
Arch Appl Mech (2021) 91:23–32
https://doi.org/10.1007/s00419-020-01795-z

TECHNICAL NOTES

Abbas Rahi

Vibration analysis of multiple-layer microbeams based on
the modified couple stress theory: analytical approach

Received: 16 July 2020 / Accepted: 17 September 2020 / Published online: 28 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract The modified couple stress theory (MCST) is used to capture size effect on dynamic response in
multiple-layer microbeams in the present article. Governing equations of the system are obtained based on the
MCST and using Hamilton’s principle. The natural frequencies of the multiple-layer microbeam are calculated
using the analytical method. Then, the results of the natural frequencies are presented with respect to different
values of the system parameters such as the geometric layers and also the dimensionless material length-scale
parameter. The results show that the material length-scale parameter values and also the length, width, and
thickness of each layer are extremely effective on the vibration characteristic of themultiple-layer microbeams.

Keywords Multiple-layer microbeams · Modified couple stress theory · Size dependency · Free vibration ·
MEMS

1 Introduction

The vibration response study of microelectromechanical system (MEMS) devices is very important to the
design and optimization of a small component of the equipment. Today, manufacturing of small size devices
in the field of the MEMS is possible by the development of new knowledge and technologies. Microbeams are
one of the most common elements which are used in the field of the MEMS sensors [1–9].

Several of the investigators studied the vibration response of the microcomponents in the field of MEMS
based on the classical continuum mechanics theories or using the finite element method (FEM) [6,10,11]. In
recent years, it has been observed that the classical continuum mechanics theories are unable to predict and
explain the static and dynamic behaviors of the materials in small sizes such as microbeams [12–16]. In other
words, capturing the size effect is a significant challenge in the study of the vibration response of the small size
structures. Therefore, several of the non-classical continuum theories such as nonlocal elasticity theory, strain
gradient theory, and couple stress theory have been offered to capture the size effect in dynamic response for
microcomponents [12,17–19].

The couple stress theory was presented by Mindlin and Tiersten [18] as a non-classical continuum theory
to consider the size dependency effect using two material length-scale parameters. Then, Yang et al. [19]
proposed the modified couple stress theory (MCST) based on using one material length-scale parameter to
capture the size effect in microcomponents.

The MCST has been used by some researchers to study the size dependency of the static and dynamic
behaviors of materials in micro components. Liang et al. [20]; Park and Gao [21]; Dai et al. [22]; Ma et al.
[23]; Ghiasi [24]; and Asghari et al. [25] investigated static or dynamic behaviors of micro-/nanobeams based
on the MCST to capture the size dependency. Also, some researchers such as Simsek et al. [26]; He et al. [27];
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Fig. 1 Modeling of the microbeam with K layers

Guo et al. [28]; Akbas [29]; Alinaghizadeh et al. [30]; Askari and Tahani [31]; and Ghayesh and Farokhi [32]
studied mechanical behaviors of microplates based on the MCST.

Shoaib et al. [33–35] investigated the dynamic response and frequency analysis and of electrostatic
cantilever-based MEMS sensors without any fault. Also, Shoaib et al. [35] studied the effect of crack faults on
the dynamic behavior of a piezoelectric cantilever-based MEMS sensor using the FEM approach of COMSOL
tool.

In the present work, the dynamic response of a multiple-layer microbeam is investigated using an analytical
approach based on the MCST. The multiple-layer microbeam is modeled by a cantilever beam with several
layers that are connected together. The governing equations of the lateral vibration and the associated boundary
conditions are derived based on the MCST and using Hamilton’s principle. Then, the obtained governing
equations are solved using an analytical approach to determine the natural frequencies of the system. Finally,
the first, second, and third natural frequencies of the three-layers microbeam (one silicon layer and two
piezoelectric layers) are investigated with respect to the different values of the system parameters such as the
thickness of the layers, dimensionless material length-scale parameters and dimensionless parameters of the
length and width of the system. The obtained results show that the material length-scale parameter values
and also the length, width, and thickness of each layer have significant and interesting effects on the natural
frequencies of the system.

2 Modeling and governing equations of motion

2.1 Modeling of the system

The modeling and geometry of the multiple-layer microbeam are shown in Fig. 1. The layer No. i th has length
L , width b, thickness hi , density ρi , Young’s modulus Ei , and Poisson’s ratio ϑi . Also, the coordinate system
X–Y–Z, middle surface and neutral surface have been shown in Fig. 1.

It should be noted that for multi-layer microplates with different materials and different elasticity modulus,
the middle surface (mid-plane) and the neutral surface of the cantilever beam do not coincide with each other.
The zm and zn are the transverse coordinates defined with respect to the middle surface and neutral surface of
the cantilever microplate, respectively (please see Fig. 1). The position of the neutral surface with respect to
the middle surface (e) can be calculated as:
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For a microbeam with k layer, Eq. (1) can be written as follows:
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2.2 The modified couple stress theory

The strain energy of a linear elastic isotropic material based on the modified couple stress theory can be written
as follows [21,27]:

πs = 1

2

∫

V

(
σ i jεi j + mi j χ

s
i j

)
dV ; i = x, y, z and j = x, y, z (4)

where V denotes the volume of the system. In addition, the components of the stress tensor σi j , the strain
tensor εi j , the deviatoric part of the symmetric couple stress tensor mi j and the symmetric curvature tensor
χ s
i j can be expressed as follows:

σi j = 2μεi j + λεkkδi j ; mi j = 2μl2χ s
i j (5)

εi j = 1

2

(
ui, j + u j,i

) ; χ s
i j = 1

2

(
θi, j + θ j,i

)
(6)

θi = 1

2
εi jk uk, j (7)

In the above equations, θi, j is the gradient of rotation, θi is infinitesimal rotation vector, εi jk is alternating
tensor (or permutation symbol), and ui is components of the displacement vector. The parameters (λ, μ) and
l are called Lamé constants and the material length-scale parameter, respectively. The Lamé constants can also
be written regarding Young’s modulus E and Poisson’s ratio ϑ as follows:

λ = ϑ E

(1 + ϑ) (1 − 2ϑ)
; μ = E

2 (1 + ϑ)
(8)

2.3 Governing equations of the system

Consider that thew(x, t) denotes the transverse deflection of the neutral line of the multiple-layer microbeam
with k layers at any point x along the length of the sensor in the Z direction (please see Fig. 1). By using
Euler–Bernoulli beam theory, the displacement field at any material point in the microbeam can be written as
follows:

u1 = zn
∂w (x, t)

∂x
; u2 = 0 ; u3 = w (x, t) (9)

Assuming small transverse deflection in the multiple-layer microbeams, the nonzero components of the strain
and the stress tensors can be expressed as follows:

εxx = zn
∂2w

∂x2
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σxx = Eεxx = Ei zn
∂2w

∂x2
; (for layer No. i) (10)

The non-zero components of the symmetric curvature tensor and the deviatoric part of the symmetric couple
stress tensor can be obtained as follows:

χ s
xy = χ s

yx = −1

2

∂2w

∂x2

mxy = myx = − Ei l2i
2 (1 + ϑi )

∂2w

∂x2
; (for layer No. i) (11)

where li is the material length-scale parameter of the layers No. i .
Therefore, from Eq. (4), the total strain energy of the system can be written as follows:
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where

Ĩi = Īi + Ai z̄
2
ni Īi = b h3i

12
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where
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In the above equations, Ai is the cross section area of the layers No. i at position x in length of the sensor.
It is noted that for a uniform and isotropic elastic with rectangular section (b × hi ) , the cross-sectional

area–moment of inertia about yy axis can be calculated from Īi = bh3i
12 = Ai h2i

12 for i = 1, 2, ..., K . Therefore,
according to Eq. (10), the total strain energy of the system can be written as follows:
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)

+
[

K∑

i=1

6 Ei Īi
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The kinetic energy of the system T can be written as follows:
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where the dot over variables is the derivative of variable relative to time.
Hamilton’s principle is considered as follows:

∫ t2

t1
δ (T − πs + W ) dt = 0 (17)
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where δW is the virtual work done by external non-conservative forces on the system. For free vibration
analysis of the considered system, the δW is zero.

By substituting Eqs. (15) and (16) into (17), and then using variational calculus, governing equations of
motion of the system can be derived as follows:

S
∂4w

∂x4
+ B ẅ − D

∂2ẅ

∂x2
= 0 (18)

where
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K∑
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By neglecting ∂2ẅ

∂x2
, the Eq. (18) can be simplified as follows:

S
∂4w

∂x4
+ B ẅ = 0 (20)

The solution of Eq. (17) can be expressed as follows:

w (x, t) = W (x) × sin (ωt) (21)

By substituting Eq. (21) into Eq. (20) and to have some algebraic simplification, we have

d4W

dx4
− β4W (x) = 0

β4 = B ω2

S
(22)

where ω is the natural frequency. Also, the general solution of Eq. (22) can be obtained as follows:

W (x) = B̃1 sin (βx) + B̃2 cos (βx) + B̃3 sinh (βx) + B̃4 cosh (βx) (23)

where B̃1 , B̃2 , B̃3 , and B̃4 are constants.
Also, the boundary conditions of the system can be expressed as follows:

W (0) = 0 ; dW

dx
(0) = 0

d2W

dx2
(L) = 0 ; d3W

dx3
(L) = 0 (24)

By substituting Eq. (24) into Eq. (23), a set of four algebraic equations resulting in matrix form can be obtained
as follows:

[
Qi j

] {
B̃ j

}
= 0 ; i, j = 1, 2, 3, 4 (25)

where

Q11 = Q13 = 0 ; Q12 = Q14 = 1

Q22 = Q24 = 0 ; Q21 = Q23 = −β

Q31 = −β2 sin (βL) ; Q32 = −β2 cos (βL)
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Q33 = β2 sinh (βL) ; Q34 = β2 cosh(βL)

Q41 = −β3 cos (βL) ; Q42 = β3 sin (βL)

Q43 = β3 cosh (βL) ; Q44 = β3 sinh(βL) (26)

For nontrivial solution of Eq. (25), the determinant of the matrix
[
Qi j

]
must be zero. Also, if the determinant

of the matrix
[
Qi j

]
be zero, the result and the first, second, third, and fourth roots of it can be calculated as

follows:

det
[
Qi j

] = 0 ⇒ cos (βnL) cosh (βnL) = −1 ; n = 1, ..., ∞
β1L = 1.87510 ; β2L = 4.69409 ; β3L = 7.85476 ; β4L = 10.99554 (27)

Therefore, according to Eqs. (22) and (27), the natural frequencies of the multiple-layer microbeams with k
layers can be determined as follows:
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3 Verification

In the previous section, the governing equation of motion for lateral vibration of the cantilever multiple-layer
microbeams with k layers which are connected together was derived analytically based on the MCST as
follows:
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Ei Ĩi +
K∑

i=1

6 Ei Īi
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In special case li
hi

≈ 0, for the macrosystem, Eq. (30) is simplified as
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)
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ρi Ai
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ẅ = 0 (32)

Also, It can be easily seen that for the special case hi = 0 ( f or i �= 1) (when we have only one layer), Eq.
(32) is simplified as

(
E1 Ī1

) ∂4w

∂x4
+ (ρ1A1) ẅ = 0 (33)

Equation (33) is compatible with the classical form of the governing equations of free vibration of a cantilever
beam in macro size.
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Table 1 Dimensions and material parameters of the microbeam with 3 layers

Parameters
description

Symbol unit Layer No. 1
(Piezoelectric
layer) i = 1

Layer No.
2 (Silicon
layer) i = 2

Layer No. 3
(Piezoelectric
layer) i = 3

Length L µm 800 800 800
Width b µm 300 300 300
Thickness hi µm 10 20 10
Young’s modulus Ei GPa 63 170 63
Density ρi Kg/m3 7550 2233 7550
Poisson’s ratio ϑi – 0.32 0.22 0.32

Fig. 2 Variation of the first natural frequency of the multiple-layer microbeam versus the ratio thickness of layers h2
h1

for different
values of the layer thickness h1 and h3

4 Results and discussion

In this section, the effect of size and also dimensions of the multiple-layer microbeam with three layers
(two layers of piezoelectric and one layer of silicon) on the natural frequencies of the system are studied. In
numerical analyses, according to Fig. 1, the nominal dimensions, materials, and geometry of themultiple-layer
microbeam are mentioned in Table 1 [35].

In the present paper, the material length-scale parameter li for silicon and piezoelectric layers has been
considered 1.0µm and 2.4µm, respectively [35].

The first natural frequency of the multiple-layer microbeam versus the ratio thickness of the silicon layer to

thickness of the piezoelectric layer
(
h2
h1

)
has been presented in Fig. 2, for different values of the layer thickness

h1 and h3. The obtained results in Fig. 2 show that there is interesting behavior on the natural frequencies
with the increase in dimensionless thickness parameter h2/h1 . It should be noted that this behavior can be
considered in the optimization design of themultiple-layermicrobeam such asmicrosensors system. The above
behavior for second and third natural frequencies of the multiple-layer microbeam can also be observed in
Figs. 3 and 4, respectively.

Also, the first natural frequency of the multiple-layer microbeam versus piezoelectric thickness h3 has
been depicted in Fig. 5 for various values of dimensionless material length-scale parameter l2/h2, at silicon
thickness h1 = 10µm and h2 = 20µm.

In addition, the variation of the first natural frequency of the systemversus the parameter h2 has been studied
in Fig. 6 for different values of the thickness of the layers h1 and h3 , at microbeam length L = 800µm. The
obtained results in Fig. 6 show that the first natural frequency of the multiple-layer microbeam will increase
when dimensionless parameter h2 increases.



30 A. Rahi

Fig. 3 Variation of the second natural frequency of the multiple-layer microbeam versus the ratio thickness of layers h2
h1

for
different values of the layer thickness h1 and h3

Fig. 4 Variation of the third natural frequency of the multiple-layer microbeam versus the ratio thickness of layers h2
h1

for different
values of the layer thickness h1 and h3

In Figures 2, 3, 4, 5 and 6, the results of the higher-order theory have been presented with solid lines, and
dashed lines have been used for the curves with the vanishing the material length-scale parameters li .

5 Summary and conclusion

In this article, the dynamic response of a multiple-layer microbeam was studied by an analytical approach.
To capture size effects and also to predict the vibration response of the multiple-layer microbeam, governing
equationswere derivedbasedonHamilton’s principle andmodified couple stress theory (MCST).The analytical
approach was used in the solution of the partial differential equations. The first, second, and third natural
frequencies of the system for various values of system parameters such as dimensionless material length-scale
parameter, the thickness of the silicon, and piezoelectric layers, were investigated.

The obtained results of the natural frequencies were presented for a multiple-layer microbeam with one
silicon layer and two piezoelectric layers. The results show that material length-scale parameter values and
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Fig. 5 Variation of the first natural frequency of the multiple-layer microbeam versus thickness of the piezoelectric layer h3 for
different values of dimensionless material length-scale parameter l2/h2

Fig. 6 Variation of the first natural frequency of the multiple-layer microbeam versus the parameter h2 for different values of the
thickness of the layers h1 and h3

also the length, width, and thickness of each layer have significant effects on the vibration behavior of the
multiple-layer microbeam system.
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