accessible via non-destructive testing methods may be related to microcracks that are induced by mechanical
loadings.

5.3 Three-dimensional representative simulations

As an extension of the two-dimensional sample boundary value problems discussed in Sect. 5.2 to a three-
dimensional setting, this section focuses on the effective macroscopic responses of tensile test specimens
with different material microstructures. The tensile test specimen of type E that serves as the basis for the
simulations is sketched in Fig. 3, with supports at the left and right boundaries being indicated by dark grey
color. Specifically speaking, homogeneous Dirichlet boundary conditions for the electrical and mechanical
fields are assumed at the top and bottom surface nodes of the left boundary. Likewise, homogeneous Dirichlet
boundary conditions for the mechanical field are applied in e2- and e3-direction at the top and bottom nodes
of the right boundary, while both the displacement in e1-direction as well as the electric potential take values
different from zero, see Table 2.

In order to study the influence of different microstructures on the effective electrical and mechanical prop-
erties at the macroscale, simulation results of a tensile test specimen with a perfect microstructure as depicted
in Fig. 4b are compared to those of a tensile test specimenwith an imperfect microstructure. Specifically speak-
ing, imperfections on the microscale are assumed in the light grey colored 60mm× 10mm×6mm region in
the center of the specimen and are given in terms of a spherical void with a radius of 0.23 RVE-edge length as
depicted in Fig. 4d. In accordance with the two-dimensional simulation results presented in Sect. 5.2, isotropic,
linear constitutive relations are assumed for the mechanical and electric problem at each material point at the
microscale. Furthermore, the same set of material parameters as in the two-dimensional simulations is used,
see Table 1, and periodic boundary conditions are applied at the microscale.

The distributions of the electric current density at the micro- and macroscale are provided in Fig. 4 for
tensile test samples with perfect and imperfect microstructures. By comparing the distributions of the electric
current density at the macroscale, Fig. 4a, c, it is observed that the material imperfection manifests itself in a
reduction of the electric current density in the center region of the specimen. This effect can be explained by
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jM in mA/mm2
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(a) macroscale, perfect material
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(b) microscale, perfect material

jM in mA/mm2

10 20 30 40 50

(c) macroscale, material with voids

jm
mA/mm2
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15

30

45

60

(d) microscale, material with voids

Fig. 4 Electro-mechanicalmultiscale finite element simulation results. The electric current density distributions on themacroscale
(a, c) and on the microscale (b, d), near the center of the specimen, are depicted. The simulation results for a tensile test specimen
with a perfect microstructure (a, b) differ significantly from the ones with an imperfect microstructure that contains voids (c, d).
Gray-colored arrows indicate the electric current density vector. Only one half of the representative volume element is shown

the microscale simulation results depicted in Fig. 4b, d which show that the material imperfection acts as an
obstacle for the electric current. In addition, the force in e1-direction and the electric current that both occur
as generalized reaction forces dual to the applied displacement and to the applied electric potential difference,
respectively, are summarized in Table 2. In accordance with the simulation results of Fig. 4, the effective
macroscopic electric current takes smaller values in the case of a material with an imperfect microstructure.
The same observation is made for the reaction force in e2-direction.

6 Closure

SummaryMotivated by advances in flexible electronic technologies and by the desire to develop non-destructive
testing methods, an electro-mechanical multiscale formulation for conductors is proposed in this contribution.
After a brief recapitulation of the governing set of electro-mechanical field equations, scale-bridging relations
for the electro-mechanical problem are proposed. In addition, a finite element implementation of the electro-
mechanical multiscale formulation is discussed, and different types of boundary condition are shown to a
priori fulfil the extended Hill–Mandel energy equivalence conditions. Several numerical examples are studied
in two- and three-dimensional settings to show the applicability of the proposed formulation. In particular,
the calculation of effective macroscopic conductivity tensors for given two-dimensional microstructures is
discussed, which is of interest for electrical engineering applications when developing tailored microstructures
with specific electrical properties. Moreover, the study of tensile test samples with different microstructures,
which are subjected to electro-mechanical boundary conditions, reveals the influence of the microstructure
on the effective macroscopic electrical and mechanical material properties. The interrelation of the latter is of
special interest in the development of nondestructive testing methods, and is in the focus of future works.

OutlookMultiscale approaches are based on an accurate simulation of processes that occur at a lower scale.
For this reason, more elaborated electro-mechanically coupled material models are to be developed and to be
used at the microscale, e.g., in order to account for the influence of mechanically induced microcracks on the
electrical conductivity. Against this background and with tailored microscale material models being beyond
the scope of the present contribution, assume for now a deformation-dependent conductivity tensor of the form

S̃ = exp

(
− Ψ̃

κ∗

)
κ I, (70)
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Fig. 5 Macroscale boundary value problem for the study of nonlinear electro-mechanical coupling effects

ū in mm

e •
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κ
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0.50

0.55

0.60
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e1 · SM · e1/κ
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(a) effective macroscopic conductivity

Ψ in Nmm/mm3

0 135 135 135 135

(b) microscale deformation

Fig. 6 a Electrical conductivity as a function of prescribed macro-displacement ū. b Deformation of the microscale RVE. The
Helmholtz free energy density distribution for load state ū = 0.05mm is shown on the deformed configuration. In addition, the
electric current density vector field for an applied potential difference of �φ = 0.1mV is indicated by grey-colored arrows and
the outline of the undeformed reference configuration is provided in terms of thick black lines

with

d j
de

= S̃, (71a)

d j
dε

= − κ

κ∗
exp

(
− Ψ̃

κ∗

)
e ⊗ σ , (71b)

and with material parameter κ∗ controlling the decrease in electrical conductivity with increasing deformation.
The particular form of (70) is based on the idea that damage evolution is intrinsically energy-driven and that
cracks represent obstacles for the electric current. Of course, the simplified format considered here does not
include any history variables.

To study the latter material model in a multiscale environment, a two-dimensional plane strain one-element
test as depicted in Fig. 5 is analyzed, with a periodic microstructure according to Fig. 2a being assumed. For
the mechanical sub-problem the material model (63)–(66) is adopted. Moreover, the material parameters are
chosen according to Table 1 and κ∗ = 0.01 E is assumed.

The decrease in the 11- and 22-coefficient of the effective macroscopic conductivity tensor as a function of
deformation in terms of the prescribed macroscale displacement ū is provided in Fig. 6a, with a significantly
different decrease of the electrical conductivity in the two spatial directions being observed. The latter finding
can be explained by the inhomogeneous microscale deformation as exemplarily shown in Fig. 6b. For the
analyzed load state, the severe deformation zones that occur at the top and bottom of the circular void result
in a significant decrease of the electrical conductivity in e1-direction.
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Remark 1 Motivated by the introductory example in Sect. 1, geometry effects may be emulated in a small
strain setting by introducing the deformation dependent conductivity tensor

Ŝ = κ
e · [I + tr (ε) I − ε] · e

e · [I + ε] · e I . (72)

The derivation of Ŝ is motivated by geometrically induced changes in resistance of an idealized wire according
to (1). Additionally, linearized versions of the transport theorems for infinitesimal line elements

[I + ∇u] · dS = ds with I + ∇u = I + ε + 1

2

[∇u − [∇u]t
]

(73)

and surface elements

cof (I + ∇u) · N dA = n da with cof (I + ∇u) ≈ I + tr (ε) I − [∇u]t (74)

are used, with referential and spatial representations being indicated by dS, dA, N , respectively, by ds, da, n.
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