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Abstract This paper focuses on the nonlinear dynamic responses of a functionally graded material (FGM)
truncated conical shell under 1:2 internal resonance relation. TheFGMtruncated conical shell is subjected to the
in-plane load and the aerodynamic load along themeridian direction. According to a power-law distribution, the
material properties are assumed to bemodified along the thickness direction smoothly and continuously and the
material properties are temperature dependent. The aerodynamic load is obtained by the first-order piston theory
with the curvature correction term. According to von Karman type nonlinear geometric relations, first-order
shear deformation shell theory, Hamilton principle, the nonlinear equations of motion for the FGM truncated
conical shell are established. Furthermore, the nonlinear equations of motion are reduced into a system of the
ordinary differential equations by utilizing Galerkin procedure. The multiple scales method is used to obtain
the averaged equations for the FGM truncated conical shell under the relations of 1:2 internal resonance and
1/2 subharmonic resonance. The frequency–response curves, time history diagrams, phase portraits, Poincare
maps and bifurcation diagrams with different parameters are yielded by employing numerical calculations.
The influences of exponent of volume fraction, Mach number, damping coefficient and in-plane load on the
nonlinear resonance behaviors of the FGM truncated conical shell are investigated. The chaotic and periodic
motions of the FGM truncated conical shell have been discussed in detail.

Keywords Nonlinear vibrations · Chaos · Functionally graded materials · 1:2 Internal resonance · Conical
shell

1 Introduction

Functionally graded materials (FGMs) are famous for their excellence thermomechanical performances, and
the FGM structures inspired researchers to explore the dynamics which are often used in the high strength or
high temperature environments [1,2]. Because of the continuous and smooth varies of the volume fractions
of the constituent materials for the functionally graded materials, the material properties, for example the
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Young’s modulus, the thermal expansion coefficient and the density, all change continuously. Therefore, the
FGM structures can relieve the problems of the interfacial debonding and the stress concentration. It is well
known that the conical shell structure is one of the primary structures in many engineering community, for
example, aircraft and rocket propulsion system, ship structures, pressure and piping vessels [3,4]. The FGM
conical shells are often subjected to the complex loads, for example aerodynamic load, in-plane load, transverse
load and thermal stress, which will result in the complex nonlinear dynamics. Particularly, the occurrence of
the nonlinear internal resonance phenomenon can cause the large amplitude vibration, noises, irrecoverable
deformations and cracks in practical engineering applications, even the failure of the structures. In the early
days, the resonances leaded to the collapse of the 860 m Taksim bridge in the USA. Therefore, it is significant
to predict and understand the nonlinear dynamic characteristics of FGM conical shell with internal resonance
under complex loads.

Now, much researches have been carried out for the vibration characteristics of FGM conical shells. Javani
et al. [5] performed a thermally induced vibration analysis for a functionally gradedmaterial conical shell which
is considered the uncoupled thermoelasticity assumptions. The effects of the thickness upon the deflections, the
semi vertex angle, geometrical nonlinearity, the length and the temperature dependency of the conical shells
are investigated. Based on the higher-order shear deformation theory, Ansari et al. [6] investigated the large-
amplitude free and forced vibrations of functionally graded carbon nanotube reinforced composite conical
shells. Chan et al. [7,8] investigated the nonlinear dynamic responses and vibrations of truncated eccentrically
stiffened functionally graded conical shells and truncated functionally graded conical panels surrounded by
the elastic medium in the thermal environment. The influences of elastic foundations, dimensional parameters,
inhomogeneous, temperatures and outside stiffeners on the nonlinear vibration and dynamic response of the
truncated conical shells are investigated. Dai et al. [9] studied the frequency characteristics of the rotating
truncated conical shells by using the Haar wavelet method. The vibration behaviors of a truncated conical
sandwich shell that include temperature-dependent homogeneous core and porous behavior in the various
thermal conditions are investigated by Rahmani et al. [10].

Song et al. [11] investigated the free vibrations of a truncated conical shell under the inertia force and elastic
constraints with the arbitrary boundary conditions. Hao et al. [12,13] investigated the nonlinear vibration and
supersonic flutter of a FGM circular conical panel by using the first order shear deformation theory. Sofiyev
[14] provided the review on the buckling and vibration of functionally graded materials, functionally graded
sandwich-conical shell, functionally graded layered conical shell and functionally graded conical shell. Jooybar
et al. [15] investigated the effects of the geometrical parameters, the thermo environment, and graded index of
the materials on free vibration of FGM conical panel by using differential quadrature method. Hao et al. [16]
researched on the truncated metal-ceramic graded conical shell on aero-thermo-elastic flutter characteristics
subjected to aerodynamic pressure and aerodynamic heating. Using Hamilton’s principle and first-order shear
deformation theorem, the equilibrium equations of two joined laminated conical shells were derived by Izadi
et al. [17], and the free vibration analyses of the shells were investigated. Zhao et al. [18] presented a spectro-
geometric-Ritz solution for the free vibration analyses of conical-cylindrical-spherical shell combinations with
the arbitrary boundary conditions.

In the past few years, much researchers have interested in buckling characteristics of the conical shells.
Sofiyev et al. [19,20] studied the dynamic stability of the functionally graded truncated conical shells and the FG
orthotropic conical shells by using FSDT. Hoa et al. [21] investigated the nonlinear thermomechanical buckling
and postbuckling of the ES-FGM truncated conical shells. The influences of the temperature, the stiffeners,
the foundations, the material properties, the geometric dimensions on the stability of shells are given. Based
on the classical shell theory, Chan et al. [22] provided a nonlinear static analysis for a truncated functionally
graded carbon nanotubes-reinforced composite conical shells subjected to the axial load. Then, Chan et al.
[23] studied the nonlinear buckling characteristics of truncated stiffened FGM conical shells subjected to a
uniform axial compressive load and resting on the elastic foundation by using first-order shear deformation
theory. The buckling analyses of the composite laminated conical shells reinforced with graphene sheets are
investigated by Kiani [24]. Jiao et al. [25] proposed a semi-analytical approach to investigate dynamic buckling
characteristics of the composite cylindrical shell reinforced by functionally graded carbon nanotubes under
the dynamic displacement loads. Talebitooti [26] investigated the buckling of the composite sandwich conical
shells subjected to a uniform external lateral pressure based on the first-order shear deformation shell theory.

Dung et al. [27] studied the buckling behaviors of a FGM truncated conical shell, the influences of stiffeners,
dimensional parameters andmaterial properties anddiscussed in detail. Zhao et al. [28] investigated the thermal-
mechanical buckling characteristics of a FGMconical panel by using the element-free KP-Ritz method. Pasqua
et al. [29] studied the buckling characteristics of the composite conical shell subject to different disturbed loads.
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According to FSDT, the buckling behaviors of a composite sandwich conical shell subject to uniform external
lateral load was given by Talebitooti [30].Maali et al. [31] studied the buckling behaviors of a thin imperfection
conical panel under the simply supported condition. According to the modified Donnell shell theory, Sofiyev
et al. [32] investigated the thermo-elastic buckling of a FGM conical shell. The nonlinear temperature increase
along the thickness direction was considered by them. Bich et al. [33] studied the linear buckling of the FGM
conical panels subject to the external and axial pressures.

The improved double Fourier series has been widely used in vibration analysis of the beam, plate and
shell structures under elastic boundary conditions or arbitrary boundary conditions with elastic supported.
For example, Shi and Wang et al. [34–38] carried out a lot of researches on the vibration analyses of beam,
plate and shell structures under the arbitrary boundary conditions by using the improved double Fourier series.
According to an accurate modified Fourier series solution, the free vibration analyses of the truncated conical
shells with general elastic boundary conditions were presented by Jin et al. [39]. Dai et al. [40] investigated
dynamic behavior of cylindrical shell structures with general boundary condition based on themodified Fourier
series method.

Zhang et al. [41–44] carried out a lot of studies on internal resonance behaviors of composite plate and
shell structures, and their research results show that internal resonance has a great influence on the nonlinear
vibration of plate and shell structures. Our group has done a lot of research on the shell and plate structures
by using the techniques in this paper. For example, we have investigated the nonlinear vibration [3,4] and
nonlinear flutter [12,16] of the FGM truncated conical shell and the nonlinear internal resonance behaviors
of the FGM cylindrical shell [44]. Therefore, the method used in this paper is effective for dealing with the
nonlinear dynamics problem of the FGM truncated conical shell.

Up to now, few researches have been carried out the nonlinear resonance behaviors of the FGM truncated
conical shell with 1:2 internal resonance. In this paper, the nonlinear dynamics of a FGM truncated conical
shell which is subjected to in-plane load and aerodynamic load under 1:2 internal resonance condition are
investigated. Based on Hamilton principle, von Karman type nonlinear relations and FSDT, the nonlinear
governing equations of motion for the FGM truncated conical shell are established. By using the Galerkin
method, the ordinary differential equations ofmotion along the radial displacement are obtain. The qualification
which the 1:2 internal resonance occurs of the FGM truncated conical shell is found. The multiple scales
method is used to obtain the averaged equations for the FGM truncated conical shell under the relations of
1:2 internal resonance and 1/2 subharmonic resonance. The frequency-response curves, time history diagrams,
phase portraits, Poincare maps and bifurcation diagrams with different parameters are yielded by employing
numerical calculations to show the complex nonlinear dynamics and chaotic phenomena of the FGM truncated
conical shell. The influences of exponent of volume fraction, Mach number, damping coefficient and in-plane
load on the nonlinear resonance behaviors on the nonlinear vibrations of the FGM truncated conical shell are
studied. The chaotic and periodic motions of the FGM truncated conical shell have been discussed in detail.

2 Equations of motion

Figure 1 shows the model of a FGM truncated conical shell. The geometric parameters of the FGM truncated
conical shell are as follows: semi-vertex angle β, thickness h, length L and minor inner radius r1. The radius of
any point along the meridional are computed by R = r1+ x sin β. The curvilinear coordinate system (x, θ, z)
is along the meridional, circumferential and radial directions, respectively, which is located on the mid-surface
of the FGM truncated conical shell. It is considered that the FGM truncated conical shell is subjected to the
in-plane load and aerodynamic load. The uniformly distributed in-plane load which at the two ends x = 0 and
x = L of the FGM truncated conical shell is represented as p1 cos (�t).

Considering the supersonic flow is parallel to the outside of the FGM truncated conical shell. Based on
the first-order piston theory with the curvature correction term, the aerodynamic load Pa are approximated as
[45,48].

Pa = − γa p∞M2
a√

M2
a − 1

[
∂w

∂x
+
(
1 − 1

M2
a − 1

)
1

Maa∞
∂w

∂t
− w

2R
√
M2

a − 1

]

, (1)

where last term is the curvature correction term, Ma, a∞, p∞, γa and t are Mach number, free stream velocity
of sound, free stream static pressure, adiabatic exponent and time, respectively.

The material properties are regarded as varying continuously and smoothly along the thickness direction z
according to a power law distribution. Thus, the outside surface of the FGM truncated conical shell is ceramic
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Fig. 1 The model of a FGM truncated conical shell is given
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Fig. 2 The schematic diagram of the volume fractions of the ceramic and the metal for the FGM truncated conical shell through
the thickness direction is obtained

rich. At the same time, the internal surface is metal rich. The schematic diagram of the volume fractions of the
ceramic and the metal for the FGM truncated conical shell through the thickness direction is given in Fig. 2.
The volume fractions of the ceramic and the metal for the truncated FGM conical shell is shown in Fig. 3, and
they are written as follows

Vc (z) =
(
2z + h

2h

)η

, Vm (z) =
(
h − 2z

2h

)η

, (2)

where V is the volume fraction, the subscripts c and m represent ceramic and metal, respectively, and the
superscript η is the volume fraction index of the ceramic.

The value of the Poisson’s ratio ν of the FGM truncated conical shell is regarded as a constant. The other
material properties of the FGM truncated conical shell, such as mass density ρ, Young’s modulus E and
coefficient of the thermal expansion α, are determined according to a linear rule of mixture as [49]

P = PcVc + PmVm, (3)

The typical temperature-dependent material properties can be expressed as [50]

Pi = P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3) , i = c , m, (4)
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Fig. 3 The volume fractions of the ceramic through the thickness direction are obtained

where the temperature coefficients P0, P−1, P1, P2 and P3 are the coefficients of the temperature T expressed
in Kelvin. These coefficients are different for different constituent materials.

According to the first-order shear shell deformation theory [51], the displacement fields of the FGM
truncated conical shell are assumed as

u (x, θ, z, t) = u0 (x, θ, t) + zϕx (x, θ, t) , (5a)

v (x, θ, z, t) = v0 (x, θ, t) + zϕθ (x, θ, t) , (5b)

w (x, θ, z, t) = w0 (x, θ, t) , (5c)

where u, v and w stand for the displacements of any point in the x , θ and z directions, respectively, which are
the functions of the middle in-plane displacements u0, v0 andw0 of the FGM conical shell and the mid-surface
rotations ϕx and ϕθ of the θ axis and the x axis, respectively.

Using the von Karman geometric nonlinear strain–displacement relationships, the nonlinear strains can be
obtained as [52,53]

εx = ∂u0
∂x

+ z
∂ϕx

∂x
+ 1

2

(
∂w0

∂x

)2
, (6a)

εθ = �∂v0

∂θ
+ z�∂ϕθ

∂θ
+ �w0 cosβ + � (u0 + zϕx ) sin β + 1

2
�2
(

∂w0

∂θ

)2
, (6b)

γxθ = �∂u0
∂θ

+ z�∂ϕx

∂θ
− � (v0 + zϕθ ) sin β + ∂v0

∂x
+ z

∂ϕθ

∂x
+ �∂w0

∂x

∂w0

∂θ
, (6c)

γθ z = ϕθ + �∂w0

∂θ
− �v0 cosβ, (6d)

γxz = ∂w0

∂x
+ ϕx , (6e)

where � = 1/R, εx and εθ stand for principal strains, γxθ , γθ z , and γxz denote shear strains.
The thermal effect on the FGM truncated conical shell is considered. As a result of the viscous aerodynamic

heating on the outside surface of the FGM truncated conical shell, the temperature can be calculated as follow
[54]

Tc = T∞ + R f
γ − 1

2
M2

a T∞, (7)

where T∞, Tc, R f and γ are the temperature of the incoming flow, the temperature of the outside surface
for the FGM truncated conical shell, the steady-state temperature recovery factor and the specific heat ratio,
respectively.

The temperature distribution along the radial direction of the FGM truncated conical shell is regarded as
polynomial series [55]

T (z) = Tm + (Tc − Tm) ς (z) , (8)
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where the polynomial series ς (z) is shown

ς (z) = 1

C

[(
2z + h

2h

)
− kcm

km (η + 1)

(
2z + h

2h

)(η+1)

+ k2cm
k2m (2η + 1)

(
2z + h

2h

)(2η+1)

− k3cm
k3m (3η + 1)

(
2z + h

2h

)(3η+1)

+ k4cm
k4m (4η + 1)

(
2z + h

2h

)(4η+1)

− k5cm
k5m (5η + 1)

(
2z + h

2h

)(5η+1)
]

,

(9)

with

kcm = kc − km, (10)

and

C = 1 − kcm
(η + 1) km

+ k2cm
(2η + 1) k2m

− k3cm
(3η + 1) k3m

+ k4cm
(4η + 1) k4m

− k5cm
(5η + 1) k5m

, (11)

where km and kc are the thermal conductivities of the metal and ceramic.
The constitutive relations of FGM truncated conical shell with the thermal stress can be yielded as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx
σθ

σxθ
σθ z
σxz

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢⎢⎢
⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎤

⎥⎥⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εx
εθ

γxθ
γθ z
γxz

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α
α
0
0
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

�T

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (12)

The temperature variation is regarded as �T = T (z) − T0, and T0 represents the reference temperature.
The stiffness coefficients Qi j are calculated as follow

Q11 = Q22 = E

1 − ν2
, Q12 = νE

1 − ν2
, Q44 = Q55 = Q66 = E

2 (1 + ν)
. (13)

Based on Hamilton’s principle, the nonlinear partial differential equations of motion for the truncated FGM
conical shell are established as

Nxx,x + �Nxθ,θ + �Nxx sin β − �Nθθ sin β = I0ü0 + I1ϕ̈x , (14a)

Nxθ,x + �Nθθ,θ + 2�Nxθ sin β + �Qθ cosβ = I0v̈0 + I1ϕ̈θ , (14b)

Qx,x + �Qθ,θ + �Qx sin β − �Nθθ cosβ + Nxx,x
∂w0

∂x
+ Nxx

∂2w0

∂x2
+ �Nxx

∂w0

∂x
sin β

+�2Nθθ,θ

∂w0

∂θ
+ �2Nθθ

∂2w0

∂θ2
+ �Nxθ,θ

∂w0

∂x
+ 2�Nxθ,θ

∂2w0

∂x∂θ

+�Nxθ,x
∂w0

∂θ
+ Pa − p1 cos (�t)

∂2w0

∂x2
− κẇ0 = I0ẅ0, (14c)

Mxx,x + �Mxθ,θ − �Qx + �Mxx sin β − �Mθθ sin β = I1ü0 + I2ϕ̈x , (14d)

Mxθ,x + �Mθθ,θ − �Qθ + 2�Mxθ sin β = I1v̈0 + I2ϕ̈θ , (14e)

where � = 1/R, κ represents damping coefficient of the shell, “.” is partial derivative with respect to the time.
All the inertia terms truncated FGM conical shell in the above equations are given

Ii =
∫ h

2

− h
2

ziρdz, (i = 0 , 1, 2) . (15)

The components of the thermal stress and stress resultants are calculated as
⎧
⎨

⎩

Nxx
Nθθ

Nxθ

⎫
⎬

⎭
=
∫ h

2

− h
2

{[A] , [B]}
{

ε(0)

ε(1)

}
dz +

⎧
⎨

⎩

NT
xx

NT
θθ
0

⎫
⎬

⎭
, (16a)
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⎧
⎨

⎩

Mxx
Mθθ

Mxθ

⎫
⎬

⎭
=
∫ h

2

− h
2

{[B] , [D]}
{

ε(0)

ε(1)

}
dz +

⎧
⎨

⎩

MT
xx

MT
θθ
0

⎫
⎬

⎭
, (16b)

{
Qx
Qθ

}
= K

∫ h
2

− h
2

[A]

{
γxz
γθ z

}
dz, (16c)

⎛

⎝

⎧
⎨

⎩

NT
xx

NT
θθ

NT
xθ

⎫
⎬

⎭
,

⎧
⎨

⎩

MT
xx

MT
θθ

MT
xθ

⎫
⎬

⎭

⎞

⎠ =
∫ zk+1

zk

⎡

⎣
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤

⎦

⎧
⎨

⎩

αx
αθ

αxθ

⎫
⎬

⎭
(�T, �T z) dz, (16d)

where K is the shear correction coefficient and give it as follows [56]

K = 5

(6 − ν)
. (17)

The tensile rigidity Ai j , the bending-tensile coupling rigidity Bi j , and the bending rigidity Di j of the FGM
truncated conical shell can be expressed by

(
Ai j , Bi j , Di j

) =
∫ h

2

− h
2

Qi j
(
1, z, z2

)
dz, (i, j = 1, 2, 6) , (18a)

Ai j =
∫ h

2

− h
2

Qi jdz, (i, j = 4, 5) . (18b)

Using the aforementioned equations, the nonlinear equations of motion in form of generalized displace-
ments for the FGM truncated conical shell are given in the “Appendix A.”

The boundary conditions of the FGM truncated conical shell are considered as the simply supported at the
two ends

x = 0 and x = L : w0 = v0 = Nx = Mx = Mxθ = 0. (19)

The displacements u0, v0, w0, ϕx and ϕθ of the FGM truncated conical shell, which satisfy the boundary
conditions, are represented in the form of the double Fourier sine series

u0 =
M∑

m=1

N∑

n=1

umn (t) cos
(mπx

L

)
cos (nθ), (20a)

v0 =
M∑

m=1

N∑

n=1

vmn (t) sin
(mπx

L

)
sin (nθ), (20b)

w0 =
M∑

n=1

N∑

m=1

Wmn (t) sin
(mπx

L

)
cos (nθ), (20c)

ϕx =
M∑

m=1

N∑

n=1

ϕxmn (t) cos
(mπx

L

)
sin (nθ), (20d)

ϕθ =
M∑

m=1

N∑

n=1

ϕθmn (t) sin
(mπx

L

)
sin (nθ), (20e)

where umn (t), vmn (t), Wmn (t), ϕxmn(t) and ϕθmn(t) are the time-varying terms, m and n are the generatrix
half waves number and the circumferential waves number.

Based on the study results of Noseir [57] and Bhimaraddi [58], the influences of the inertia terms in rotation
and in-plane on nonlinear vibrations of FGM truncated conical shell are very small comparing to radial inertia
term which given in Eq. (18). Thus, the inertia terms of u0, v0, ϕx and ϕθ can be omitted. Thus, the first two
modes of transverse displacement w are very important. Substituting the double Fourier series of Eq. (20)
into Eqs. (A1), (A2), (A4) and (A5), Galerkin integration procedure is employed to acquire four constant
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coefficients of the coupled algebraic equations. Then, the displacements u0, v0, ϕx and ϕθ with respect to
the displacement w0 can be derived. Therefore, substituting the expressions about u0, v0, ϕx and ϕθ into the
ordinary differential equation obtained by Eq. (A3), the nonlinear ordinary differential equations of motion
for the FGM truncated conical shell are obtained

Ẅ11 + μ1Ẇ11 + ω2
1W11 + ζ11W

3
11 + ζ12W

2
11W12 + ζ13W11W

2
12 + ζ14W

3
12 + ζ15W11 (p1 cos�t) = 0,

(21a)

Ẅ12 + μ2Ẇ12 + ω2
2W12 + ζ21W

3
12 + ζ22W

2
11W12 + ζ23W11W

2
12 + ζ24W

3
12 + ζ25W11 (p1 cos�t) = 0,

(21b)

In order to get the dimensionless equations of the FGM truncated conical shell, the following transformation
of the variables and parameters are introduced

τ = ω1t,W11 = q1h,W12 = q2h, �̄ = �

ω1
, μ̄1 = μ1

ω1
, μ̄2 = μ2

ω1
,

ω̄1 = ω1

ω1
, ω̄2 = ω2

ω1
, p̄1 = p1

ω2
1

, ζ̄i j = ζi j h2

ω2
1

, (i = 1 , 2, j = 1 , 2 , 3 , 4). (22)

Thus, the dimensionless equation of the FGM truncated conical shell can be rewritten as

q̈1 + μ̄1q̇1 + ω̄2
1q1 + ζ̄11q

3
1 + ζ̄12q

2
1q2 + ζ̄13q1q

2
2 + ζ̄14q

3
2 + ζ̄15q1

(
p̄1 cos �̄τ

) = 0, (23a)

q̈2 + μ̄2q̇2 + ω̄2
2q2 + ζ̄21q

3
1 + ζ̄22q

2
1q2 + ζ̄23q1q

2
2 + ζ̄24q

3
2 + ζ̄25q1

(
p̄1 cos �̄τ

) = 0, (23b)

where “·” stands for the derivative with respect to the dimensionless time τ .

3 Perturbation analysis

By using the scale method [59], a perturbation analysis is carried out in following study. A small perturbation
parameter ε is introduced to characterize the amplitude of the radial displacement, the loading and the damping
of the FGM truncated conical shell

qi = εwi , μ̃i = ε2μ̄i , p̃ = ε2 p̄, (i = 1 , 2). (24)

Substituting Eq. (24) into Eq. (23), the dimensionless system is obtained as follows. For simplicity, the
overbars are omitted in the following equations

ẅ1 + εμ1ẇ1 + ω2
1w1 + εζ11w

3
1 + εζ12w

2
1w2 + εζ13w1w

2
2 + εζ14w

3
2

+ εζ15w1 (p1 cos�t) = 0, (25a)

ẅ2 + εμ2ẇ2 + ω2
2w2 + εζ21w

3
2 + εζ22w

2
1w2 + εζ23w1w

2
2 + εζ24w

3
2

+εζ25w1 (p1 cos�t) = 0. (25b)

For utilizing the multiple scales method, the approximate solutions of Eq. (25) are assumed as follows

wn(τ , ε) = xn0(T0, T1) + εxn1(T0, T1) + · · · , (n = 1 , 2) , (26)

where T0 = τ , T1 = ετ .
Then, one obtains the following differential operators

d

dτ
= ∂

∂ T0

∂ T0
∂ τ

+ ∂

∂ T1

∂ T1
∂τ

+ · · · = D0 + ε D1 + · · · , (27a)

d2

dτ 2
= (D0 + εD1 · · ·)2 = D2

0 + 2εD0D1 + · · · , (27b)

where Dk = ∂
∂Tk

, (k = 0 , 1 ).
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The following analyses are focused on the case of 1:2 internal resonant and 1/2 subharmonic resonant
relations. Therefore, the resonant relations can be proved as

2ω1 = � − εσ1, ω2 = � − εσ2, � = 2, (28)

where σ1 and σ2 are the detuning parameters.
Substituting Eqs. (26)–(28) into Eq. (25) and equating the coefficients of the same power of ε yield the

following equations

Order ε0

D2
0 x10 + x10 = 0, (29a)

D2
0x20 + x20 = 0, (29b)

Order ε1

D2
0x11 + x11

4
= −2D0D1x10 − μ1D0x10 + σ1

2
x10 − ζ11x

3
10 − ζ12x

2
10x20

−ζ13x10x
2
20 − ζ14x

3
20 − ζ15x10 p1 cos (τ ) , (30a)

D2
0x21 + x21 = −2D0D1x20 − μ2D0x20 + 2σ2x20 − ζ21x

3
10 − ζ22x

2
10x20

−ζ23x10x
2
20 − ζ24x

3
20 − ζ25x20 p1 cos (τ ) . (30b)

The solution of Eq. (29) is represented in the complex form

x10 = A1 (T1) e
i
2 T0 + Ā1 (T1) e

− i
2 T0 , (31a)

x20 = A2 (T1) e
i
2 T0 + Ā2 (T1) e

− i
2 T0 , (31b)

where Ā1 and Ā2 are the complex conjugate parts of A1 and A2, respectively.
Substituting Eq. (31) into Eq. (30), one yields

D2
0x11 + x11

4
=
(

−i D1A1 − μ1i

2
A1 + σ1

2
A1 − 3ζ11A

2
1 Ā1 − 2ζ12A1 Ā1A2

−1

2
ζ15 p1 Ā1

)
e
i
2 T0 + CC + NST, (32a)

D2
0x21 + x21 = (−2i D1A2 − μ2i A2 + 2σ2A2 − 2ζ22A1 Ā1A2 − 3ζ24A

2
2 Ā2

−1

2
ζ25 p1 Ā2

)
eiT0 + CC + NST, (32b)

where CC stand for the complex conjugate terms of the preceding parts and NST stand for the parts which
cannot produce the secular terms.

The amplitude functions can be written in polar form as

A1 = 1

2
a1e

iϕ1, A2 = 1

2
a2e

iϕ2 . (33)

Substituting Eq. (33) into the parts that producing the secular terms of Eq. (32), the averaged equations in
polar form are yielded by separating the real and imaginary parts

da1
dT1

= −μ1a1
2

− ζ15 p1a1
2

sin (2ϕ1) , (34a)

a1
dϕ1

dT1
= −σ1a1

2
− ζ15 p1a1

2
cos (2ϕ1) + 3ζ11a31

4
+ +ζ13a1a22

2
, (34b)

da2
dT1

= −μ2a2
2

− ζ25 p1a2
4

sin (2ϕ2) , (34c)

a2
dϕ2

dT1
= −σ2a2

2
− ζ25 p1a2

2
cos (2ϕ2) − 3ζ21a32

8
+ ζ23a21a2

4
. (34d)
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Table 1 The material properties of SUS304, SI3N4 and ZrO2 are given

SUS304 SI3N4 ZrO2

E (Pa) ρ (kg/m3) α (1/K) E (Pa) ρ (kg/m3) α (1/K) E (Pa) ρ (kg/m3) α (1/K)

P−1 0 0 0 0 0 0 0 0 0
P0 201.04e−9 8166 12.33e−6 348.43e−9 2370 5.872e−6 244.27e9 3000 12.766e−6
P1 3.079e−4 0 8.08e−4 − 3.07e−4 0 9.09e−4 − 1.371e−4 0 − 1.491e−3
P2 − 6.53e−7 0 0 2.16e−7 0 0 1.214e−6 0 1.006e−5
P3 0 0 0 − 8.95e−11 0 0 − 3.681e−10 0 − 6.778e−11

Table 2 Comparison of the dimensionless transverse amplitudes of the FGM truncated conical shell at the point (3L/4, 0, 0) for
first mode, first two modes and first three modes is given

p1 First mode First two modes First three modes

60 2.9566 3.1742 3.1733
70 6.3252 6.8563 6.8552
80 6.5461 6.9806 6.9785

The amplitude functions are also rewritten in the Cartesian form, as following

A1 = x1 + i x2, A2 = x3 + i x4. (35a)

Substituting Eq. (35) into the parts that producing the secular terms of Eq. (32) and separating the real and
imaginary parts, the four-dimensional averaged equations in the form of Cartesian can be obtained as

dx1
dT1

= σ1x2
2

− μ1x1
2

− ζ15 p1x2
4

− 3ζ11x
3
2 − 3ζ11x

2
1 x2 − 2ζ13x2x

2
3 − 2ζ13x2x

2
4 , (36a)

dx2
dT1

= −σ1x1
2

− μ1x2
2

− ζ15 p1x1
4

+ 3ζ11x
3
1 + 3ζ11x1x

2
2 + 2ζ13x1x

2
3 + 2ζ13x1x

2
4 , (36b)

dx3
dT1

= σ2x4 − μ2x3
2

− ζ25 p1x4
4

− 3ζ21x34
2

− 3ζ21x23 x4
2

− ζ23x
2
1 x4 − ζ23x

2
2 x4, (36c)

dx4
dT1

= −σ2x3 − μ2x4
2

− ζ25 p1x3
4

+ 3ζ21x33
2

+ 3ζ21x3x24
2

+ ζ23x
2
1 x3 + ζ23x

2
2 x3. (36d)

4 Frequency responses

In this section, a FGM (SUS304/SI3N4) truncated conical shell are considered, the smaller radius at middle
surface r1 = 0.8m, semi-vertex angle β = 30◦ and thickness h = 0.002m. The mass densities, Young’s
modulus and coefficients of thermal expansion of SUS304 and SI3N4 are given in Table 1. The airflow
characteristics are provided as following: α∞ = 213.36 m/s, γα = 1.4 and T∞ = 233.26K. In Fig. 4, when
the ratio of the length to the smaller radius is L/r1 = 3.76, it is found that the natural frequency ω2 = 2ω1,
then, ω̄2 = ω2/ω1 = 2. When the in-plane load frequency is close to 2ω1, there will be the case of 1:2 internal
resonant and 1/2 subharmonic resonant relations.

Firstly, the mode convergence is studied. The condition which the 1:2 internal resonance occurs of the
FGM truncated conical shell is considered. The dimensionless transverse amplitudes of the FGM truncated
conical shell at the point (3L/4, 0, 0) with first mode (1, 1), first two modes (1, 1) and (1, 2), first three modes
(1, 1), (1, 2) and (2, 1) are calculated in Table 1, respectively, when exponent of volume fraction for the ceramic
η = 5 and Mach number Ma = 3. It can be seen that the amplitudes of the FGM truncated conical shell with
1:2 internal resonance obtained with the first two modes and the first three modes are nearly the same, and a
further increase in the number of components does not greatly influence the results.

To evaluate the developed program and present formulation, the dimensionless natural frequencies (�n =
ωn R

√(
1 − ν2

)
ρ/E) are calculated and are compared to those of Liew [60], Kerboua [61] and Najafov [62]

for a pure metal conical shell in Table 3. The geometry relations of the pure metal truncated conical shell
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Fig. 4 The curve of the ratio of the first two order natural frequencies ω2/ω1 versus the ratio of length to top radius L/r1 is
obtained

Table 3 The comparison of dimensionless natural frequency
(
�n = ωn R (L)

√(
1 − ν2

)
ρ/E

)
for truncated pure metal conical

shell with Liew [50], Kerboua [51] and Najafov [52] is obtained

n Liew et al. [50] Kerboua et al. [51] Najafov et al. [52] Present study

2 0.7904 0.7909 0.7943 0.7922
3 0.7274 0.7282 0.7085 0.7089
4 0.6339 0.6349 0.6199 0.6357

Table 4 The comparison of natural frequencies with Pradhan et al. [53] and Shen [54] for thin FGM (SUS304/ZrO2) cylindrical
shell is obtained

Frequencies (Hz) Pradhan et al. [65] Shen [27] Present study

(1, 3) 4.67 4.911 4.915
(1, 4) 7.91 7.883 7.886
(1, 5) 12.18 12.179 12.183
(1, 6) 18.17 17.502 17.507

Table 5 Comparison of the dimensionless central moments M̄xx = Mxx/
(
q0a2

)
and M̄yy = Myy/

(
q0a2

)
for η = 0.5 and 1.0

is given

η M̄xx M̄yy

Ref. [29] Present Ref. [29] Present

0.5 0.01774 0.01742 0.01769 0.01792
1.0 0.01776 0.01801 0.01794 0.01813

are R/h = 100, β = π/6 and L = 0.25R sin β. As expected, for the pure metal truncated conical shell,
the present results are in good agreement with that in the literatures. Furthermore, the natural frequencies are
compared with Pradhan et al. [62] and Shen [63] for the FGM (SUS304/ZrO2) cylindrical shell, as shown in
Table 4. The geometric parameters of the cylindrical shell are given: h = 0.002m, R = 1m and L = 20m.
The material properties of the FGM (SUS304/ZrO2) are shown in Table 1. It is illuminated that the present
results are agree well with the existing results.

In addition, the validation of the present method has been done by comparing the dimensionless central
moments of FGM plate in Table 5 with the value obtained by using the method which is provided by Ref.
[51]. The Ti–6Al–4V/Al2O3 FGM plate has the length a = 0.2 m, the width b = 0.5 m and the thickness
h = 0.002 m. One can note that excellent agreement is reached.
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Fig. 5 The frequency–amplitude response curves of the FGM conical truncated shell with different in-plane loads p1 are obtained
when η = 5 and Ma = 2, a the first-order mode, b the second-order mode

Fig. 6 The frequency–amplitude response curves of the truncated FGMconical shell with differentMach numbersMa are obtained
when η = 5 and p1 = 60

Fig. 7 The frequency–amplitude response curves of the truncated FGM conical shell with different damping coefficient μ1 are
obtained when η = 5 and p1 = 60

Fig. 8 The frequency–amplitude response curves of the FGM truncated conical shell with different exponents of volume fraction
η are obtained when Ma = 2 and p1 = 60
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Fig. 9 The bifurcation diagram of the truncated FGM conical shell for the in-plane load p1 is obtained when the exponents of
volume fraction for the ceramic η = 0.5 and Mach number Ma = 2, a bifurcation diagram of the first-order mode, b bifurcation
diagram of the second-order mode

In the following studies, the numerical calculations are used to investigate the nonlinear dynamics of the
FGM truncated conical shell subject to aerodynamics and in-plane load. Based on the averaged equation
(34), amplitude–frequency responses of the FGM truncated conical shell can be investigated. The left parts of
the averaged equation (34) are proposed to zero. Then, using Maple program, the amplitude–frequency and
amplitude–force response curves of the FGM truncated conical shell are plotted. By inspecting the maximum
real part of the Jacobian matrix of the averaged equation (34), the stabilities of the solutions can be revealed.

Figure 5 depicts the frequency–amplitude response curves of the FGMconical truncated shell with different
in-plane loads p1. Mach number is selected as 2, and the value of the volume fraction index is 5. Figure 5a and
b is the frequency–amplitude response curves of the first-order mode and the second-order mode of the FGM
truncated conical shell, respectively. The full line, the dash line and the dot dash line represent the frequency
amplitude-response curves with different in-plane loads which are chosen as 60, 80 and 100, respectively. The
star represents the stable solutions, and the circle represents the unstable solutions. The upper branch of the
frequency–amplitude response curves of the FGM conical truncated shell is stable and the lower branch is
unstable. By comparing the three lines which in Fig. 5a and b, it is illustrated that there are hardening-spring
characteristics for the two modes of the FGM truncated conical shell. The region of two curves becomes wider
when in-plane load increasing for the FGM truncated conical shell. It is observed that the nonlinear resonance
characteristics become stronger and amplitudes of the twomodes are getting larger when the in-plane excitation
increasing. Figure 6 illustrates the effect ofMach number of the FGM truncated conical shell on the frequency–
amplitude characteristics. Nomatter whatMach number is 2 or 3, there are hardening-spring characteristics for
the twomodes of the FGM truncated conical shell. The region of two curves for Ma = 3 is little wider than that
for Ma = 2. It is due to that with the increase of Mach number, the effects of the aerodynamic heating and the
aerodynamic force of the FGM truncated conical shell becoming powerful. Figure 7 plots amplitude–response
curves with different damping coefficients μ1 when Ma = 2 and p1 = 60. It is shown that with the increase
of the damping coefficients, the nonlinear resonance characteristics are getting weaker and amplitudes of two
modes become smaller. Figure 8 illustrates the influence of the volume fraction index of the FGM truncated
conical shell on the frequency–amplitude responses. It is shown that with the decrease of the volume fraction
index, the nonlinear resonance characteristics are stronger and the amplitudes become larger for the twomodes
of the FGM truncated conical shell.

5 Periodic and chaotic motions

Based on Eq. (36), the chaotic and periodic motions of the truncated FGM conical shell are investigated.
The fourth-order varied-step Runge-Kutta algorithm through the MATLAB software is used to explore the
existence of the chaotic and periodic motions for the truncated FGM conical shell. The bifurcation diagrams,
time phase portraits, Poincare maps and history diagrams can be plotted to reveal the influences of in-plane
load, Mach number, exponent of volume fraction and damping coefficient on the nonlinear vibrations and
chaos of the truncated FGM conical shell.

Figure 9 plots the bifurcation diagrams of the first-order and second-order modes of the truncated FGM
conical shell versus in-plane load when p1 increases from 60 to 100. Mach number is Ma = 2, and the
exponents of the volume fraction for the ceramic is η = 0.5. It can be observed that there is only the periodic
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Fig. 10 The period motion of the truncated FGM conical shell exists when η = 0.5, Ma = 2 and p1 = 60, a the phase portrait
on the plane (x1 , x2), b the time history on the plane(τ , x1), c the phase portrait on the plane (x3 , x4), d the time history on
the plane (τ , x3), (e) the three-dimensional phase portrait in the space (x1 , x2, x3), f the poincare map on the plane (x1 , x2)

motion for the truncated FGM conical shell. It is due to the fact that the volume index is lower, the volume
fraction of ceramic is higher, the stiffness of the FGM truncated conical shell is larger. Figure 10 is the motion
responses of the truncated FGM conical shell when in-plane load is 60. The motion responses include the
following parts, (a) phase portrait on the plane (x1 , x2), (b) time history on the plane (τ , x1), (c) phase
portrait on the plane (x3 , x4), (d) time history on the plane (τ , x3), (e) three-dimensional phase portrait in
space (x1 , x2, x3), (f) Poincare map on the plane (x1 , x2).

Figure 11 illustrates the bifurcation diagrams of the nonlinear vibrations of the truncated FGM conical
shell versus in-plane load when p1 increases from 60 to 100. The exponent of volume fractions for ceramic
is η = 5 and Mach number is Ma = 2, respectively. It is illuminated that the motion of the truncated FGM
conical shell is: the periodic motion → the quasi-period motion → the chaotic motion. A multiple periodic
bifurcation exists in the periodic region when p1 increases from 65 to 78. Figures 12, 13, 14, 15 and 16 prove
the different motion responses of the truncated FGM conical shell when in-plane loads are chosen as different
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Fig. 11 The bifurcation diagram of the truncated FGM conical shell for the in-plane load p1 is obtained when the exponents of
volume fraction for the ceramic η = 5 and Mach number Ma = 2

Fig. 12 The period motion of the FGM truncated conical shell is given when η = 5, Ma = 2 and p1 = 60
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Fig. 13 The period motion of the FGM truncated conical shell is given when η = 5, Ma = 2 and p1 = 75

values. Figures 12, 13 and 14 are the periodic motions of the FGM truncated conical shell when in-plane load
are given as p1 = 60, p1 = 75 and p1 = 80, respectively. Figure 13 is the motion response when the multiple
periodic bifurcation exists. Figure 15 depicts quasi-period motion of the FGM truncated conical shell when
p1 = 92. Figure 16 indicates the chaotic motion of the FGM truncated conical shell when the in-plane load is
selected as 100.

Figure 17 illustrates the change of the motion responses of the truncated FGM conical shell from periodic
motion to chaotic motion. The exponent of the volume fraction for the ceramic is 5 and Mach number is 3.
It is shown that when in-plane load increases to 70, the motion of the FGM truncated conical shell changes
from periodic motion to quasi-period motion. Then, there is chaotic motion existing when the in-plane load
increases to 78. Figures 18, 19 and 20 depict the periodic motion (p1 = 60), quasi-period motion (p1 = 75)
and chaotic motion (p1 = 100), respectively, that are corresponding to the motion responses given in Fig. 17.
Comparing these graphs with Figs. 11, 12, 13, 14, 15 and 16, it is found that with the increase of Mach number,
chaotic motion and quasi-period motion occur in advance. The amplitude when Mach number is Ma = 3 is
greater than that in the case of Ma = 2. It is because of that when Mach number increases, the aerodynamic
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Fig. 14 The period motion of the FGM truncated conical shell is given η = 5, Ma = 2 and p1 = 80

heating creates higher temperature, and thus, the stiffness of the FGM truncated conical shell decreases. At the
same time, the influence of the aerodynamic force on the nonlinear vibrations of the FGM truncated conical
shell is greater.

The case of the exponent of the volume fraction η = 10 andMach number Ma = 2 is considered. Figure 21
plots bifurcation diagram of amplitude for the FGM truncated conical shell versus in-plane load when p1
increases from 40 to 100. The motion responses of the truncated FGM conical shell are given as: periodic
motion → quasi-period motion → periodic motion → quasi-period motion → chaotic motion. Figures 22,
23, 24, 25 and 26 depict the different motion responses when the in-plane excitation is chosen as different
parameters for the FGM truncated conical shell. Figures 22 and 24 represents the periodic motion of the FGM
truncated conical shell, Figs. 23 and 25 indicates the quasi-period motion, Fig. 26 depicts the chaotic motion.
By comparing Figs. 9, 17 and 21, it is shown that the chaotic motion yields earlier when the exponent of the
volume fraction increases.

Figure 27 depicts the bifurcation diagram of the FGM truncated conical shell for the damping coefficient
μ1 is obtained when the exponents of volume fraction for the ceramic η = 5, the in-plane load p1 = 100 and
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Fig. 15 The quasi-period motion of the FGM truncated conical shell is given when η = 5, Ma = 2 and p1 = 92

Mach number Ma = 3. It can be observed that the motions of the FGM truncated conical shell are as follows:
chaotic motion → quasi-period motion → chaotic motion → periodic motion. Figure 28 depicts the chaotic
motion of the FGM truncated conical shell; Figs. 29 and 31 represents the periodic motion; Fig. 30 indicates
the quasi-period motion.

6 Conclusions

In this paper, the nonlinear internal resonance behaviors of a simply supported FGM truncated conical shell
with 1:2 internal resonance are investigated. According to a power-law distribution, the material properties
are assumed to be modified along the thickness direction smoothly and continuously. The aerodynamic load
is derived by using the first-order piston theory that including the curvature correction term. According to
von Karman type nonlinear geometric relations, first-order shear deformation theory, Hamilton principle, the
nonlinear equations of motion for the FGM truncated conical shell are established. Furthermore, the nonlinear
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Fig. 16 The chaotic motion of the FGM truncated conical shell is given when η = 5, Ma = 2 and p1 = 100

Fig. 17 The bifurcation diagram of the truncated FGM conical shell for in-plane load p1 is obtained when exponent of volume
fraction for the ceramic η = 5 and Mach number Ma = 3
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Fig. 18 The period motion of the FGM truncated conical shell is given when η = 5, Ma = 3 and p1 = 60

equations of motion are reduced into a system of the ordinary differential equation by utilizing Galerkin
procedure. The multiple scales method is used to obtain the averaged equations for the FGM truncated conical
shell under the relations of 1:2 internal resonance and 1/2 subharmonic resonance.

The frequency–amplitude responses are investigated by solving the four-dimensional averaged equations. It
is found that there are hardening-spring characteristics for the FGM truncated conical shell under the different
cases. With the increase in Mach number or in-plane load, the nonlinear resonance characteristics become
stronger. When the exponent of volume fraction or the damping coefficient decreases, the nonlinear resonance
characteristics of the truncated FGM conical shell gets stronger and the amplitudes of two modes become
larger.
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Fig. 19 The quasi-period motion of the FGM truncated conical shell is given when η = 5, Ma = 3 and p1 = 75
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Fig. 20 The chaotic motion of the FGM truncated conical shell is given when η = 5, Ma = 3 and p1 = 100
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Fig. 21 The bifurcation diagram of the truncated FGM conical shell for in-plane load p1 is obtained when exponent of volume
fraction for the ceramic η = 1 and Mach number Ma = 2

Fig. 22 The period motion of the FGM truncated conical shell is given when η = 1, Ma = 2 and p1 = 40
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Fig. 23 The quasi-period motion of the FGM truncated conical shell is given when η = 1, Ma = 2 and p1 = 55
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Fig. 24 The period motion of the FGM truncated conical shell is given when η = 1, Ma = 2 and p1 = 60
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Fig. 25 The quasi-period motion of the FGM truncated conical shell is given when η = 1, Ma = 2 and p1 = 64
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Fig. 26 The chaotic motion of the FGM truncated conical shell is given when η = 1, Ma = 2 and p1 = 100

Fig. 27 The bifurcation diagram of the truncated FGM conical shell for damping coefficient μ1 is obtained when exponent of
volume fraction for the ceramic η = 5, in-plane load p1 = 100 and Mach number Ma = 3
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Fig. 28 The chaotic motion of the FGM truncated conical shell is given when μ1 = 10, η = 5, Ma = 3 and p1 = 100

The complex nonlinear motion responses of the FGM truncated conical shell have been discussed in detail.
It is observed that when in-plane load or damping coefficient increase, the periodic, the quasi-period and
the chaotic motions occur for the FGM truncated conical shell. With the increase of the Mach number, the
quasi-period motion and the chaotic motion both occur in advance. It is because of that with the increase of
Mach number, aerodynamic heating creates higher temperature, and stiffness of the FGM truncated conical
shell decreases. At the same time, the influence of the aerodynamic force on the nonlinear motion responses is
greater. The chaotic motion yields earlier when the exponent of the volume fraction increases. It is due to that
the increasing of the exponent of the volume fraction may cause smaller Young’s modulus and greater thermal
expansion coefficient of the FGM truncated conical shell.
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Fig. 29 The period motion of the FGM truncated conical shell is given when μ1 = 14.6, η = 5, Ma = 3 and p1 = 100
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Fig. 30 The quasi-period motion of the FGM truncated conical shell is given when μ1 = 15, η = 5, Ma = 3 and p1 = 100
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Fig. 31 The period motion of the FGM truncated conical shell is given when μ1 = 20, η = 5, Ma = 3 and p1 = 100



914 S. W. Yang et al.

Acknowledgements The authors acknowledge the financial support of National Natural Science Foundation of China through
Grant Nos. 11872127 and 11832002, Qin Xin Talents Cultivation Program, Beijing Information Science&TechnologyUniversity
QXTCP A201901. Project of High-level Innovative Team Building Plan for Beijing Municipal Colleges and Universities No.
IDHT20180513.

Compliance with ethical standards

Conflict of interest The authors declared that they have no conflicts of interest to this work.

Appendix A

Nonlinear equations in form of generalized displacements are listed, as follows

A11
∂2u0
∂x2

+ �2A66
∂2u0
∂θ2

+ �A11
∂u0
∂x

sin β − �2A22u0 cos
2 β + � (A12 + A66)

∂2v0

∂x∂θ

−�2 (A22 + A66)
∂v0

∂θ
sin β + �2A66

∂2w0

∂θ2

∂w0

∂x
+ �2 (A12 + A66)

∂2w0

∂x∂θ

∂w0

∂θ

+2� (A11 − A12)
∂2w0

∂x2
sin β − 2�3 (A12 − A22)

∂2w0

∂θ2
sin β + �A12

∂w0

∂x
cosβ

−�2A22w0 sin β cosβ + B11
∂2ϕx

∂x2
+ �2B66

∂2ϕx

∂θ2
+ �B11

∂ϕx

∂x
sin β − �2B22ϕx sin

2 β

−�2 (B22 + B66)
∂ϕθ

∂θ
sin β + � (B12 + B66)

∂2ϕθ

∂x∂θ
+ A11

∂2w0

∂x2
∂w0

∂x
+�NT

xx sin β − �NT
θθ sin β = I0ü0 + I1ϕ̈x , (A1)

� (A12 + A66)
∂2u0
∂x∂θ

+ �2 (A22 + A66)
∂u0
∂θ

sin β + A66
∂2v0

∂x2
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−�2 (K A44 cos
2 β + A66 sin

2 β
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