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Abstract In this paper, we present a new ansatz for solving equations of motion for the trapped orbits of the
infinitesimal mass (satellite), which is locked in the space trap to be moving near the planet in case of the
elliptic restricted problem of three bodies, ER3BP (with Keplerian elliptic trajectories of primaries Sun and
planet around each other). A new type of the solving procedure is implemented here to obtain the coordinates
of the infinitesimal mass (satellite) with its orbit located near the planet. The system of equations of motion was
applied for obtaining of the semi-analytic and analytic solutions. It is obtained that two Cartesian coordinates
(in a plane of mutual rotation of primaries Sun and planet around each other) depend on the true anomaly and a
function which determines the quasi-periodic character of solution, while the third coordinate (perpendicular
to the plane of rotation of primaries) is quasi-periodically varying with true anomaly.

Keywords Elliptic restricted three-body problem (ER3BP) · trapped motion · forced oscillations

1 Introduction

In the restricted three-body problem (R3BP), the equations of motion describe the dynamics of an infinitesimal
mass m under the action of gravitational forces effected by two celestial bodies of giant masses MSun and
mplanet (mplanet < MSun), which are rotating around their common center of mass on Keplerian trajectories.
The small mass m (satellite) is supposed to be moving as first approximation inside of restricted region of
space near the planet of mass mplanet or inside of so-called Hill sphere [1] radius:

rH ∼= ap · (1 − e2) ·
(

mplanet

3(MSun + mplanet)

) 1
3

where ap is semimajor axis of the planet’s orbit, e is the eccentricity of its orbit.

S. Ershkov (B)
Plekhanov Russian University of Economics, Scopus Number 60030998, Moscow, Russia
E-mail: sergej-ershkov@yandex.ru

S. Ershkov
Sternberg Astronomical Institute, M.V. Lomonosov’s Moscow State University, 13 Universitetskij prospect, Moscow, Russia
119992

A. Rachinskaya
Odessa I. I. Mechnikov National University, 2 Dvoryanskaya St., Odessa, Ukraine
E-mail: rachinskaya@onu.edu.ua

http://orcid.org/0000-0002-6826-1691
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-020-01829-6&domain=pdf


1408 S. Ershkov, A. Rachinskaya

It is worth noting that there is a large number of previous and recent works concerning analytical develop-
ment with respect to the R3BP equations which should be mentioned accordingly [2–5].

We should especially emphasize the theory of orbits, which was developed in profound work [5] by V.
Szebehely for the case of the circular restricted problem of three bodies (CR3BP) (primaries MSun andmplanet
are rotating around their common center of mass on circular orbits) as well as the case of the elliptic restricted
problem of three bodies (ER3BP), where the primaries MSun and mplanet are rotating around their common
center of mass on elliptic orbits.

ρ = ap
1 + e · cos f

Unlike the CR3BP [6], the position of the primaries is not fixed in the rotating frame as they move along
elliptical orbits: Their relative distance ρ is not constant in time where f is the true anomaly (the unit of
distances is chosen so that ap = 1).

As for the purpose of the current research, we can formulate it as follows: The main aim is to find a
kind of the semi-analytical solution to the system of equations under consideration. Namely, each exact or
even semi-analytical solution can clarify the structure, intrinsic code and topology of the variety of possible
solutions (from mathematical point of view); here, exact or semi-analytical solution should be treated not only
as analytical formulae in quadratures, but a system of ordinary differential equations (each for one appropriate
variable) with well-known code for analytical or numerical resolving to be presented in their final form.

2 Mathematical model, equations of motion

According to [6,7], in the ER3BP equations of motion of the infinitesimal massm (satellite) can be represented
in the synodic co-rotating frame of a Cartesian coordinate system �r ={x , y, z} in non-dimensional form (at
given initial conditions):

ẍ − 2 ẏ = ∂ �

∂ x
,

ÿ + 2 ẋ = ∂ �

∂ y
,

z̈ = ∂ �

∂ z
, (1)

� = 1

1 + e · cos f

[
1

2

(
x2 + y2 − z2 · e · cos f

) + (1 − μ)

r1
+ μ

r2

]
, (2)

where dot indicates (d/d f ) in (1), � is the scalar function, and

r21 = (x − μ)2 + y2 + z2 ,

r22 = (x − μ + 1)2 + y2 + z2 , (3)

where ri (i = 1, 2) are distances of the infinitesimal massm from the primaries MSun andmplanet , respectively
[7].

Now, the unit of mass is chosen in (1) so that the sum of the primary masses is equal to 1. We suppose that
MSun ∼= 1 − μ and mplanet = μ, where μ is the ratio of the mass of the smaller primary to the total mass of
the primaries and 0 < μ ≤ 1/2. The unit of time is chosen so that the gravitational constant is equal to 1 in
(2).

We neglect the effect of variable masses of the primaries [8] as well as the effect of their oblateness as was
considered earlier in [9]. As for the domain where the aforesaid infinitesimal massm is supposed to be moving,
let us consider the Cauchy problem in the whole space. Besides, we should note that the second terms in the
left parts of Eq. (1) are associated with the components of the Coriolis acceleration. Finally, let us additionally
note that the spatial ER3BP when e > 0 and μ > 0 is not conservative, and no integrals of motion are known
[7].
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3 Reduction of the system of equations (1)

Aiming the aforementioned way of constructing the semi-analytical solution, let us present Eq. (1) in a suitable
for analysis form as below by appropriately transforming the right parts with regard to partial derivatives with
respect to the proper coordinates {x , y, z} [10]

ẍ − 2 ẏ = 1

1 + e · cos f
·
⎡
⎣x − (1 − μ)(x − μ)(

(x − μ)2 + y2 + z2
) 3
2

− μ(x − μ + 1)(
(x − μ + 1)2 + y2 + z2

) 3
2

⎤
⎦ ,

ÿ + 2 ẋ = 1

1 + e · cos f
·
⎡
⎣y − (1 − μ)y(

(x − μ)2 + y2 + z2
) 3
2

− μy(
(x − μ + 1)2 + y2 + z2

) 3
2

⎤
⎦ ,

z̈ = 1

1 + e · cos f
·
⎡
⎣−z · e · cos f − (1 − μ)z(

(x − μ)2 + y2 + z2
) 3
2

− μz(
(x − μ + 1)2 + y2 + z2

) 3
2

⎤
⎦ , (4)

Let us transform system of equations (4) to the form which would be convenient for further analysis. From
first and second of Eq. (4), we obtain (y �= 0):

(ẍ − 2 ẏ) · (1 + e · cos f ) − x = (x − µ) ·
{

(ÿ + 2 ẋ) · (1 + e · cos f ) − y

y

}

− µ(
(x − µ + 1)2 + y2 + z2

) 3
2

(5)

In (5), z2 is given as the function of {x , y} , their derivatives {ẋ , ẏ} with respect to the f , accelerations
{ẍ , ÿ} , and true anomaly f .

But from the second and third of Eq. (4), it follows ({y, z} �= 0, {ẋ , ẏ, ż} �= 0):

(1 + e · cos f )

(
z̈

z
+ 1

)
= (ÿ + 2 ẋ) · (1 + e · cos f )

y
, ⇒ z̈

z
+ 1 = (ÿ + 2 ẋ)

y
(6)

4 Approximated solutions of Eqs. (1)–(3) for the class of trapped motions

Let us assume that coordinates �r ={x , y, z} of solutions of system (1) belong to the class of trapped motions
of the infinitesimal mass m, which is moving near the planet mplanet (taking into account the equality ρ =

ap
1+e·cos f ):

| �r2 |
| �r1 | << 1 , | �r1 | ∼= ap

1 + e · cos f
+ δ , | δ | << ap (7)

but the aforementioned infinitesimal mass m is, nevertheless, located on each step of its trajectory at a large
distance from the Sun (MSun) insofar; here | �r2 | > Rp, whereas Rp is the radius of planet mplanet .

Thus, if we take into consideration the additional restriction (7) with respect to the components of solution
in Eqs. (1)–(3), the aforesaid assumption should simplify the third of equations (4) accordingly (except the
obvious case {z, z̈} = 0 in our further analysis):

z̈ · (1 + e · cos f ) + z · e · cos f = − z
| �r2 | 3 ·

{
(1 − μ) · | �r2 | 3

| �r1 |3 + μ
}

, ⇒{ ( | �r2 |
| �r1 |
) 3 → 0

}
⇒ | �r2 | ∼= μ

1
3(

− z̈
z · (1+e·cos f ) − e·cos f

) 1
3

, ⇒

y ∼= ±
√√√√ μ

2
3(

z̈
z · (1+e·cos f ) + e·cos f

) 2
3

−
(

(x − μ + 1)2 + z2
)

,

(8)
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where appropriate restriction should be valid

μ
2
3(

z̈
z · (1 + e · cos f ) + e · cos f

) 2
3

− z2 ≥ (x − μ + 1)2 ,

Thus, we have expressed in (8) the coordinate y via coordinates {x , z} and second derivative of coordinate z̈
with respect to the true anomaly f (as a first approximation).

Now let us present Eq. (6) in a form of the Riccati-type ordinary differential equation [11] for coordinate
z, depending on the coordinate y and on the appropriate derivatives of coordinates {ẋ , ÿ} with respect to the
true anomaly f

z̈ +
(
1 − (ÿ + 2 ẋ)

y

)
· z = 0 (9)

So, Equation (9) should determine the proper quasi-periodic solution for coordinate z if the solutions for
coordinates {x , y} are already obtained.

Let us present further the solutions of Eq. (9)(
1 − (ÿ + 2 ẋ)

y

)
= α ( f ) ⇒ z̈ + α · z = 0 (10)

The aforementioned presentation of solutions in a form (10) for coordinate z is obviously useful from
practical point of view in celestial mechanics for the reason that such the solutions, e.g., could be presenting
the quasi-periodical dependence of coordinate z with respect to the true anomaly f (if α is considered to be
slowly varying parameter or circa constant, as we can see in our analysis).

The second advance of exploring the differential invariant (6) in a form (10) is that we can reduce one of
two equations (second or third) of system (4), which was used at derivation of differential invariant (6). Let us
choose the third equation for this aim

α = 1

1+e · cos f
·
⎡
⎣e · cos f + (1 − μ)(

(x − μ)2 + y2 + (z)2
) 3
2

+ μ(
(x − μ+1)2 + y2 + (z)2

) 3
2

⎤
⎦
(11)

Meanwhile, equality (11) reveals the quasi-periodic type of the solutions for Eq. (10) (if α is considered to
be slowly varying parameter or circa constant): Indeed, taking into account the additional restriction (7), we
can make a reasonable conclusion from (11) that α >0 in any case (for the motions which can be expected
according to the additional assumption (7)).

So, in this case Eq. (10) yields the classical periodic type of solutions for coordinate z as presented below
(e.g., if α is considered to be circa constant)

z = C1 cos ( f · √
α) + C2 sin ( f · √

α) (12)

where {C1,C2} = const.
We should note also that Eq. (10) reveals the obvious quasi-periodic character of dependence of coordinate

y on the derivative of coordinate x (with respect to the true anomaly f ). Indeed, we obtain from (10) for
coordinate y:

ÿ + (α − 1) · y = −2 ẋ (13)

which is, in fact, the equation of forced oscillations ( [10], example 2.36).
For the sake of simplicity, let us consider in our further analysis the partial case α = 1 in formulae (10)–

(13). Then, integrating both the parts of Eq. (13) with respect to the true anomaly f , we could use the result
of integrating in the transformation of the left part of first equation of system (4).

Thus, we should obtain in result the nonlinear ordinary differential equation of the second order in regard to
the coordinate x( f ) in case of the given function (12) for the coordinate z, α = 1 (whereas the true anomaly f
is to be slowly varying independent coordinate). Obviously, such the nonlinear ordinary differential equation
of second order (Appendix A1) could be solved by means of numerical methods only. Similar simple case was
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investigated first in [1] (the well-known Clohessy–Wiltshire equations for relative motion when e �= 0) but
without obtaining expression for y presented by (8).

Finally, let us note that we should restrict choosing of the obtained solutions for the aforesaid nonlinear
ODE of second order with regard to the coordinate x( f ) by taking into account the additional condition for
the function r2 → Rp (while the magnitude of this function should be exceeding the minimal distances within
Roche-lobe’s region [4,5] for the planet with mass mplanet = μ around which infinitesimal mass is currently
rotating in its trapped motion).

As for expression for the function δ( f ), we can obtain it from (7) as below

(x − μ)2 + y2 + z2 ∼=
(

ap
1 + e · cos f

+ δ

)2

, | δ | << ap ⇒

δ ∼=
√

(x − μ)2 + y2 + z2 −
(

ap
1 + e · cos f

)
(14)

where expression for y is given in (8) (where expression for z̈
z could be expressed from (10)), but expression

for z is given in (12), α = 1.

5 Final presentation of the solution

Let us present the solution �r ={x , y, z} for the trapped motion (7) of the infinitesimal mass m (satellite),
which is moving near the planet mplanet in the ER3BP (1)–(4)

– The key nonlinear ordinary differential equation of the second order in regard to the coordinate x( f ) in
case of the given function (12) for the coordinate z (α = 1) is obtained below:

Let us we substitute expression (8) for coordinate y, expression (12) for coordinate z, and the integrated
expression for ẏ directly → into the first equation of system (4) to obtain the nonlinear ordinary differential
equation of the second order with regard to the unknown coordinate x( f ) (α = 1, x0 = const)

ẍ + 4 (x − x0) = 1

1 + e · cos f
·
⎡
⎣x − (1 − μ)(x − μ)(

(x − μ)2 + y2 + z2
) 3
2

− μ(x − μ + 1)

(| �r2 |) 3

⎤
⎦ ,

{
| �r2 | ∼= μ

1
3

}
,

ẍ + 4 (x − x0) = − (1 − μ)

1 + e · cos f
·
⎡
⎣1 + (x − μ)(

(x − μ)2 + y2 + z2
) 3
2

⎤
⎦ ,

{
y ∼= ±

√
μ

2
3 − (

(x − μ + 1)2 + z2
)

, μ
2
3 − (

(x − μ + 1)2 + z2
)

> 0

}

⇒ ẍ + 4 (x − x0) = − (1 − μ)

1 + e · cos f
·

⎡
⎢⎢⎣1 + (x − μ)(

μ
2
3 − 2(x − μ) − 1

) 3
2

⎤
⎥⎥⎦ , (15)

– The expression (8) for coordinate y is given via coordinates {x , z} , true anomaly f , and additional
parameter α in (10) (α = 1):

y ∼= ±
√√√√√ μ

2
3(

z̈
z · (1 + e · cos f ) + e · cos f

) 2
3

− (
(x − μ + 1)2 + z2

)
,

μ
2
3(

z̈
z · (1 + e · cos f ) + e · cos f

) 2
3

− z2 ≥ (x − μ + 1)2 ,
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– expression for z is given in (12) ({C1,C2} = const , α = 1):

z = C1 cos f + C2 sin f

The aforementioned nonlinear ODE of the second order for function x( f ) should be solved under the optimiz-
ing condition r2 → Rp, as soon as coordinates {x , y, z} are already calculated (while the magnitude of this
function r2 should exceed the minimal distance or Roche limit [4,5] for the planet with mass mplanet = μ).

Let us also consider the case α( f ) �= const in Eqs. (10)–(11) (which are proved to be valid for the trapped
motion (7) of infinitesimal mass m in the ER3BP (1)–(4)).

Using (10), we obtain

z̈ + α( f ) · z = 0 , (16)

where Eq. (16) could be transformed by the change of variables ż
z to the Riccati ODE of the first order [10]

(in case z �= 0).
Then, let us simplify the second equation of system (4) by using the left part of (10)

(ÿ + 2 ẋ) · (1 + e · cos f ) − y = − y

| �r2 | 3 ·
{

(1 − μ) · | �r2 | 3
| �r1 |3 + μ

}
,

{ ( | �r2 |
| �r1 |

) 3

→ 0

}
⇒ 1

| �r2 | 3
∼= 1

μ
· (1 + (α − 1) · (1 + e · cos f )) (17)

where (in case z �= 0)

α( f ) = − z̈

z

Furthermore, based on (16)–(17), we can write out the key nonlinear ordinary differential equation of the
second order in regard to the coordinate x( f ) in case of the given function (16) for the coordinate z

ẍ − 2 ẏ + (α − 1) · (x − μ + 1) = − (1 − μ)

1 + e · cos f
·
⎡
⎣ 1 + (x − μ)(

(x − μ)2 + y2 + z2
) 3
2

⎤
⎦ ,

⇒
⎧⎨
⎩ y ∼= ±

√√√√ μ
2
3

( α( f ) · (1 + e · cos f ) − e · cos f )
2
3

− (
(x − μ + 1)2 + z2

)
⎫⎬
⎭ ⇒

ẍ − 2 ẏ + (α − 1) · (x − μ + 1) = − (1 − μ)

1 + e · cos f
· [ 1 + (x − μ)(

μ
2
3

( α( f ) · (1+e·cos f ) − e·cos f )
2
3

− 2(x−μ) − 1

) 3
2

] ,

(18)

where expression (8) for coordinate y in (18) is given via coordinates {x , z} , true anomaly f , and the
additional parameter α in (10) or (16):

y ∼= ±
√√√√ μ

2
3

( α( f ) · (1 + e · cos f ) − e · cos f )
2
3

− (
(x − μ + 1)2 + z2

)
,

μ
2
3

( α · (1 + e · cos f ) − e · cos f )
2
3

− z2 > (x − μ + 1)2 .

The aforementioned nonlinear ODE of the second order for function x( f ) should be solved under the opti-
mizing condition r2 → Rp, as soon as coordinates {x , y, z} are already calculated (while the magnitude of
this function r2 should exceed the minimal distances within the Roche-limit [4,5] for the planet with mass
mplanet ).
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Table 2 Results of numerical calculations for Eqs. (16)–(19) (case of Earth)

f , rad x y r1 r2 α δ

0 −1.01037 0 1.013419 0.014405 1000 0.030135
0.1 −0.98354 0.005301 0.986595 0.014430 995.0125 0.003228
0.2 −1.01040 0.005327 1.013451 0.014455 990.0991 0.029839
0.3 −0.98351 0.005354 0.986562 0.014480 985.3306 0.002543
0.4 −1.01043 0.005394 1.013485 0.014505 980.7715 0.028902
0.5 −0.98348 0.005438 0.986530 0.014530 976.4776 0.001230
0.6 −1.01045 0.005525 1.013503 0.014554 972.4948 0.027339
0.7 −0.98348 0.005623 0.986533 0.014577 968.8588 −0.000630
0.8 -1.01041 0.005810 1.013461 0.014599 965.5951 0.025166
0.9 -0.98357 0.006008 0.986623 0.014620 962.7207 −0.002920
1.0 -1.01025 0.006333 1.013304 0.014639 960.245 0.022406
1.1 −0.98379 0.006652 0.986856 0.014657 958.1721 −0.00549
1.2 −1.00992 0.007111 1.012986 0.014673 956.5022 0.019109
1.3 −0.98420 0.007532 0.987270 0.014687 955.2333 −0.00820
1.4 −1.00941 0.008082 1.012480 0.014700 954.3624 0.015361
1.5 -0.98481 0.008562 0.987882 0.014710 953.8868 -0.010920
1.6 -1.00871 0.009144 1.011787 0.014719 953.8051 0.011291
1.7 −0.98559 0.009632 0.988672 0.014726 954.1167 −0.013520
1.8 −1.00785 0.010189 1.010940 0.014730 954.8229 0.007063
1.9 −0.98650 0.010640 0.989593 0.014733 955.9259 −0.015930
2.0 −1.00690 0.011130 1.010000 0.014733 957.4287 0.002875
2.1 −0.98746 0.011510 0.990568 0.014730 959.3339 −0.018090
2.2 −1.00594 0.011905 1.009051 0.014726 961.6422 −0.001050
2.3 −0.98839 0.012196 0.991503 0.014718 964.3516 −0.019950
2.4 −1.00508 0.012485 1.008189 0.014709 967.4549 −0.004510
2.5 −0.98918 0.012679 0.992299 0.014696 970.9387 −0.021510
2.6 −1.00439 0.012864 1.007510 0.014682 974.781 −0.007270
2.7 −0.98974 0.012962 0.992863 0.014665 978.9504 −0.022750
2.8 −1.00398 0.013047 1.007098 0.014646 983.4055 −0.009180
2.9 −0.99000 0.013053 0.993120 0.014625 988.0943 −0.023660
3.0 −1.00389 0.013043 1.007013 0.014603 992.9557 −0.010110
3.1 −0.98991 0.012954 0.993028 0.014579 997.9213 −0.024250
3.2 −1.00416 0.012848 1.007279 0.014555 1002.918 −0.009990
3.3 −0.98946 0.012654 0.99258 0.014530 1007.871 −0.024490
3.4 −1.00477 0.012441 1.007881 0.014505 1012.708 −0.008830
3.5 −0.98870 0.012125 0.991816 0.014481 1017.361 −0.024360
3.6 −1.00565 0.011790 1.008759 0.014456 1021.772 −0.006720
3.7 −0.98771 0.011336 0.990816 0.014433 1025.889 −0.023810
3.8 −1.00672 0.010869 1.009813 0.014411 1029.673 −0.003820
3.9 −0.98661 0.010270 0.989698 0.014389 1033.094 −0.022800
4.0 −1.00783 0.009679 1.010915 0.014369 1036.132 −0.000320

As for the numerical checking of the proper solutions of Eq. (18), we have tested the cases of Earth, Mars
and Venus (see their appropriate parameters at Table 1 in Appendix A1). By the way, for the Earth it means
z = 0 in (16)–(18) where we can choose function α( f ) absolutely arbitrary, but taking into account that it
should be the slowly varying function, e.g., as below

α( f ) ∼= 1000 − 100 ·
(
1 − exp (sin f )

1 + exp (sin f )

)
(19)

Meanwhile, such the same choice of function α( f ) (19) can also be applied for calculations in cases of Mars
and Venus as well.

We should note that we have used for calculating the data (Tables 2, 3, 4) the Runge–Kutta fourth-order
method with step 0.001 at initial values for Eqs. (16) and (18) as follows: (1) x0 = −1.0103652222598 and
(ẋ)0 = 0 (for Earth; we consider z = 0); (2) x0 = −1, (ẋ)0 = 0, z0 = 0, (ż)0 = −0.1 (for Mars); 3)
x0 = −1, (ẋ)0 = 0, z0 = 0, (ż)0 = −0.3 (for Venus). All the results of numerical calculations for Eqs.
(16)–(19) (see Tables 2, 3, 4 in Appendix, A2) we schematically imagine at Figs. 1, 2, 3, 4, and 5.
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Table 2 continued

f , rad x y r1 r2 α δ

4.1 −0.98552 0.008957 0.988602 0.014351 1038.774 −0.021270
4.2 −1.00886 0.008281 1.011926 0.014333 1041.015 0.003522
4.3 -0.98461 0.007506 0.987672 0.014318 1042.852 −0.019190
4.4 −1.00965 0.006839 1.012714 0.014303 1044.287 0.007462
4.5 −0.98397 0.006161 0.987031 0.014291 1045.324 −0.016570
4.6 −1.01012 0.005681 1.013175 0.014280 1045.963 0.011264
4.7 −0.98371 0.005347 0.986765 0.014271 1046.209 −0.013450
4.8 −1.01019 0.005278 1.013248 0.014263 1046.061 0.014733
4.9 −0.98385 0.005474 0.986907 0.014258 1045.519 −0.009930
5.0 −1.00987 0.005847 1.012927 0.014254 1044.581 0.017726
5.1 −0.98437 0.006440 0.987436 0.014253 1043.245 −0.006180
5.2 −1.00919 0.007043 1.012259 0.014254 1041.508 0.020161
5.3 −0.98520 0.007771 0.988272 0.014256 1039.367 −0.002390
5.4 −1.00826 0.008407 1.011339 0.014262 1036.824 0.022013
5.5 −0.98622 0.009101 0.989299 0.014269 1033.883 0.001203
5.6 −1.00721 0.009663 1.010294 0.014279 1030.555 0.023307
5.7 −0.98728 0.010244 0.990377 0.014292 1026.859 0.004369
5.8 −1.00617 0.010688 1.009266 0.014306 1022.821 0.024096
5.9 −0.98826 0.011129 0.991365 0.014323 1018.479 0.006888
6.0 −1.00528 0.011443 1.008386 0.014342 1013.881 0.024446
6.1 −0.98903 0.011746 0.992142 0.014363 1009.083 0.008583
6.2 −1.00465 0.011935 1.007760 0.014386 1004.152 0.024419
6.3 −0.98950 0.012113 0.992621 0.014409 999.1593 0.009334
6.4 −1.00434 0.012189 1.007456 0.014434 994.1791 0.024060
6.5 −0.98964 0.012255 0.992755 0.014459 989.2853 0.009086
6.6 −1.00438 0.012224 1.007497 0.014484 984.5477 0.023394
6.7 −0.98943 0.012185 0.992546 0.014509 980.0295 0.007853
6.8 −1.00475 0.012048 1.007863 0.014534 975.7850 0.022427
6.9 −0.98892 0.011907 0.992032 0.014558 971.8583 0.005710

Fig. 1 Results of numerical calculations of the coordinate x by Eq. (18) for Earth

6 Discussion

As we can see from the derivation above, equations of motion (4) even for the case of trapped motion �r ={x ,
y, z} (in the sense of additional assumption (7) for the infinitesimal mass m (satellite), which is moving near
the planet mplanet ) are proved to be very hard to solve analytically.

Nevertheless, at first stepwe have succeeded in obtaining the elegant expression for the differential invariant
(6),which interconnects the second and third equations of system (4).The aforesaid invariant (6) yieldsEquation
(9) of a Riccati-type for the coordinate z which should determine the proper solution (for coordinate z) if the
solutions for coordinates {x , y} are already obtained. Then, we suggest a kind of reduction in a form (10) for
Eq. (9) which let us obtain the classical analytical (quasi-periodic) solution (12) for coordinate z (if additional
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Table 3 Results of numerical calculations for Eqs. (16)–(19) (case of Mars)

f , rad x y z r1 r2 α δ

0 −1 0 0 1.000343 0.006645 1000 0.086266
0.1 −0.99936 0.006649 0.000053 0.999701 0.006657 995.0125 0.085231
0.2 −1 0.006663 −8.1E−05 1.000344 0.006671 990.0991 0.084699
0.3 −0.99936 0.006679 0.000085 0.9997 0.006687 985.3306 0.082102
0.4 −1 0.006696 −6.5E−05 1.000345 0.006704 980.7715 0.080026
0.5 −0.99936 0.006713 0.000023 0.9997 0.006722 976.4776 0.075906
0.6 −1 0.006732 0.000041 1.000346 0.006741 972.4948 0.072342
0.7 −0.99936 0.00675 −0.00012 0.9997 0.006761 968.8588 0.066773
0.8 −1 0.006767 0.000225 1.000345 0.006783 965.5951 0.06181
0.9 −0.99936 0.006783 −0.00034 0.999703 0.006804 962.7207 0.054909
1 −1 0.006795 0.000471 1.000341 0.006827 960.245 0.048675
1.1 −0.99937 0.006805 −0.00061 0.99971 0.006849 958.1721 0.040604
1.2 −0.99999 0.006812 0.00076 1.000334 0.006872 956.5022 0.033274
1.3 −0.99938 0.006814 −0.00092 0.99972 0.006895 955.2333 0.024249
1.4 −0.99998 0.006813 0.001072 1.000322 0.006918 954.3624 0.016048
1.5 −0.99939 0.006807 −0.00123 0.999736 0.00694 953.8868 0.006341
1.6 −0.99996 0.006799 0.001385 1.000306 0.006962 953.8051 −0.00245
1.7 −0.99941 0.006787 −0.00154 0.999755 0.006983 954.1167 −0.01251
1.8 −0.99994 0.006773 0.00168 1.000285 0.007004 954.8229 −0.02154
1.9 −0.99943 0.006757 −0.00182 0.999778 0.007022 955.9259 −0.03156
2 −0.99992 0.00674 0.001941 1.000263 0.00704 957.4287 −0.04045
2.1 −0.99946 0.006723 −0.00205 0.999801 0.007056 959.3339 −0.05002
2.2 −0.99989 0.006706 0.002155 1.00024 0.00707 961.6422 −0.05832
2.3 −0.99948 0.00669 −0.00224 0.999824 0.007081 964.3516 −0.06699
2.4 −0.99987 0.006675 0.002316 1.000219 0.007091 967.4549 −0.07426
2.5 −0.9995 0.006662 −0.00238 0.999843 0.007097 970.9387 −0.0816
2.6 −0.99986 0.006651 0.00242 1.000202 0.007101 974.781 −0.0874
2.7 −0.99951 0.006641 −0.00245 0.999857 0.007103 978.9504 −0.09302
2.8 −0.99985 0.006634 0.002467 1.000192 0.007101 983.4055 −0.09698
2.9 −0.99952 0.006629 −0.00247 0.999863 0.007097 988.0943 −0.10057
3 −0.99984 0.006627 0.002453 1.00019 0.00709 992.9557 −0.10242
3.1 −0.99952 0.006628 −0.00242 0.999861 0.007081 997.9213 −0.10379
3.2 −0.99985 0.006632 0.002376 1.000196 0.007069 1002.918 −0.10336
3.3 −0.9995 0.006639 −0.00231 0.99985 0.007054 1007.871 −0.10247
3.4 −0.99987 0.00665 0.002228 1.00021 0.007038 1012.708 −0.09975
3.5 −0.99949 0.006665 −0.00212 0.999832 0.00702 1017.361 −0.09669
3.6 −0.99989 0.006683 0.001999 1.000231 0.007 1021.772 −0.09182
3.7 −0.99946 0.006703 −0.00185 0.999808 0.006979 1025.889 −0.08682
3.8 −0.99991 0.006725 0.001684 1.000257 0.006957 1029.673 −0.08007
3.9 −0.99944 0.006748 −0.00149 0.99978 0.006934 1033.094 −0.07346
4 −0.99994 0.006769 0.001282 1.000283 0.006911 1036.132 −0.06518
4.1 −0.99941 0.006786 −0.00105 0.999753 0.006887 1038.774 −0.05737
4.2 −0.99996 0.006798 0.000801 1.000307 0.006863 1041.015 −0.048
4.3 −0.99939 0.006803 −0.00054 0.99973 0.006839 1042.852 −0.03942
4.4 −0.99998 0.006799 0.000261 1.000326 0.006815 1044.287 −0.02942
4.5 −0.99937 0.006785 0.000023 0.999713 0.006792 1045.324 −0.0205
4.6 −0.99999 0.006759 −0.00031 1.000337 0.006769 1045.963 −0.01032
4.7 −0.99936 0.006722 0.000598 0.999705 0.006747 1046.209 −0.00146
4.8 −1 0.006674 −0.00088 1.000339 0.006727 1046.061 0.008497
4.9 −0.99936 0.006616 0.001153 0.999707 0.006707 1045.519 0.016937
5 −0.99999 0.00655 −0.00141 1.000331 0.006689 1044.581 0.026303
5.1 −0.99938 0.006478 0.001657 0.999718 0.006673 1043.245 0.034029
5.2 −0.99997 0.006404 −0.00188 1.000315 0.006659 1041.508 0.042498
5.3 −0.99939 0.006328 0.002087 0.999737 0.006646 1039.367 0.049267
5.4 −0.99995 0.006255 −0.00227 1.000293 0.006636 1036.824 0.056595
5.5 −0.99942 0.006186 0.002429 0.999761 0.006628 1033.883 0.062215
5.6 −0.99993 0.006124 −0.00257 1.000268 0.006622 1030.555 0.068218
5.7 −0.99944 0.006069 0.002682 0.999786 0.006618 1026.859 0.07254
5.8 −0.9999 0.006024 −0.00278 1.000244 0.006617 1022.821 0.077086
5.9 −0.99947 0.005988 0.002855 0.999809 0.006619 1018.479 0.080001
6 −0.99988 0.005961 −0.00292 1.000223 0.006622 1013.881 0.083007
6.1 −0.99949 0.005943 0.002964 0.999828 0.006628 1009.083 0.084435
6.2 −0.99987 0.005933 −0.003 1.000208 0.006637 1004.152 0.08586
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Table 4 Results of numerical calculations for Eqs. (16)–(19) (case of Venus)

f , rad x y z r1 r2 α δ

0 −1 0.013221 0 1.002535 0.013446 1000 0.009487
0.1 −0.9951 0.013243 0.000159 0.997637 0.013469 995.0125 0.004554
0.2 −1.00001 0.013264 −0.00024 1.002541 0.013491 990.0991 0.009355
0.3 −0.9951 0.013286 0.000255 0.997631 0.013514 985.3306 0.004274
0.4 −1.00001 0.013309 −0.0002 1.002548 0.013536 980.7715 0.008954
0.5 −0.99509 0.013331 0.000068 0.997627 0.013557 976.4776 0.003733
0.6 −1.00002 0.013351 0.000122 1.002552 0.013577 972.4948 0.008296
0.7 −0.99509 0.013367 −0.00037 0.997631 0.013596 968.8588 0.002956
0.8 −1.00001 0.013373 0.000674 1.002544 0.013613 965.5951 0.007397
0.9 −0.99511 0.01337 −0.00102 0.997651 0.013629 962.7207 0.001983
1 −0.99998 0.013352 0.001413 1.002515 0.013644 960.245 0.006283
1.1 −0.99516 0.013319 −0.00184 0.997698 0.013656 958.1721 0.000863
1.2 −0.99992 0.013266 0.002281 1.002456 0.013667 956.5022 0.004987
1.3 −0.99524 0.013197 −0.00275 0.997777 0.013676 955.2333 −0.00035
1.4 −0.99982 0.013104 0.003217 1.002363 0.013683 954.3624 0.003551
1.5 −0.99535 0.012997 −0.00369 0.997892 0.013689 953.8868 −0.00161
1.6 −0.9997 0.012869 0.004156 1.002234 0.013692 953.8051 0.00203
1.7 −0.9955 0.012731 −0.00461 0.998039 0.013694 954.1167 −0.00286
1.8 −0.99954 0.012577 0.005041 1.002077 0.013694 954.8229 0.000484
1.9 −0.99567 0.01242 −0.00545 0.998209 0.013692 955.9259 −0.00406
2 −0.99936 0.012254 0.005822 1.001903 0.013687 957.4287 −0.00102
2.1 −0.99585 0.012095 −0.00616 0.998387 0.013681 959.3339 −0.00516
2.2 −0.99919 0.011936 0.006465 1.001727 0.013673 961.6422 −0.00241
2.3 −0.99602 0.011792 −0.00673 0.998558 0.013663 964.3516 −0.00613
2.4 −0.99903 0.011657 0.006948 1.001567 0.01365 967.4549 −0.00362
2.5 −0.99616 0.011543 −0.00713 0.998703 0.013636 970.9387 −0.00694
2.6 −0.9989 0.011444 0.007261 1.001441 0.01362 974.781 −0.00459
2.7 −0.99627 0.011371 −0.00735 0.998805 0.013602 978.9504 −0.00756
2.8 −0.99883 0.011319 0.0074 1.001364 0.013583 983.4055 −0.00528
2.9 −0.99631 0.011296 −0.0074 0.998851 0.013562 988.0943 −0.00799
3 −0.99881 0.011296 0.00736 1.001348 0.01354 992.9557 −0.00563
3.1 −0.9963 0.011328 −0.00727 0.998833 0.013518 997.9213 −0.00821
3.2 −0.99886 0.011385 0.007128 1.001397 0.013496 1002.918 −0.00564
3.3 −0.99621 0.011474 −0.00693 0.998751 0.013473 1007.871 −0.00821
3.4 −0.99897 0.011587 0.006683 1.001508 0.013451 1012.708 −0.00531
3.5 −0.99607 0.011729 −0.00637 0.998611 0.01343 1017.361 −0.00799
3.6 −0.99913 0.011888 0.005998 1.001671 0.013409 1021.772 −0.00465
3.7 −0.99589 0.012067 −0.00556 0.998427 0.01339 1025.889 −0.00755
3.8 −0.99933 0.012252 0.005053 1.001865 0.013371 1029.673 −0.0037
3.9 −0.99569 0.012441 −0.00448 0.998221 0.013354 1033.094 −0.00689
4 −0.99953 0.012618 0.003846 1.002069 0.013339 1036.132 −0.00253
4.1 −0.99548 0.012781 −0.00315 0.998018 0.013325 1038.774 −0.00602
4.2 −0.99972 0.012914 0.002403 1.002255 0.013313 1041.015 −0.00119
4.3 −0.99531 0.013013 −0.00161 0.997843 0.013303 1042.852 −0.00497
4.4 −0.99987 0.013067 0.000782 1.0024 0.013294 1044.287 0.000244
4.5 −0.99519 0.013074 0.00007 0.99772 0.013286 1045.324 −0.00376
4.6 −0.99995 0.013029 −0.00093 1.002485 0.01328 1045.963 0.001699
4.7 −0.99513 0.01293 0.001793 0.997664 0.013276 1046.209 −0.00242
4.8 −0.99997 0.012783 −0.00264 1.002498 0.013274 1046.061 0.00311
4.9 −0.99515 0.012587 0.003458 0.997683 0.013273 1045.519 −0.00101
5 −0.99991 0.012357 −0.00424 1.002439 0.013274 1044.581 0.004421
5.1 −0.99524 0.012091 0.004972 0.997772 0.013277 1043.245 0.000411
5.2 −0.99978 0.011812 −0.00565 1.002317 0.013281 1041.508 0.005586
5.3 −0.99538 0.011518 0.006261 0.997919 0.013288 1039.367 0.001784
5.4 −0.99962 0.011233 −0.00681 1.00215 0.013296 1036.824 0.006573
5.5 −0.99557 0.010956 0.007286 0.998102 0.013307 1033.883 0.003038
5.6 −0.99943 0.010706 −0.0077 1.00196 0.013319 1030.555 0.00736
5.7 −0.99576 0.01048 0.008045 0.998296 0.013333 1026.859 0.004105
5.8 −0.99924 0.010292 −0.00833 1.001774 0.013349 1022.821 0.007935
5.9 −0.99594 0.010134 0.008565 0.998474 0.013366 1018.479 0.004925
6 −0.99908 0.010015 −0.00875 1.001615 0.013386 1013.881 0.008291
6.1 −0.99608 0.009924 0.008892 0.998616 0.013406 1009.083 0.005452
6.2 −0.99897 0.009864 −0.009 1.001502 0.013428 1004.152 0.00843
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Fig. 2 Results of numerical calculations of r2 by using (17) and (19) for Earth

Fig. 3 Results of numerical calculations of r1 by Eqs. (17)–(19) for Earth

Fig. 4 Results of numerical calculations of r2 by Eqs. (16)–(19) for Mars
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Fig. 5 Results of numerical calculations of r2 by Eqs. (16)–(19) for Venus

function α is considered to be slowly varying parameter or circa constant), as well as it let us obtain in Equation
(8) the approximated solution for coordinate y, which was derived under assumption (7). Hereafter, we have
considered the case α = 1 for the sake of simplicity. The key nonlinear ODE in regard to the coordinate x( f )
in case of the given function (12) for the coordinate z, α = 1 (whereas true anomaly f is to be slowly varying
independent coordinate) is obtained to be presented in (15).

Meanwhile, the key nonlinear ODE in regard to coordinate x( f ) in case of the given function for coordinate
z via (10) is obtained to be presented in a form (18) for α �= const. This result outlines the novelty of the paper
which should be discussed accordingly. Indeed, results (16)–(18) and (20) in Appendix A1 are obtained as
generalization of the simple case α = 1 which was investigated first in work [1] by F.Cabral (the well-known
Clohessy–Wiltshire equations for relativemotionwhen e �= 0) but without obtaining expression for y presented
by (8) here.

According to our knowledge, semi-analytical solution, obtained by F.Cabral in [1] for simple case α = 1,
is most close to our general case of solutions, presented by formulae (16)–(18) for α �= const; moreover, such
nontrivial type of solution has not been suggested until the current research and the only way to get some kind
of information about the intrinsic properties and behavior of even the particular dynamical system (1) or (4)
was to calculate approximated solutions by using various numerical methods. So, any new theoretical method
or semi-analytical approach for even the particular solving of such the system of equations would be useful
on the level of practical applications.

We also determine the analytical expression which interrelates the coordinate x , depending on the given
coordinate z and true anomaly f , relative to the additional function δ( f ) in (14), which determines deviation of
distance of infinitesimal mass m (to MSun) from variable relative distance ρ = ap

1+e·cos f between primaries
MSun and mplanet .

Ending discussion, let us note also that natural restriction r2 → Rp should be valid for the trapped motion
�r = {x, y, z} with respect to the aforementioned function r2 in case of the given function for coordinate z in
(10) (Rp is the radius of planet mplanet ). It means that we should choose among the solutions of nonlinear
ODE of second order in regard to the coordinate x( f ) only the optimized solutions, for which the condition
r2 → Rp is valid accordingly (while its magnitude should exceed the level of minimal distances outside the
Roche-lobe’s region [4,5] for the planet with mass mplanet ).

7 Conclusion

In this paper, we present a new ansatz for solving equations of motion for the trapped orbits of the infinitesimal
mass m (satellite), which is locked in the space trap to be moving near the planet mplanet in case of the elliptic
restricted problem of three bodies, ER3BP (with Keplerian elliptic trajectories of the primaries MSun and
mplanet around each other): a new type of the solving procedure is implemented here to obtain the coordinates
�r = {x, y, z} of the infinitesimalmassm with its orbit located near the planetmplanet .Meanwhile, the system of
equations ofmotion has been successfully exploredwith respect to the existence of analytical or semi-analytical
(approximated) way for presentation of the solution.
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We obtain as follows: (1) Equation for coordinate x is given via coordinate y, true anomaly f , and the
additional function α, which determines the quasi-periodic (aRiccati-type) character of solution for coordinate
z, (2) expression for coordinate y is given via coordinate x , true anomaly f , and the aforementioned parameter
α, (3) coordinate z is to be quasi-periodically varying with respect to the true anomaly f .

We have pointed out the optimizing procedure for the nonlinear ordinary differential equation of second
order in regard to the aforementioned coordinate x( f ) in case of the given function for coordinate z (which is
valid only for the optimized solutions r2 → Rp, while the magnitude of function r2 should exceed the level
of minimal distances outside the Roche-limit for the planet).

The suggested approach can be used in future researches for optimizing the maneuvers of spacecraft which
is moving near the planet mplanet = μ in case of the elliptic restricted problem of three bodies (ER3BP).

So, in this case we also could suggest a scheme for r2-optimizing for the maneuvers of spacecraft which
is moving near the planet mplanet .

Also, some remarkable articles should be cited, which concern the problem under consideration, [12–24]
and [25–34]; the results of the most remarkable and comprehensive works (in the sense of algorithms of
obtaining the families of solutions in ER3BP) should be outlined and commented additionally hereto. In [17]
Dr. J.Singh and A.Umar describe the motion around the collinear libration points in the elliptic R3BP with
a bigger triaxial primary. In work [19] E.I.Abouelmagd and M.A.Sharaf classified trajectories of test particle
around the libration points in the restricted three-body problem with the effect of radiation and oblateness.
In [21], Kushvah, et al. explored the stability (as authors say, of nonlinear character) in the generalized
photogravitational restricted three body problem with additional influence of Poynting–Robertson drag. In
[28], Wiegert et al. investigated the problem of stability of quasi-satellites in the outer solar system. In the
profound work of Wiesel [29], a lot of theoretical and numerical findings regarding stable orbits around of
the martian moons was established thoroughly (he, e.g., found that stable retro-grade orbits exist about both
moons, staying in the moon vicinity for at least 25 days, and quite probably longer).

Acknowledgements Sergey Ershkov appreciates advice of Dr. V.V. Sidorenko during process of meaningful navigation through
special literature on celestialmechanics regarding the subject of research (especially, results reported in [35]). Authors are thankful
to unknown esteemed Reviewers with respect to their valuable efforts and advices which have improved structure of the article
significantly.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Remark regarding contributions of authors as below In this research, Dr. Sergey Ershkov is responsible for the general
ansatz and the solving procedure, simple algebra manipulations, calculations, results of the article in Sects. 1–5, Appendix A1
and also is responsible for the search of approximated solutions. Dr. Alla Rachinskaya is responsible for approximated solving
the nonlinear ordinary differential equation of second order (15) and (18) by means of advanced numerical methods as well as
is responsible for numerical data of calculations and graphical plots of numerical solutions. Both authors agreed with results and
conclusions of each other in Sects. 1–7.

Appendix, A1 (estimation of possible orbits according to (15))

Let us we estimate possible orbits for moons in Solar system [15] which are in agreement with condition

reported in (15), | �r2 | ∼= μ
1
3 :

Data and results, shown in Table 1, can be compared with previous research, ref. [15] (see Table 1).
As we can see from Table 1, most realistic data (for the problem under consideration) appears to be associated
with cases of Mercury or Venus: these planets might have had the moons, which were rotating on circular
orbits around their planets. But numerical solving procedure for Eq. (15) reveals that the ER3BP (in case of
Mercury or Venus) allows the existing of the solution on only the limited range of true anomaly f . It means that
numerical modeling by means of the ER3BP forbids or exclude the existing of the free-gravitating moon near
theMercury (or Venus), taking into account interactions between “Sun-Planet”-system and the aforementioned
moon.
As for the case of Venus, we know that during its closest approach to Earth, mutual distance is ~38,000· 103
km (which equals to 0.254 AU); so, we obtain from the appropriate data (see Table 1):
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0.254AU − |r2, Venus | − | r2, Earth | ∼= 0.085AU

but if we take into consideration the mass of possible moon of Venus, the aforementioned difference would
tend to zero. So, such (possible) moon of Venus was to interact to the Hill sphere of Earth at their closest
approaches to each other, that’s why its motion was obviously not to be stable. Meanwhile, we could estimate
aforesaid minimal mass of possible moon of Venus, for which the (closest) relative distance 0.085 AU would
disappear at all.
Let us also we estimate parameter α( f ) in expression (11), taking into account the approximation (7):

α = 1

1 + e · cos f
· [e · cos f

+ (1 − μ)(
(x − μ)2 + y2 + (z)2

) 3
2

+ μ(
(x − μ + 1)2 + y2 + (z)2

) 3
2

⎤
⎦ ⇒

α = 1

1 + e · cos f
· [e · cos f

+ 1(
(x − μ + 1)2 + y2 + z2

) 3
2

·

⎧⎪⎨
⎪⎩(1 − μ) ·

⎛
⎝
(
(x − μ + 1)2 + y2 + z2

) 1
2

(
(x − μ)2 + y2 + z2

) 1
2

⎞
⎠

3

+ μ

⎫⎪⎬
⎪⎭

⎤
⎥⎦ ⇒

α ∼= 1

1 + e · cos f
·
[
e · cos f + 1

r 3
2

· { μ }
]

(20)

Such the result (20) for estimating the parameter α( f ) in expression (11) can be compared with the result of
F.Cabral for the simple case α = 1 which was investigated first in work [1].
Obviously, the case of function α to be the slowly varying parameter or circa constant corresponds to the
condition r2 ∼= const << r1 (where (r2)3 ∼= µ, but r1 ∼= 1). For example, if even we choose r2 = 0.05,
μ = 0.001, e = 0.015, estimations according (20) should yield as follows:

α ∼= 1

1 + (0.015) · cos f
· [(0.015) · cos f + 8] ⇒ αmin = 7.867 , αmax = 8.137 (8 ± 1.7%)

Appendix, A2 (results of numerical calculations for Eqs. (16)–(19))

Let us present all the results of numerical calculations for Eqs. (16)–(19) below:
We should note that we have used for calculating the data (Tables 2, 3, 4) the Runge–Kutta fourth-order
method with step 0.001 at initial values for Eqs. (16) and (18) as follows: (1) x0 = −1.0103652222598 and
(ẋ)0 = 0 (for Earth; we consider z = 0); (2) x0 = −1, (ẋ)0 = 0, z0 = 0, (ż)0 = −0.1 (for Mars); (3)
x0 = −1, (ẋ)0 = 0, z0 = 0, (ż)0 = −0.3 (for Venus).
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