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Abstract In this paper, we present a new approach for solving equations of motion for the trapped motion of
the infinitesimal mass m in case of the elliptic restricted problem of three bodies (ER3BP) (primaries MSun
and mplanet are rotating around their common centre of masses on elliptic orbit): a new type of the solving
procedure is implemented here for solving equations of motion of the infinitesimal massm in the vicinity of the
barycenter of masses MSun and mplanet. Meanwhile, the system of equations of motion has been successfully
explored with respect to the existence of analytical way for presentation of the approximated solution. As the
main result, equations of motion are reduced to the system of three nonlinear ordinary differential equations:
(1) equation for coordinate x is proved to be a kind of appropriate equation for the forced oscillations during a
long-time period of quasi-oscillations (with a proper restriction to themassmplanet), (2) equation for coordinate
y reveals that motion is not stable with respect to this coordinate and condition y ∼ 0 would be valid if only
we choose zero initial conditions, and (3) equation for coordinate z is proved to be Riccati ODE of the first
kind. Thus, infinitesimal mass m should escape from vicinity of common centre of masses MSun and mplanet
as soon as the true anomaly f increases insofar. The main aim of the current research is to point out a clear
formulation of solving algorithm or semi-analytical procedure with partial cases of solutions to the system of
equations under consideration. Here, semi-analytical solution should be treated as numerical algorithm for a
system of ordinary differential equations (ER3BP) with well-known code for solving to be presented in the
final form.
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1 Introduction, equations of motion

In the restricted three-body problem (R3BP), the equations of motion describe the dynamics of an infinitesimal
massm under the action of gravitational forces effected by two celestial bodies of giantmassesMSun andmplanet
(mplanet < MSun), which are rotating around their common centre of mass on Keplerian trajectories. In the
current research, we will assume that the small mass m is supposed to be moving (as first approximation)
inside of restricted region of space near the Sun of mass MSun far from so-called Hill sphere [1] of planet
mplanet with radius [2]:

rH ∼= ap · (1 − e2) ·
(

mplanet

3(MSun + mplanet )

) 1
3

where ap is semimajor axis of the planet’s orbit, e is the eccentricity of its orbit.
It is worth noting that there are a large number of previous and recent works concerning analytical devel-

opment with respect to the R3BP equations which should be mentioned accordingly [3–5].
We should especially emphasize the theory of orbits, which was developed in profound work [5] by V.

Szebehely for the case of the circular restricted problem of three bodies (CR3BP) (primaries MSun and mplanet
are rotating around their common centre of mass on circular orbits) as well as the case of the elliptic restricted
problem of three bodies (ER3BP), where the primaries MSun and mplanet are rotating around their common
centre of mass on elliptic orbits. Special case of ER3BP (families of periodic orbits of the Sitnikov problem)
was investigated in [6].

As for the complete introduction to the stability of problem under the current consideration, we recommend
seminal works [7,8], where a significant historical retrospection has been made as well as all the difficulties
regarding stability ofmotion are considered insofar. Energy analysis in the elliptic restricted three-bodyproblem
was made in [9].

As for the purpose of the current research, we can formulate it as follows: the main aim is to point out a
clear formulation of solving procedure (along with partial cases of semi-analytical or numerical solutions) to
the system of equations under consideration. Namely, each exact or even semi-analytical solution can clarify
the structure, intrinsic code and topology of the variety of possible solutions (from mathematical point of
view); here, semi-analytical solution should be treated not only as analytical formulae in quadratures, but also
as numerical algorithm for a system of ordinary differential equations with well-known code for analytical or
numerical resolving to be presented in their final form.

Unlike the CR3BP, the position of the primaries is not fixed in the rotating frame as they move along
elliptical orbits: their relative distance ρ is not constant in time [10]

ρ = ap
1 + e · cos f

where e is the eccentricity of the two-body orbit of the primaries, f is the true anomaly (the unit of distances
is chosen so that ap = 1).

According to [10,11], in the ER3BP equations of motion of the infinitesimal mass m can be represented
in the synodic co-rotating frame of a Cartesian coordinate system �r = {x, y, z} in non-dimensional form (at
given initial conditions):

ẍ − 2 ẏ = ∂�

∂x

ÿ + 2ẋ = ∂�

∂y

z̈ = ∂�

∂z
(1)

where dot indicates (d/d f ) in (1), � is the scalar function

� = 1

1 + e · cos f

[
1

2

(
x2 + y2 − z2 · e · cos f

) + (1 − μ)

r1
+ μ

r2

]
, (2)
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and [10,11]

r21 = (x − μ)2 + y2 + z2 ,

r22 = (x − μ + 1)2 + y2 + z2 ,

(3)

where ri (i = 1, 2) are the distances of the infinitesimal mass m from the primaries MSun and mplanet,
respectively [11].

Now, the unit of mass is chosen in (1) so that the sum of the primary masses is equal to 1. We suppose that
MSun ∼= 1−μ and mplanet = μ, where μ is the ratio of the mass of the smaller primary to the total mass of the
primaries and 0 < μ ≤ 1/2. The unit of time is chosen so that the gravitational constant is equal to 1 in (2).

We neglect the effect of variable masses of the primaries [12] as well as the effect of their oblateness as
was considered earlier in [13]. As for the domain where the aforesaid infinitesimal mass m is supposed to be
moving, let us consider the Cauchy problem in the whole space. Besides, we should note that the second terms
in the left parts of Eq. (1) are associated with the components of the Coriolis acceleration.

Finally, let us additionally note that the spatial ER3BP when e > 0 and μ > 0 is not conservative, and no
integrals of motion are known [11].

By appropriately transforming the right parts with regard to partial derivatives with respect to the proper
coordinates {x, y, z} , system (1) can be represented as

ẍ − 2 ẏ = 1
1+e·cos f ·

[
x − 1

2
2(1−µ)(x−µ)

((x−µ)2 + y2 + z2)
3
2

− 1
2

2µ(x−µ+1)

((x−µ+1)2 + y2 + z2)
3
2

]
,

ÿ + 2 ẋ = 1
1+e·cos f ·

[
y − 1

2
2(1−µ)y

((x−µ)2 + y2 + z2)
3
2

− 1
2

2µy

((x−µ+1)2 + y2 + z2)
3
2

]
,

z̈ = 1
1+e·cos f ·

[
−z · e · cos f − 1

2
2(1−µ)z

((x−µ)2 + y2 + z2)
3
2

− 1
2

2µz

((x−µ+1)2 + y2 + z2)
3
2

]
.

(4)

2 Approximated solutions of Eqs. (1)-(3) for the class of trapped motions

As for the mathematical formulation of the problem under consideration, we restrict ourselves by mentioning
works [10,11] at referring to formulae (1)–(3) above, where such formulation has been given in a proper way.

Let us assume that coordinates �r = {x, y, z} of solutions of system (1) belong to the class of trapped
motions of the infinitesimal mass m (in the vicinity of the common centre of masses MSun and mplanet), with
additional natural restriction (*) given at the Discussion section:

| �r | << ap ⇔ {x, y, z} → 0 (5)

Thus, if we take into consideration the additional restriction (5) with respect to the components of solution
in Eqs. (1)–(3), the aforesaid assumption should simplify Eq. (4) by the series of Taylor expansions (first, we
exclude to zero all the terms with z2 in the right parts of equations (6) below):

ẍ − 2 ẏ = 1
1+e·cos f ·

[
x − (1−µ)(x−µ)

((x−µ)2 + y2)
3
2

− µ(x−µ+1)

((x−µ+1)2 + y2)
3
2

]
,

ÿ + 2 ẋ = y
1+e·cos f ·

[
1 − (1−µ)

((x−µ)2 + y2)
3
2

− µ

((x−µ+1)2 + y2)
3
2

]

z̈ + z
1+e·cos f ·

[
e · cos f + (1−µ)

((x−µ)2 + y2)
3
2

+ µ

((x−µ+1)2 + y2)
3
2

]
= 0,

(6)
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where the third equation (for coordinate z) could be easily solved if expressions for coordinates {x, y} are
already obtained. So, we should first solve the following sub-system, which consists of first and second
equations of system (6):

ẍ − 2 ẏ = 1
1+e·cos f ·

[
x − (1−μ)

(x−μ)2
− μ

(x−μ+1)2

]
,

ÿ + 2 ẋ = y
1+e·cos f ·

[
1 − (1−μ)

(x−μ)3
− μ

(x−μ+1)3

]
,

(7)

(second, we exclude to zero all the terms with y2 in the right parts of Eq. (7)).
For further solving the system (7), we should transform it accordingly; first let us differentiate both parts

of the first equation of system (7) with respect to the true anomaly f , this would let us linearly combine first
and second equations of system (7) properly:

⎧⎪⎪⎨
⎪⎪⎩

...
x − 2 ÿ = d

d f

(
1

1+e·cos f ·
[
x − (1−μ)

(x−μ)2
− μ

(x−μ+1)2

])
,

2 ÿ + 4 ẋ = 2y
1+e·cos f ·

[
1 − (1−μ)

(x−μ)3
− μ

(x−μ+1)3

]
,

⇒ (8)

⇒ ...
x + 4 ẋ = d

d f

(
1

1 + e · cos f
·
[
x − (1 − μ)

(x − μ)2
− μ

(x − μ + 1)2

])
+

+ 2y

1 + e · cos f
·
[
1 − (1 − μ)

(x − μ)3
− μ

(x − μ + 1)3

]
, ⇒

y = (1 + e · cos f )

2
·

⎛
⎝
...
x + 4 ẋ − d

d f

(
1

1+e·cos f ·
[
x − (1−μ)

(x−μ)2
− μ

(x−μ+1)2

])

1 − (1−μ)

(x−μ)3
− μ

(x−μ+1)3

⎞
⎠ (9)

Using expression (9) for y, we could substitute it into the appropriate expression in the first equation of
system (7); thus, we should obtain the nonlinear ordinary differential equation of the fourth order which could
obviously be solved by numerical methods only (in the general case).

But taking into account the additional simplifying assumption (5) (y → 0) with regard to the expression
(9), we should obtain from the first of equations (8) as below (x0 = const):

(
d
d f

(
1

1+e·cos f ·
[
x − (1−μ)

(x−μ)2
− μ

(x−μ+1)2

])
− (

...
x + 4 ẋ)

)
→ 0 ⇒

(8) : ⇒ ...
x − 2 ÿ ∼= ...

x + 4 ẋ , ⇒ 2 ÿ ∼= − 4 ẋ , ⇒ ẏ ∼= − 2 (x − x0)

(10)

So, we obtain from the first of equations (7):

ẍ + 4 (x − x0) = 1

1 + e · cos f
·
[
x − (1 − μ)

(x − μ)2
− μ

(x − μ + 1)2

]
(11)

- i.e. the nonlinear ordinary differential equation of the second order which could also be solved by numerical
methods only.

Nevertheless, let us try to simplify Eq. (11) (we should exclude at last to zero all the terms with x2 in the
right part of equation (11), μ << 1):

ẍ + 4 (x − x0) = 1
1+e·cos f ·

[
x − (1−μ)

μ2−2xμ
− μ

(1−μ)2+2x(1−μ)

]
⇒

ẍ + 4 (x − x0) = 1
1+e·cos f ·

[
x − (1−μ)

μ2 (1 + 2 x
μ
) − μ

(1−μ)2
(1 − 2 x

(1−μ)
)
]

⇒

ẍ + A ( f ) · x + B( f ) = 0 ,

A ( f ) =
[
4 − 1

1+e·cos f ·
(
1 + 2 (4μ3−6μ2+4μ−1)

(1−μ)3μ3

)]
, B( f ) =

(
1

1+e·cos f · (1−3μ+3μ2)

μ2(1−μ)2
− 4x0

)
(12)
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Equation (12) could be considered (as a first approximation) as the equation of forced oscillations (e.g. example
2.36 in [14]) if we consider {A, B} ∼= const or if we additionally assume

(
1 + 2

(4μ3 − 6μ2 + 4μ − 1)

(1 − μ)3μ3

)
∼= 0 (13)

Meanwhile, by means of numerical analysis for the solution of 6-th order’s algebraic equation (13), we obtain
its solution is approximately to be μ = 0.492195111 < 1/2.

3 Final presentation of the solution

Let us present the solution �r = {x, y, z} ({x, y, z} → 0) for the trapped motion (5) of the infinitesimal mass
m (in the vicinity of the common centre of masses MSun and mplanet) in its final form:

– equation (12) for coordinate x

ẍ + A ( f ) · x + B( f ) = 0 ,

A ( f ) =
[
4 − 1

1+e·cos f ·
(
1 + 2 (4μ3−6μ2+4μ−1)

(1−μ)3μ3

)]
, B( f ) =

(
1

1+e·cos f · (1−3μ+3μ2)

μ2(1−μ)2
− 4x0

)
,

could be considered (as a first approximation) as the equation of forced oscillations if we consider {A, B} ∼=
const during a long-time period of quasi-oscillations for the trapped motion of the infinitesimal mass m; e.g.
by means of numerical analysis for the solution of 6-th order’s algebraic equation (13) (⇒ A = const),
we obtain its solution is approximately to be μ = 0.492195111 < 1/2;

– from Eq. (10) we obtain for coordinate y

y ∼= y0 − 2

⎛
⎜⎝

f∫
0

x( f ) d f − x0 · f

⎞
⎟⎠ (14)

– from the third of Eq. (6) we obtain for coordinate z ({x, y, z} → 0)

z̈ + z
1+e·cos f ·

[
e · cos f − (1−μ)

μ3
(
1− x

μ

)3 + μ

(1−μ)3
(
1+ x

(1−μ)

)3
]

= 0 , ⇒

z̈ + z ·
(

e·cos f− 3x ·
(

(1−μ)

μ4
+ μ

(1−μ)4

)
− (1−μ)

μ3
+ μ

(1−μ)3

1+e·cos f

)
= 0 ,

(15)

where Eq. (15) above can be reduced by change of variable (z′/z) to the classical Riccati ODE. It describes
the evolution of coordinate z in its dependence on the coordinate x( f ) in regard to the true anomaly f ; such
a Riccati ODE has no analytical solution in the general case [15–19].

4 Discussion

Aswe can see from the derivation above, equations of motion for the trappedmotion �r = {x, y, z} ({x, y, z} →
0) of the infinitesimal mass m in the vicinity of the common centre of mass of MSun and mplanet are very hard
to be solved analytically.

Nevertheless, at the first step we have succeeded in obtaining the Eq. (12) for coordinate x , which could
be considered (as a first approximation) as the equation of forced oscillations during a long-time period of
quasi-oscillations of the infinitesimal mass m in the vicinity of common centre of mass of MSun and m planet.
Namely, from the approximate solving the algebraic equation (13), we obtain the aforementioned assumption
(regarding the considering (12) as the equation of forced oscillations) should be valid if only we choose
μ = 0.492195111 < 1/2.
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Fig. 1 Result of numerical calculations of the coordinate x (abscissa axis corresponds to values of the true anomaly f )

Furthermore, at the second stepwe have obtained equation (14), which describes the evolution of coordinate
y in its dependence on the coordinate x( f ) and the true anomaly f . It is worth noting that condition y →
0 would be valid if we chose constants of integration {x0, y0} = 0 in (14). In other cases, the infinitesimal
mass m would escape from the vicinity of the common centre of mass of MSun and mplanet as soon as the true
anomaly f increases.

Finally, we have obtained Eq. (15), which describes the evolution of coordinate z in its dependence on the
coordinate x( f ) and the true anomaly f .

Thus, we have succeeded in presenting by the series of Taylor expansions equations (4) of the problem
under consideration in analytical form (with new analytical findings in a form of invariants as a result of
integration) where a minimum numerical calculations should be required; then, we obtain final solution by
means of the numerical calculations.

We provide below the results of numerical calculations (Fig. 1) for the proper approximated solution of
equation (11) for the motion near the barycenter in “Sun-Mercury-satellite” system. We should note that we
have used for calculating the data the Runge–Kutta fourth-order method with step 0.001 starting from initial
values. Let us choose for numerical algorithm of modelling the motion near the barycenter in triple system
“Sun-Mercury-satellite” system as follows:

e = 0.205, μ = 0.165 ∗ 10(−6).

As for the initial data, we have chosen as follows: 1) x 0 = − 0.1, (ẋ) 0 = −0.2.
Let us present the results of numerical calculations for Eq. (11) in Table 1 below (a key data points from

the main flow of data points have been mentioned in Table 1).
The results of numerical calculations we schematically imagine at Fig. 1.
Meanwhile, results of numerical calculations for the coordinate x in this case (Fig. 1) mean that test

particle, starting its motion near the barycenter of the system “Sun-Mercury”, reveals then unpredictable and
unstable dynamics: it intersects the orbit of Mercury, but not the orbit of Venus during the further oscillations.
Indeed,Mercury’s orbit is inclined, or tilted, circa 7 degrees from the ecliptic of Earth’s orbit, whereas Venus’
inclination is about of 3.4 degrees (with respect to Earth’s orbit). So, test particle, which is moving in the plane
of Mercury rotation on its orbit, will never intersect orbit of Venus.

Ending the discussion, let us note also that natural restriction should be valid for the trapped motion
�r = {x, y, z} of the infinitesimal mass m in the vicinity of the common centre of mass of MSun and mplanet:

| �r | > 4R Sun (∗)

where R Sun is the radius of Sun with mass MSun (the aforementioned restriction takes into account the Roche
limit for fluid satellite for the reason at distance of 6-8 R Sun even the solid satellite appears to be transformed
to the fluid state during satellite’s fly-by through the hot atmosphere and corona of Sun).

Meanwhile, centre of Sun is known to be moving near the barycenter along the quasi-periodic trajectory
(less than 2.19R Sun from barycenter [20], it means that barycenter is distant from surface of Sun sometimes not
less than R Sun where R Sun ∼ 696 · 106 m). Taking into account the restriction (*) above, it gives the maximal
distance of safe approach to the surface of Sun during satellite’s fly-by at theworst scenario (in case of alignment
of all the radius-vectors “barycenter vs.Sun+ satellite”) is circa (1.19R Sun+2R Sun +4R Sun) ∼= 7.19R Sun .
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So, theminimal safe distance for satellite closest approach should be not less than 8R Sun (here electromagnetic
effects have not yet been taken into consideration for this estimation).

As for the data of closest approaches of artificial satellite to the Sun during, e.g. “Parker Solar Probe”-
mission in the years 2018-2025, see [21] (the closest approach during satellite’s fly-by near the Sun should be
10R Sun from the centre of Sun). So, motion near the barycenter in “Sun-planet-satellite” system could be of
practical interest (in the sense of preventing collision trajectories with the surface of Sun in future missions),
indeed.

5 Conclusion

In this paper, we present a new approach for solving equations of motion for the trapped motion �r = {x, y, z}
of an infinitesimal mass m in case of the elliptic restricted problem of three bodies (ER3BP) (primaries
MSun and mplanet are rotating around their common centre of mass on elliptic orbits): a new type of solution is
implemented here for solving equations of motion of the infinitesimal massm in the vicinity ({x, y, z} → 0) of
the barycenter ofmassesMSun andmplanet.Meanwhile, the system of equations ofmotion has been successfully
explored with respect to the existence of an approximated analytical solution.

As themain result, the equations ofmotion are reduced to the system of three nonlinear ordinary differential
equations: 1) the equation for coordinate x is proved to be a kind of appropriate equation for the forced
oscillations during a long-time period of quasi-oscillations (e.g. if we choose μ = 0.492195111 < 1/2), 2)
the equation for coordinate y reveals that motion is not stable with respect to this coordinate and the condition
y → 0 would be valid only if we choose constants of integration {x0, y0} = 0, and 3) the equation for
coordinate z is proved to be a Riccati ODE of the first kind. It means that motion could not also be considered
as stable with regard to the coordinate z. Thus, the infinitesimal mass m would escape from the vicinity of
the common centre of mass of MSun and mplanet as soon as the true anomaly f increases (according to the
dynamics (14) with respect to coordinate y) or at some definite moment of the true anomaly f0 (according to
the dynamics (15) with respect to coordinate z).

The suggested approach can be used in future research for optimizing the maneuvers of spacecraft in the
vicinity of the barycenter in a frame of the ER3BP. Indeed, it would be a simple algorithm for optimizing the
maneuvers of spacecraft at the (x , y)-plane in the vicinity of the barycenter for the reason that coordinate x for
infinitesimal mass is approximated by the solution of equation for the forced oscillations, whereas coordinate
y is proved functionally dependent with respect to the expression for coordinate x (so, all these oscillations
could be easily damped).

But appropriately optimizing the maneuvers of spacecraft in the vicinity of barycenter in regard to the
coordinate z appears not to be so simple (the equation of motion for coordinate z is proved to be a Riccati
ODE). Nevertheless, there is a modern numerical ansatz to predict when a jumping of a solution of the
appropriate Riccati ODE should be [15–18]. So, in this case we also could suggest a scheme for z-optimizing
for the maneuvers of spacecraft in the vicinity of the barycenter.

Also, some remarkable articles should be cited, which concern the problem under consideration, [22–32].
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