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Abstract In the existence of an aligned magnetic field over the inclined shrinking/stretching stratified sheet in
a non-Darcy porous medium, the two-dimensional boundary layer flow of an upper-convectedMaxwell fluid is
analyzed. The heat transfer effects are acknowledged by using the nonlinear convection. The system of partial
differential equations, which administrates the distinctive properties of flow and heat transfer, is depleted into
ordinary differential equations with the use of similarity variables. The governing equations are determined
numerically by utilizing the shooting technique. The response of varied implicated parameters on velocity,
skin friction, and temperature accounts is inspected graphically and displayed in the table. It is noted that local
inertia coefficient is accountable for the reduction in the velocity profile and the aligned magnetic field has the
opposite relation for the shrinking and stretching sheet.

Keywords Inclined sheet · Stratification · Nonlinear convection · Darcy–Forchheimer flow · Aligned
magnetic field

Nomenclature
a, b Dimensional constant
γ Aligned angle
B0 Magnetic field strength
ζ Similarity variable
β Dimensionless Maxwell parameter
Cb Drag coefficient
cp Specific heat
S Suction/injection parameter
uw Stretching velocity
δ Mixed convection variable
βt Nonlinear thermal variable
f ′ Dimensionless velocity
g Gravitational acceleration
T0 Reference temperature
Grx Grashof number
C f Skin friction coefficient
k Thermal conductivity
(u, v) Velocity components
M Magnetic parameter
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ε Stretching/shrinking parameter
λ Relaxation time parameter
v0 Mass flux velocity
(x, y) Coordinate axis
F Variable inertia coefficient
Nux Local Nusselt number
Pr Prandtl number
qw Surface heat flux
Rex Local Reynolds number
(c, d) Initial guesses
T Fluid temperature
Tw Fluid temperature at wall
T∞ Ambient liquid temperature
a1, d1 Dimensional constant
Fr Local inertia coefficient
T f Heated liquid temperature
β1 Linear thermal coefficient
β2 Nonlinear expansion coefficient
θ Dimensionless temperature
μ Dynamic viscosity
ν Kinematic viscosity
ρ Fluid density
σ Electrical conductivity
τw Shear stress
S1 Thermal stratification variable
φ Dimensionless concentration
ω Stream function
K Porous medium permeability
λ1 Porosity parameter

1 Introduction

The investigation of fluid properties on different geometries and surfaces is one of the significant topics
discussed by the researchers as it involves numerous industrial and technological aspects, like expulsion,
wire drawing, generation of glass fiber, assembling of elastic sheets, cooling of immense metallic plates,
etc. [1]. The boundary layer flow past a persistent solid panel flowing with consistent speed was examined
by Sakiadis [2] for the first time. In the past few decades, a critical consideration has been given to the non-
Newtonian fluids flowing over the stretched surface. The significance of non-Newtonian fluids in countless
engineering and technological applications can never be contradicted. The extensive area of applications
consists of aerodynamic, emission of plastic films, liquid film condensation process, annealing and copper
wires thinnings, etc. [3]. In the food industry, mayonnaise, starch suspension, fruit juices, alcoholic beverages,
yogurt, and syrups are common examples of non-Newtonian fluids. Apart from the viscous liquids, a noticeable
difficulty in the mathematical framing of these liquids is that all the attributes of these fluids’ structures cannot
be displayed by a single constitutive equation. That is why analysts proposed certain non-Newtonian fluid
models in the literature. These models are divided as a differential, rate, and integral types. Maxwell model
falls within the category of rate-type fluids, and it highlights the fluid relaxation time phenomenon. Harris [4]
pioneering work, which presented the 2D flow of upper-convected Maxwell fluid, motivated the followers to
explore further possibilities in this regard. Many scientists have considered the transfer of heat and boundary
layer flow in the multiple forms due to the stretching sheet for the upper-convected Maxwell fluid [5–7].

Heat transfer is a working area of exploration in fluid dynamics over the past few decades. There are
countless industrial applications of heat and mass transfer such as in the asphalt and concrete industry for
concrete warming and hot blend paving and in the chemical industry for the atomic reactor, in food industry
like meat and poultry preparing, snack foods, in cloth industries, pipe and plastic industries, electric and
electronic devices and steam generators, glass fiber generation, streamlined expulsion of plastic sheets, glass
blowing, etc. Crane [8] was the first to examine the continuous two-dimensional flow in a steady fluid induced
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by a stretching sheet and to develop an exact analytical solution. The heat transfer features were explored by
Chen andChar [9] above a persistent stretching area among varying surface temperatures. Gupta andGupta [10]
studied the heat and mass transition referred to suction or blowing over the stretching panel. The spearheading
work of Crane has been expanded by many researchers involving the importance of heat transfer flow [11–19].

Material containing pores in fluid dynamics is called a porous medium. The porous medium is typically a
liquid-filled biological application. Due to its broad usage, liquid flow and transport procedures via porous for-
mations are a subject of great concern in many scientific and technical fields. In manufacturing and agricultural
processes for instance condensers (for cooling condensers, utilized as a heat exchanger) and gas turbines (used
for cooling gas turbine blades), catalytic plants (utilized for decreasing poisonous quality of depleting emana-
tions from automobiles engines), geothermal energy systems and geophysics, the study of the porous medium
plays a vital role. In particular, the porous media are very beneficial in the fermentation processes, storage of
grains, groundwater contamination, water motion in petroleum reservoirs, gasoline generation, ground-water
frameworks, fossil fuel beds, retrieval apparatus, depleting radioactive waste units, power conserving areas,
petroleum assets, thermal storage, and other many more. In the high-velocity systems, liquid flow through
porous media is a challenging area for the researchers. The non-Darcian porous model is the improved figure
of the old Darcian model that assimilates concurrent features of inertial tortuosity drag and boundary features.
In 1856, Henry Darcy, a French engineer, developed the flow of heterogeneous liquids via a porous medium
during his precious work on fluid flow through the sand beds. The classical Darcy law is ineffective when
an account is taken of inertia and boundary characteristics at a high flow rate. The work was then expanded
in 1901 by the Dutch scientist named Philippes Forchheimer. To evaluate the inertia and boundary charac-
teristics, Forchheimer [20] integrated a square velocity element at Darcian speed to predict the essence of
boundary layer flow and inertia. For the high Reynolds number, this feature is indeed credible. Muskat [21]
then named the factor “Forchheimer phrase.” Pal and Mondal [22] developed a fluid model with impacts of
Darcy–Forchheimer on a stretching panel. Ganesh et al. [23] inspected the adequacy of Darcy–Forchheimer
hydromagnetic nanofluid flow in the direction of stretching/shrinking panel and the existence of thermal
stratification, Ohmic dissipation, second-order velocity slip, and viscous dissemination impacts. Gireesha et
al. [24] researched the hydromagnetic flow of viscous liquid with viscous dissipation and thermal radiation in
a non-Darcian hydrophobic medium. Rashidi et al. [25] found the streamwise Darcy–Brinkman–Forchheimer
liquid flow and heat transfer model for the magnetohydrodynamics. Ahmed [26] used Bejan’s thermal lines to
evaluate infused non-Darcy hydrophobic medium with natural and forced convection in two-sided lid-driven
enclosures. Because of the nonlinear stretching sheet, Hayat et al. [27] additionally investigated the Darcy–
Forchheimer mobility of viscoelastic nanofluids. Kang et al. [28] recently analyzed the boundary conditions
of Neumann for a standardized Darcy–Forchheimer framework.

Magnetohydrodynamics (MHD) is the region of the magnetic characteristics of electrically conductive
liquids. The word MHD was first introduced by Hannes Alfen. Magnetohydrodynamic MHD flow analyses
are very common in the industry and even have implementations in various fields such as petroleum production
and metallurgical procedures. The characteristics of the final result rely heavily on the cooling speed engaged
in these procedures, and the required final product characteristics can be regulated with the use of electrically
conductive liquids andmagnetic field. However, other electrically conductive liquids such as enriched uranium,
molten metals, arsenic copper alloys, biochemical fluids, engine oils, and other grades have various features in
the nonattendance as well as in themagnetic field view [29]. The heat transfer flow features dramatically altered
as the magnetic field applied manipulates the elevated fluid molecules and rearranges their composition within
the flow. Hayat et al. [30] inspected the nanofluid flows with convective circumstances and MHD impacts.
Hsiao [31] researched the viscous and elasticMHD liquid flow in amixed convection form, past a porouswedge.
The MHD mixed convection flow of viscoelastic fluid is investigated by Hisao [32] with Ohmic dissipation
across a stretching plate. Ganji and Malvandi [33] measured the natural heat transfer of nanofluid within a
longitudinal framework, in the presence of a uniform magnetic field. Recently Raju et al. [34] addressed the
impacts of associated magnetic fields on a continuous two-dimensional flux over a vertical stretching layer.
They discovered that a rise in the aligned angle reduces the velocity profile and improves the temperature of
the fluid.

Inspiring from above-cited research areas and their industrial applications, the core determination of the
present work is the analysis of Maxwell fluid’s nonlinear mixed convective flow over the non-Darcian porous
media in the existence of an alignedmagnetic field. Further,we have used stratified inclined shrinking/stretching
panel and no such research has been dealt with the best of our knowledge until now. The problem is tackled
by the nonlinear shooting method as we have coupled nonlinear differential boundary value problems. After
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drawing the graphs and tables, the nature of different parameters on the profiles of the temperature and velocity
in addition to Nusselt number and the skin friction coefficient is determined

2 Mathematical formulation

A continuous, laminar upper-convected Maxwell fluid flowing through the two-dimensional stratified shrink-
ing/stretching inclined sheet with inclination angle α which is being stretched along the x-axis with velocity
uw(x) = ax , is contemplated as presented in Fig. 1. An aligned magnetic force field B0 with acute angle γ
with the direction of y-axis is applied. The temperature at the wall is T f = T0 + a1x and away from the
surface is T∞ = T0 + d1x . The induced magnetic field is ignored because of the movement of the electrically
conductive fluid. Nonlinear mixed convection through the non-Darcian porous medium is utilized to elaborate
a porous media result for the transfer of the heat.

For the boundary layer flow, the governing equations of continuity, momentum and the temperature are
defined as [35]:
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where, in Eqs. (1)–(3), u and v are the components of velocity along the x- and y-axes, respectively, K
porous medium permeability, g gravitational acceleration, F = Cb√

K
symbolizes the coefficient of iner-

tia of porous material, β1 and β2 are the linear and nonlinear components of thermal expansion, respec-
tively, Cb symbolizes drag coefficient and T∞ ambient liquid temperature. It is worthy to mention here that
+g

[
β1 (T − T∞) + β2 (T − T∞)2

]
cos(α) appears due to nonlinear convection and− v

K u−Fu2 is because of
the non-Darcian porous medium. Further, we have taken the impact of thermal stratification over the inclined
sheet. The boundary conditions for the governing equations are as follows:

u = εuw, v = v0, T = T f = T0 + a1x, at y = 0,

u → 0, T → T∞ = T0 + d1x, as y → ∞,

}
(4)

where, in (4), v0 symbolizes mass flux velocity, T f and T0 represent heated liquid temperature and reference
temperature, respectively, and a1 and d1 are dimensional constants. Next, we pursue for the similarity solution
of the above equations based on boundary conditions (4) by proposing the following similarity transformation
first:

ω = √
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) 1
2
y,
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(5)

where ζ is the similarity variable. The ordinary coupled boundary value problem is achieved as:

f ′′′ + f f ′′ + β
(
2 f f ′ f ′′ − f 2 f ′′′) + M sin2 (γ )

[
β f f ′′ − f ′]

+ δ (1 + βtθ) θ cos(α) − λ1 f
′ − (1 + Fr) f ′ 2 = 0, (6)

1

Pr
θ ′′ + f θ ′ − f ′θ − f ′S1 = 0, (7)
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Table 1 Numerical values of Skin friction when Pr = 1, M = 0, S = 0, ε = 1.0 (stretching case) and comparison with previous
work

β f ′′(0)
Abel el al. [36] Iskandar et al. [37] Present

0 −0.999962 −1.00000005 −1.0000000
0.2 −1.051948 −1.05188989 −1.0518899
0.4 −1.101850 −1.10190327 −1.1019044
0.6 −1.150163 −1.15013734 −1.1501382
0.8 −1.196692 −1.19671125 −1.1967134
1.2 −1.285257 −1.28536326 −1.2863640

Table 2 Numerical values of skin friction when Pr = 1, M = 2, β = 0, ε = −1.0 (shrinking case) and comparison with previous
work

S f ′′(0)
Bhattacharyya [38] Iskandar et al. [37] Present

2 2.414300 2.41421357 2.41421369
3 3.302750 3.30277563 3.30277621
4 4.236099 4.23606797 4.23606814

and the boundary conditions are as follows:

f ′ (0) = ε, f (0) = S, θ (0) = 1 − S1, at ζ = 0,

f ′ (ζ ) → 0, θ (ζ ) → 0, as ζ → ∞,

}
(8)

in the above equations, primes denote differentiation corresponding to ζ , β and M are dimensionless Maxwell
fluid parameter and the magnetic parameter, δ and βt represent the mixed convection parameter and nonlinear
convection parameter, λ1 symbolizes porosity parameter, Fr local inertia coefficient, Pr Prandtl number, S1
the thermal stratification parameter, ε the stretching/shrinking parameter with ε > 0 for stretching and ε < 0
for the shrinking case, S is the parameter of suction/injection with S > 0 for suction and S < 0 for injection,
and these are described as:
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k
,
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0
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,

where Grx is the Grashof number and Rex = uw(x)x/ν symbolizes local Reynolds number. For operational
objectives, the skin friction coefficientC f and the local Nusselt numberNux can be determined by the functions
f (ζ ) and θ (ζ ), respectively, as:

C f = τw

ρu2w(x)/2
,Nux = xqw

k(Tw − T∞)
(9)

whereas τw = μ (∂u/∂y)y=0 is shear stress and qw = −k (∂T/∂y)y=0 is heat flux at the surface. Using
similarity transformation (5), we acquire

1

2
C f Re

1/2
x = f ′′(0),Nux/Re1/2x = −θ ′(0), (10)



954 M. Bilal, M. Nazeer

Fig. 1 Geometry for the flow under discussion

Fig. 2 Impact of γ on velocity ε = 1

3 Solution methodology

Boundary value problems (6), (7) cannot be easily solved analytically because these ordinary differential
equations (ODEs) are nonlinear and coupled equations. So, for the sake of numerical solution, the shooting
method has been considered. The fourth-order Runge–Kuttamethod andNewton’smethod are essential aspects
of the shooting method to find the solution of nonlinear differential equations of the first order. Let us use the
following notations to get the first-order ordinary differential equations as:

f = y1, f ′ = y′
1 = y2, f ′′ = y′

2 = y3, θ = y4, θ ′ = y′
4 = y5 (11)



Numerical analysis for the non-Newtonian flow over stratified 955

Fig. 3 Impact of γ on velocity ε = −1

Fig. 4 Impact of β on velocity for ε = 1

By using notations (11), we get the following IVP:

y′
1 = y2

y′
2 = y3

y′
3 = −y1y3 − 2βy1y2y3 − M sin2 (γ ) [βy1y3 − y2] − δ (1 + βt y4) y4 cos(α) + λ1y2 + (1 + Fr) y22(

1 − βy21
)

y′
4 = y5

y′
5 = (y2y4 + y2S1 − y1y5) Pr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)

and essential initial condition (8) takes the form as

y1 (0) = S, y2 (0) = ε, y3 (0) = c, y4 (0) = 1 − S1, y5 (0) = d, (13)
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Fig. 5 Impact of β on velocity for ε = −1

Fig. 6 Impact of δ on temperature

where c and d are our initial guesses. To achieve the desired results of the aforementioned system numerically,
we have altered the domain [0,∞) by bounded domain [0, ζ∞], where ζ∞ is a relevant finite positive real
number. It is chosen in such a way that after its specific value, which is usually in between [5, 7], there is no
specific alteration on obtained results. In (12) and (13), the missing initial conditions c and d are to be selected
such that

y2 (ζ∞, c, d) = 0, y4 (ζ∞, c, d) = 0.

Such estimates are modified by the scheme of the Newton’s method. The algorithmic pattern repeats until the
condition below is fulfilled

max {|y2 (ζ∞, cn, dn)| , y4 (ζ∞, cn, dn)} < χ

wherein the tolerance is χ > 0. We have fixed χ = 10−5 for all computations in this article. The code is
verified in limiting case as shown in Tables 1 and 2, with the results of previous articles.
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Fig. 7 Impact of δ on velocity

Fig. 8 Impact of Fr on velocity

4 Results and discussion

This section aims at examining the numerical results shown in the form of tables and graphs. The analyses
were made for various values of factors β, M , Pr, S, ε, γ , Fr , δ, βt , λ1 and S1, and the effect of all such
specifications on temperature and velocity profiles is also described in detail. In all these figures, we have
considered 0 ≤ β ≤ 0.15, 0.6 ≤ Pr ≤ 1.2, π/6 ≤ γ ≤ π/2, 0.1 ≤ βt ≤ 1.5, 0.0 ≤ M ≤ 3.0, 0.1 ≤ λ ≤
1.0, 0.1 ≤ Fr ≤ 1.0, 0.1 ≤ S1 ≤ 0.7, 0.1 ≤ δ ≤ 0.7, 2.0 ≤ S ≤ 2.6, π/6 ≤ α ≤ π/2, −1.0 ≤ ε ≤ 1.0,
unless specified.
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Fig. 9 Impact of βt on velocity profile

Fig. 10 Impact of Pr on temperature

The effect of aligned angle γ can be observed in Fig. 2 for the velocity profile against the stretching case
ε = 1. It can be observed that when γ escalates, the fluid’s velocity is demolished. The cause of this behavior
is that an enhancement in the aligned angle escalates the magnetic field, resulting in an opposite force to the
flow generation. That force is termed as the Lorentz force, which decreases the solidity of the momentum
boundary layer. In Fig. 3 the influence of aligned angle on the shrinking surface momentum profile, ε = −1,
is demonstrated. It is observed that when γ is boosted, this enhances the speed of the flow for the shrinking
sheet. The effect on the velocity profile for the dimensionless Maxwell parameter, when ε = 1, is displayed
in Fig. 4. It can be recognized that by raising the value of the Maxwell parameter, velocity profile declines. In
fact, the amount of the Maxwell parameter determines the nature of the liquid. At β = 0 the fluid becomes
Newtonian, and by rising the values of β, it ultimately attains the non-Newtonian shear thickening nature
and viscosity increases that lower fluid’s velocity. The curves of f ′(ζ ) are given in Fig. 5 for various values
of the dimensionless Maxwell parameter as ε = −1. Here, raising the magnitude of the Maxwell parameter
improves both the speed and associated stiffness of the boundary layer. Figure6 shows the effects of the δ,
mixed convection parameter on the temperature domain. This figure shows that significant differences in the
parameter of the mixed convection impart comparatively small changes in dimensionless temperature. So,
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Fig. 11 Impact of λ1 on temperature

Fig. 12 Impact of α on velocity

whenever the mixed convection parameter δ increases, the temperature profile decreases. From Fig. 7, as the
mixed convective factor δ raises, the velocity of f ′(ζ ) increases dramatically for the shrinking case. This
occurs because the buoyancy force enhances due to higher δ. Figure 8 characterizes the f ′(ζ ) deviations for
various measurements of the local inertia coefficient Fr . The greater Fr indicates that the porosity of the
medium enhances which is responsible for the reduction in fluid speed and the thickness of the momentum
boundary layer. This decrement is very nominal for the shrinking case. The f ′(ζ ) curves for different values of
the nonlinear convection function are plotted in Fig. 9. When there is an increment in βt , a mounting velocity
is noted. Figure10 shows the Prandtl number’s attitude on the thermal profile. Here θ(ζ ) and the related
thermal layer thickness decline for greater Pr. In consideration of an inverse relationship between the thermal
diffusivity and the Prandtl number value, larger Pr results in the reduction of diffusiveness of temperature. This
decrease in thermal diffusivity shows a drop in temperature and thermal layer strength. Figure11 determines
the relationship between the temperature θ(ζ ) and porosity parameter λ1. For bigger λ1, θ(ζ ) enhanced. The
physical presence of porous content enhances the counteraction to fluid movement, which creates inclination
in the temperature of the fluid. When the angle of inclination of the stretching sheet is enhanced, it is found that
the fluid’s speed is decreased for the shrinking surface and this observation is noted from Fig. 12. The influence
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Fig. 13 Impact of S1 on temperature

Fig. 14 Impact of ε on temperature profile

of S1 on θ(ζ ) is shown in Fig. 13. When the thermal stratification parameter S1 is increased, the difference
in temperature between surface and atmosphere decreased. This notable temperature differential causes the
temperature profile to decrease. Figure14 sketches stretching/shrinking parameter ε′s impact on θ(ζ ). Lesser
shrinking causes a decrement in the temperature profile. Figure15 exhibits the impact of the suction/injection
parameter S on the profile of temperature. It is shown that the temperature profile decreases as S goes up.
In Fig. 16, the influence of the M magnetic parameter and the β dimensionless Maxwell parameter can be
seen on the Nusselt number. It can be viewed that when M and β increase, the Nusselt number decreases.
Because of an increase in the magnetic parameter M , the temperature of the fluid is elevated which means
that now the heat flux rate for the higher magnetic parameter is diminished. Figure17 sketches the influence
of the Prandtl number and S1 thermal stratification factor on the Nusselt number. It is observed through the
graph that the higher Pr increases the Nusselt number. A reverse relation is noticed in the case of S1, and
transfer of heat decreased for the escalating thermal stratification function. In Table3, the numerical results
related to the skin coefficient and the Nusselt number are discussed for different physical parameters. The rise
in the magnetic parameter M and suction/injection speed S is noted to improve the local coefficient of skin
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Fig. 15 Impact of S on temperature

Fig. 16 Impact of M and β on the Nusselt number

friction and local Nusselt number. The outcome is that the increment in the aligned angle γ , Prandtl number Pr,
Maxwell parameter β, the nonlinear thermal variable βt , porosity parameter λ1 and mixed convection variable
δ results escalation in the Nusselt number and skin friction coefficient. Moreover, the Nusselt number and skin
friction coefficient have the inverse relation with the increasing local inertia coefficient Fr and the thermal
stratification variable S1. And the shrinking of the sheet has the inverse relation only with the skin friction
coefficient.

5 Concluding remarks

In this paperwork, we have examined the numerical study of the aligned magnetic field in the direction of
heat and flow transmission of upper-convected Maxwell fluid (UCM) with nonlinear convection in a Darcian
porous media across stretching/shrinking sheet. The governing nonlinear partial differential equations (PDEs)
of momentum and temperature are restricted to coupled ODEs by implementing a compatible similarity
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Fig. 17 Impact of Pr and S1 on the Nusselt number

Table 3 Numerical results of skin friction coefficient and Nusselt number for various values of γ , S, Pr, M , β, Fr , βt , λ1, S1, δ
and ε

γ S Pr M β Fr βt λ1 S1 δ ε f ′′(0) −θ ′(0)

π/6 2 0.7 1 0.1 0.3 0.5 0.3 0.1 0.2 −1 2.728905 0.926772
π/2 3.347068 0.974594
π/3 3.155816 0.961403
π/4 2.951310 0.945807

0.5 2.819168 0.671698
0.9 2.663871 1.200992
1.1 2.616171 1.489144

0 2.480468 0.902379
2 2.951310 0.945807
3 3.155816 0.961403

0 1.898974 0.805105
0.05 2.209428 0.860453
0.15 3.771375 1.009624

0 2.821788 0.932396
0.6 2.631038 0.920609
0.9 2.527297 0.913791

0 2.662509 0.919236
1.0 2.793957 0.933991
1.5 2.857773 0.940923

0.1 2.603259 0.915208
0.5 2.844406 0.936715
0.7 2.951852 0.945428

0.3 2.648688 0.655559
0.5 2.573386 0.383464
0.7 2.503105 0.110480

0 2.370199 0.869786
0.4 3.040205 0.969597
0.6 3.322332 1.004387

−0.4 1.530050 1.167727
−0.6 2.041396 1.099834
−0.8 2.445679 1.021087
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conversion. The shooting method is used in the intention to reach the solution. For the influence of suitable
specifications, the value of different physical parameters under consultation on dimensionless velocity and
temperature is demonstrated graphically. The main findings are as follows:

• The enhancement in the magnetic parameter and the suction/injection parameter escalates the local skin
friction coefficient and the local Nusselt number.

• The elevated angle of inclination of the magnetic field strengthens the coefficient of skin friction and
Nusselt number.

• Velocity decreases for the mounting inclination angle of the sheet.
• Local inertia coefficient is accountable for the velocity profile reduction.
• Aligned magnetic field has the opposite relation for the shrinking and stretching sheet.
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