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Abstract The objective of this paper is to provide a computational method to analyze free vibrations of
advanced composite plates in thermal environments according to a recently developed higher-order shear
deformation theory. This method is based upon the assumptions that displacements field include just four
unknowns and considers a combination of trigonometric and exponential shear shape functions which satisfy
shear stress free boundary conditions on the plate surfaces. The FG plates are simply supported and subjected
to uniform, linear, nonlinear and sinusoidal temperature rise. The temperature field considered is assumed to
vary in the thickness direction and constant in the axial directions of plates. It is supposed that the constituent
materials possess temperature-dependent properties changing across the thickness with a simple power law
function. The equations ofmotion are obtained by employingHamilton’s principle and solved based onNavier’s
method to determine natural frequencies of the FG plate. A parametric study for FGM plates with different
values of power law index and under different sets of thermal environmental conditions has been carried out.
The obtained results are compared for temperature-dependent and temperature-independent FG Plates and
validated with available results in the literature.

Keywords Vibration · Functionally graded plate · Shear deformation theory · Temperature-dependent
properties · Hamilton’s principle

F. Z. Zaoui (B) · D. Ouinas
Laboratory of numerical and experimentalmodelling of themechanical phenomena,Mechanical EngineeringDepartment, Faculty
of Sciences and Technology, Ibn Badis University, 27000 Mostaganem, Algeria
E-mail: tima22000@hotmail.com; fatima.zaoui@univ-mosta.dz

A. Tounsi
Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, Sidi Bel Abbes University, 22000
Sidi Bel Abbés, Algeria

A. Tounsi
Department of Civil andEnvironmental Engineering,King FahdUniversity of Petroleum andMinerals, Dhahran, Eastern Province
31261, Kingdom of Saudi Arabia

J. A. Viña Olay
Department of Materials Science and Metallurgical Engineering, University of Oviedo, Gijón, Spain

B. Achour · M. Touahmia
Civil Engineering Department, University of Ha’il, Ha’il, Kingdom of Saudi Arabia

http://orcid.org/0000-0003-0861-9978
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-020-01793-1&domain=pdf


860 F. Z. Zaoui et al.

1 Introduction

Functionally graded materials (FGMs) are a new family of advanced composites. They are fabricated from
the combination of ceramics that provides a high temperature resistance due to its low thermal conductivity
and metals which possess good fracture toughness [1]. FGMs are characterized by a smooth and continuous
variation of mechanical properties along their thickness to avoid material discontinuity and interface problems,
diminishing therefore thermal stress concentrations and deflections [2]. Nowadays, these new materials are
widely used as structural components exposed to higher temperature fields such as thermal barrier coatings for
ceramic engines, gas turbines, nuclear fusions, optical thin layers, biomaterial electronics, etc. [3–10]. Thus,
it is important to develop analysis methods to study the behavior and the response of FGMs under different
mechanical loading and environmental conditions.

The literature review reveals that many researchers developed different theories to study the thermo-
mechanical [11–14] and dynamic [15–19] behaviors of functionally graded structural components. Based
on Reddy’s higher-order shear deformation plate theory, Shen [20] analyzed nonlinear bending of a simply
supported functionally graded rectangular plate under a sinusoidal or transverse uniform load in thermal
environments. This study was extended by Yang and Shen [21] to provide analytical solutions for nonlinear
free and forced vibration of FGM plates in thermal environments with different boundary conditions. Huang et
al. [22] studied the nonlinear vibration and dynamic response of temperature dependent FG plates in thermal
environment based on the higher-order shear deformation theory. Vibration characteristics of pre-stressed
temperature-dependent FG rectangular plates were studied by Kim [23] using the Rayleigh–Ritz method based
on the third-order shear deformation theory. Chen et al. [24] derived nonlinear partial differential equations
for the vibration motion of an initially stressed temperature-independent FGP. By using a quasi-3D HSDT,
Zenkour and Alghamdi [25] analyzed the response of FG sandwich plates subjected to thermal load. Li et al.
[26] studied the free vibration of functionally graded material beams with surface-bonded piezoelectric layers
in thermal environment. Shariyat [27,28] analyzed the linear and nonlinear bending response of sandwich
plate under thermo-mechanical loads based on generalized 3D high-order double superposition global–local
theory, respectively. Free vibration analysis of symmetric FGM beams subjected to initial thermal stresses was
performed by Mahi et al. [29]. Shahrjerdi et al. [30] investigated the temperature-dependent free vibration of
solar functionally graded plates subjected to uniform, linear, nonlinear, heat-flux and sinusoidal temperature
fields were investigated by using a second-order shear deformation theory (SSDT). Kiani and Eslami [31]
studied the buckling and Post-buckling behaviors of imperfect temperature-dependent sandwich plates with
functionally graded material (FGM) face sheets on elastic foundation under uniform temperature rise loading.
Based on the FSDT, the dynamic behavior of FG Plates in thermal environment supposed to a moving load
and elastic foundation was studied by Malekzadeh and Monajjemzadeh [32] by including the effects of initial
thermal stresses. Zhang [33] studied the nonlinear bending of FGM rectangular plates with various supported
boundaries resting on two-parameter elastic foundations under thermal effect by using physical neutral surface
and high-order shear deformation theory. Thermal vibrations of a reinforced orthotropic beams with fibers
functionally oriented and graded along the thickness direction are analyzed by Nejati et al. [34] in which
uniform thermal distribution was applied throughout the beam and property of the fiber functionally graded
beam considered temperature-dependent. The Hierarchical Trigonometric Ritz Formulation (HTRF) had been
applied by Fazzolari [35] to study free vibration and thermal stability of FG sandwich plates. The free vibration
responses of temperature dependent FG curved panels under thermal environment were analyzed by Kar and
Panda [36]. Attia et al. [37] presented four variable higher-order shear deformation theories to analyze free
vibration of temperature dependent FG plates. Ibrahimi and Barati [38] presented a theoretical study for
thermo-mechanical buckling of size-dependent magneto-electro-thermo-elastic functionally graded (METE-
FG) nanoplates in thermal environments based on a refined trigonometric plate theory. The effect of porosities
on the vibration of functionally graded rectangular plates subjected to different temperature fields had been
studied byWang and Zu [39]. A novel hyperbolic shear deformation theory for free vibration analysis of simply
supported functionally graded plates in thermal environment was developed by Taleb et al. [40]. Shahsavari
et al. [41] developed a novel quasi-3D hyperbolic theory to investigate the free vibration of FG plates with
porosities resting onWinkler/Pasternak/Kerr foundation. Thang et al. [42] studied the elastic buckling and free
vibration of porous-cellular plates with uniform and non-uniform porosity distributions. Based on higher-order
shear deformation theory with eight-unknowns, Tu et al. [43] analyzed the vibration of functionally graded
plates in thermal environments.

As seen from the above literature review, researchers are getting a real interest in investigating the free
vibration of FG structures in thermal environment; this is due to the widespread use of engineering structures
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Fig. 1 Schematic representation of rectangular FG plate

including FGM in high temperature environments. Thus, the aim of this work is to extend a recently developed
shear deformation theory by Zaoui et al. [44] for providing a computational model for free vibration of
functionally graded plates in thermal environments. The displacement fields of the proposed theory include
undetermined integral terms and contain fewer unknowns. The novelty of this theory is the use of a new
shear strain shape function which is a combination of exponential and trigonometric shear deformation shape
functions that considers an adequate distribution of the transverse shear strains across the plate thickness
and tangential stress-free boundary conditions on the plate boundary surface without introducing a shear
correction factor. The FG plates are considered simply supported and subjected at the upper and lower surfaces
to uniform, linear, nonlinear and sinusoidal thermal conditions. Mechanical properties are assumed to be
temperature-dependent and varying through the thickness according to a simple power law distribution. The
energy method is used to determine the equations of motion which are solved based on Fourier series that
satisfy the boundary conditions. The obtained results are validated by comparing them with the results of
other studies. The influence of material compositions, plate geometry and temperature fields on the natural
frequencies of FG plates are analyzed.

2 Computational modeling

2.1 Material properties

In this work, a rectangular plate with uniform thickness h, length a and width b, made of FGM (Fig. 1), is
considered. The rectangular Cartesian coordinate system x , y, z has the surface z = 0, coinciding with the
mid-plane of the plate. The material properties are taken to be temperature-dependent and vary continuously
through the thickness according to the following power law variation expression [23,30]

�(z, T ) = (Pc(T ) − Pm(T )) · Vc (z) + Pm(T ) (1a)

Vc(z) =
(
z

h
+ 1

2

)p

(1b)

where � represents the effective material property such as Young’s modulus E , the Poisso’s ratio ν, mass
density ρ and the thermal expansion coefficientsα of FG plates. Pc and Pm are the temperature-dependent
properties of ceramic and metal, respectively. Vc is the volume fraction of the ceramic constituent of the FGM
and p is the power-law index that indicates the material variation profile within the thickness [45]. As assumed,
the constituent materials possess temperature-dependent properties which can be expressed as a function of
temperature [45–47]

P(T ) = P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3) (2)

where P indicates material property and T signifies the environment temperature. P−1, P0, P1, P2 and P3 are
coefficients of temperature in Kelvin and are unique to each constituent. Specific values of these constituents of
some FGPmaterial components used in this study are presented in Table 1 [47]. The Poisson ratio ν and thermal
conductivity k are assumed to be temperature independent due to their small variation with temperature.
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Table 1 Temperature-dependent coefficients for ZrO2/Ti−6Al−4V and SI3N4/SUS304 [47]

Materials P−1 P0 P1 P2 P3

E
SUS304 0 201.04e+9 3.079e-3 −6.534e-7 0
SI3N4 0 348.43e+9 −3.070e-4 2.160e-7 −8.946e-11
Ti–6Al–4V 0 122.56e+9 −4.586e-4 0 0
ZrO2 0 244.27e+9 −1.371e-3 1.214e-6 −3.681e-10

ν
SUS304 0 0.3262 −2.002e-4 3.797e-7 0
SI3N4 0 0.2400 0 0 0
Ti–6Al–4V 0 0.2888 1.108e-4 0 0
ZrO2 0 0.3330 0 0 0

ρ
SUS304 0 8166 0 0 0
SI3N4 0 2370 0 0 0
Ti–6Al–4V 0 4429 0 0 0
ZrO2 0 3000 0 0 0

α
SUS304 0 12.330e-6 8.086e-6 0 0
SI3N4 0 5.8723e-6 9.095e-6 0 0
Ti–6Al–4V 0 7.5788e-6 6.638e-4 −3.147e-6 0
ZrO2 0 12.766e-6 −1.491e-3 1.006e-5 −6.778e-11

k
SUS304 0 12.04 0 0 0
SI3N4 0 9.19 0 0 0
Ti–6Al–4V 0 7.82 0 0 0
ZrO2 0 1.80 0 0 0

2.2 Temperature field

In this work, four cases of one-dimensional temperature variation according to the thickness are considered,
with T = T (z)

2.2.1 Uniform temperature

In this case, a uniform temperature field is utilized as given below

T (z) = T0 + �T (z) (3)

where T (z) indicates the temperature change,�T (z) is the temperature rise only through the thickness direction
and T0 = 300(K ) is room temperature.

2.2.2 Linear temperature

Supposing temperatures Tb and Tt are imposed at the bottom and top of the plate, the temperature field under
linear temperature rise through the thickness can be expressed as

T (z) = T0 + Tb + �T

(
z

h
+ 1

2

)
(4)

where �T = Tt − Tb specifies the temperature gradient and T0 = 300(K ) is room temperature

2.2.3 Nonlinear temperature

The influence of nonlinear temperature rise is considered across the plate’s thickness. This field of temperature
is defined by solving the one dimensional steady-state heat conduction equation given in Eq. (5).

− d

dz

(
k(z)

dT

dz

)
= 0 (5)
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with the boundary conditions T (h/2) = T0 +Tt and T (−h/2) = T0 +Tb. Here, a stress-free state is assumed
to exist at T0 = 300(K ). The solution of the above differential Eq. (5) is

T (z) = T0 + Tb − (Tt − Tb)

z∫
−h/2

1
k(z)dz

h/2∫
−h/2

1
k(z)dz

(6)

In the case of power-law FG plate, the analytical solution of Eq. (6) can be obtained by means of polynomial
series [30,38,48]

T (z) = Tb + (Tt − Tb)

Ctb

[(
2z + h

2h

)
− ktb

(p + 1)kb

(
2z + h

2h

)p+1

+ k2tb
(2p + 1)k2b

(
2z + h

2h

)2p+1

− k3tb
(3p + 1)k3b

(
2z + h

2h

)3p+1

+ k4tb
(4p + 1)k4b

(
2z + h

2h

)4p+1

− k5tb
(5p + 1)k5b

(
2z + h

2h

)5p+1
]
(7)

with

Ctb = 1 − ktb
(p + 1)kb

+ k2tb
(2p + 1)k2b

− k3tb
(3p + 1)k3b

+ k4tb
(4p + 1)k4b

− k5tb
(5p + 1)k5b

(8)

where ktb = kt − kb with ktand kb are the thermal conductivity of the top and bottom surfaces of the plate,
respectively.

2.2.4 Sinusoidal temperature rise

The sinusoidal temperature field used in this case is expressed as [30,49]

T (z) = T0 + (Tt − Tb)
[
1 − cos

(π z

2h
+ π

4

)]
+ Tb (9)

2.3 Displacement fields and constitutive relations

Based on a 2D higher shear deformation theory, the displacement fields are expressed as follows

u(x, y, z, t) = u0(x, y, t) − z
∂w0

∂x
+ k1 f (z)

∫
θ (x, y, t) dx (10a)

v(x, y, z, t) = v0(x, y, t) − z
∂w0

∂y
+ k2 f (z)

∫
θ (x, y, t) dy (10b)

w(x, y, z, t) = w0(x, y, t) (10c)

where u0, v0 and w0 are mid-plane displacements and θ is the rotation of normal to the mid-plane of the plate.
f (z) is a shear strain shape function defining the variation of the transverse shear strains and stresses across
the thickness of the plate given in Eq. (11) [44].

f (z) = πh

π4 + h4
e(hz/π)

(
π2 sin

(π z

h

)
+ h2 cos

(π z

h

))
− πh3

π4 + h4
and g (z) = d f

dz
(11)

The suppositions in Eq. (10) are based on the application of linear, small-strain elasticity theory, from
which the general strain— displacement relations are expressed as

⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

ε0x

ε0y

γ 0
xy

⎫⎪⎬
⎪⎭ + z

⎧⎪⎨
⎪⎩

kbx
kby
kbxy

⎫⎪⎬
⎪⎭ + f (z)

⎧⎪⎨
⎪⎩

ksx
ksy
ksxy

⎫⎪⎬
⎪⎭ ,

{
γyz

γxz

}
= g(z)

{
γ 0
yz

γ 0
xz

}
(12)
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where

⎧⎨
⎩

ε0x
ε0y
γ 0
xy

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

⎫⎪⎬
⎪⎭ ,

⎧⎨
⎩

kbx
kby
kbxy

⎫⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

− ∂2w0
∂x2

− ∂2w0
∂y2

−2 ∂2w0
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

, (13a)

⎧⎨
⎩

ksx
ksy
ksxy

⎫⎬
⎭ =

⎧⎨
⎩

k1θ
k2θ

k1
∂
∂y

∫
θdx + k2

∂
∂x

∫
θdy

⎫⎬
⎭ (13b)

{
γ 0
yz

γ 0
xz

}
=

{
k2

∫
θdy

k1
∫

θdx

}
, g(z) = d f (z)

dz
(13c)

The used integrals in the above equations were resolved using the Navier’s method and written as

∂

∂y

∫
θdx = A′ ∂2θ

∂x∂y
,

∂

∂x

∫
θdy = B ′ ∂2θ

∂x∂y
, (14a)

∫
θdx = A′ ∂θ

∂x
,

∫
θdy = B ′ ∂θ

∂y
(14b)

where coefficientsA′, B ′k1, k2are expressed as follows

A′ = − 1

α2 , B ′ = − 1

β2 , k1 = α2, k2 = β2 (15)

α and β are defined in Eq. (28).
The linear constitutive relations of FG plate are given below

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σx
σy
τyz
τxz
τxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εx
εy
γyz
γxz
γxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(16)

inwhich (σx ,σy , τxy , τyz , τxz) and (εx , εy ,γxy ,γyz ,γxz) are the stresses and the strains components, respectively.
The Qi j expressions in terms of engineering constants determined using the material properties given in Eq.
(1) are as follows

Q11 = Q22 = E (z, T )

1 − ν2 (z, T )
, (17a)

Q12 = ν (z, T ) Q11, (17b)

Q44 = Q55 = Q66 = E (z, T )

2 (1 + ν (z, T ))
(17c)

2.4 Plate governing equations

In order to obtain the governing differential equations, Hamilton’s principle [50] is used.

δ

t∫

0

(UM +UT − K )dt = 0 (18)

where UM and UT are the strain energies due to mechanical and thermal effects, respectively. K is the kinetic
energy.
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The strain energies UM and UT of the plate can be expressed by [30,51]

UM = 1

2

∫
V

[
σxεx + σyεy + τxy γxy + τyzγyz + τxzγxz

]
dV (19)

UT = 1

2

∫
V

{
σ T
x

[(
∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2
]

+ σ T
y

[(
∂u

∂y

)2

+
(

∂v

∂y

)2

+
(

∂w

∂y

)2
]}

dV (20)

with

σ T
x = − (Q11 + Q12) α(z, T )�T (z) and σ T

y = − (Q22 + Q12) α(z, T )�T (z) (21)

The kinetic energy of the plate is given by the following form:

K = 1

2

∫
V

ρ(z, T )
[
u̇2 + v̇2 + ẇ2] dV (22)

By using Eqs. (10), (12), (16), substituting the expressions of Eqs. (19), (20), (22) into Eq. (18), integrating
the displacement gradients by parts and setting the coefficients of δu0, δv0, δw0, δθ to zero independently. The
differential equations of motion for FG plate can be obtained as follows:

δ u0 : (
A11 + AT

11

)
d11u0 + (

A66 + AT
22

)
d22u0 + (A12 + A66) d12v0

− (
B11 + BT

11

)
d111w0 − (

B12 + 2B66 + BT
22

)
d122w0 + k1A′(Bs

11 + BsT
11 )d111θ

+ (
k2B ′Bs

12 + (k1A′ + k2B ′)Bs
66 + k1A′BsT

22

)
d122θ = I0ü0 − I1d1ẅ0 + (k1A′)J1d1θ̈

(23a)

δ v0 : (A12 + A66) d12u0 + (
A66 + AT

11

)
d11v0 + (

A22 + AT
22

)
d22v0

− (
B12 + 2B66 + BT

11

)
d112w0 − (B22 + BT

22)d222w0 + k2B ′ (Bs
22 + BsT

22

)
d222θ

+ (
k1A′Bs

12 + (k1A′ + k2B ′)Bs
66 + k2B ′BsT

11

)
d112θ = I0v̈0 − I1d2ẅ0 + J1k2B ′d2θ̈

(23b)

δ w0 : (
B11 + BT

11

)
d111u0 + (

B12 + 2B66 + BT
22

)
d122u0 + (

B12 + 2B66 + BT
11

)
d112v0

+ (
B22 + BT

22

)
d222v0 − (

D11 + DT
11

)
d1111w0 − (

2D12 + 4D66 + DT
11 + DT

22

)
d1122w0

− (
D22 + DT

22

)
d2222wb + AT

11d11w0 + AT
22d22w0 + k1A′ (Ds

11 + DsT
11

)
d1111θ

− (
k1A′ + k2B ′) (Ds

12 + 2Ds
66

)
d1122θ + (

k2B ′DsT
11 + k1A′DsT

22

)
d1122θ

+k2B ′ (Ds
22 + DsT

22

)
d2222θ = I0ẅ0 + J0φ̈z + I1 (d1ü0 + d2v̈0) − I2∇2ẅ0

+J2
(
k1A′d11θ̈ + k2B ′d22θ̈

)
(23c)

δ θ : k1A′ (Bs
11 + BsT

11

)
d111u0 + (

k2B ′Bs
12 + (

k1A′ + k2B ′) Bs
66 + k1A′BsT

22

)
d122u0

+ (
k1A′Bs

12 + (
k1A′ + k2B ′) Bs

66 + k2B ′BsT
11

)
d112v0 + k2B ′ (Bs

22 + BsT
22

)
d222v0

−k1A′ (Ds
11 + DsT

11

)
d1111w0 − (

k1A′ + k2B ′) (Ds
12 + 2Ds

66

)
d1122w0

− (
k2B ′DsT

11 + k1A′DsT
22

)
d1122w0 − k2B ′ (Ds

22 + DsT
22

)
d2222w0 − (

k1A′)2 (
Hs
11 + HsT

11

)
d1111θ−(

2k1A′k2B ′Hs
12 + (

k1A′ + k2B ′)2 Hs
66 + (

k2B ′)2 HsT
11 + (

k1A′)2 HsT
22

)
d1122θ

− (
k2B ′)2 (Hs

22 + HsT
22 )d2222θ + (k1A′)2As

55d11θ + (k2B ′)2As
44d22θ =

− J1
(
k1A′d1ü0 + k2B ′d2v̈0

) + J2
(
k1A′d11ẅ0 + k2B ′d22ẅ0

) − K2
(
(k1A′)2d11θ̈ + (k2B ′)2d22θ̈

)
(23d)

where di j , di jl and di jlm are the following differential operators:

di j = ∂2

∂xi∂x j
, di jl = ∂3

∂xi∂x j∂xl
, di jlm = ∂4

∂xi∂x j∂xl∂xm
, di = ∂

∂xi
, (i, j, l,m = 1, 2). (24)

and stiffness components are given as:

⎧⎨
⎩

A11 B11 D11 Bs
11 Ds

11 Hs
11

A12 B12 D12 Bs
12 Ds

12 Hs
12

A66 B66 D66 Bs
66 Ds

66 Hs
66

⎫⎬
⎭ =

h/2∫
−h/2

C11
(
1, z, z2, f (z), z f (z), f 2(z)

)
⎧⎨
⎩

1
ν

1−ν
2

⎫⎬
⎭ dz, (25a)
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(
A22, B22, D22, B

s
22, D

s
22, H

s
22

) = (
A11, B11, D11, B

s
11, D

s
11, H

s
11

)
, (25b)

As
44 = As

55 =
h/2∫

−h/2

C44 [g(z)]
2 dz, (25c)

{
AT
11 BT

11 DT
11 BsT

11 DsT
11 HsT

11
AT
22 BT

22 DT
22 BsT

22 DsT
22 HsT

22

}
=

h/2∫
−h/2

(
1, z, z2, f (z), z f (z), f (z)2

) {σ T
x

σ T
y

}
dz (25d)

The inertias are also defined as:

(I0, I1, J1, I2, J2, K2) =
h/2∫

−h/2

(
1, z, f, z2, z f, f 2

)
ρ(z)dz (26)

2.5 Analytical solutions

In order to solve Eq. (23), the Navier’s method is adopted to satisfy simply supported boundary conditions.
So that, the analytical solutions are expressed based on double-Fourier series as presented below:

⎧⎪⎨
⎪⎩

u0
v0
w0
θ

⎫⎪⎬
⎪⎭ =

∞∑
m=1

∞∑
n=1

⎧⎪⎪⎨
⎪⎪⎩

Umn eiωt cos(αx) sin(βy)
Vmn eiωt sin(αx) cos(βy)
Wmn eiωt sin(αx) sin(βy)
θmn eiωt sin(αx) sin(βy)

⎫⎪⎪⎬
⎪⎪⎭

(27)

whereUmn , Vmn ,Wmn and θmn are arbitrary parameters to be determined, ω is the Eigen-frequency associated
with (m,n) the Eigen-mode. α and β are stated as:

α = mπ/a and β = nπ/b. (28)

Substituting Eq. (27) into Eq. (23), the following eigenvalue equation is found:
⎛
⎜⎝

⎡
⎢⎣
s11 s12 s13 s14
s12 s22 s23 s24
s13 s23 s33 s34
s14 s24 s34 s44

⎤
⎥⎦ − ω2

⎡
⎢⎣
m11 0 m13 m14
0 m22 m23 m24

m13 m23 m33 m34
m14 m24 m34 m44

⎤
⎥⎦
⎞
⎟⎠ =

⎧⎪⎨
⎪⎩
0
0
0
0

⎫⎪⎬
⎪⎭ (29)

in which:

s11 = −α2
(
A11 + AT

11

) − λ2
(
A66 + AT

22

)
s12 = −αβ (A12 + A66)

s13 = α
[
α2

(
B11 + BT

11

) + β2
(
B12 + 2B66 + BT

22

)]
s14 = −k1A′α3

(
Bs
11 + BsT

11

) − αβ2
(
k2B ′Bs

12 + (k1A′ + k2B ′)Bs
66 + k1A′BsT

22

) (30a)

s22 = −α2
(
A66 + AT

11

) − β2
(
A22 + AT

22

)
s23 = β

[
α2

(
B12 + 2B66 + BT

11

) + β2(B22 + BT
22)

]
s24 = −β

[
β2k2B ′ (Bs

22 + BsT
22

) + α2
(
k1A′Bs

12 + (k1A′ + k2B ′)Bs
66 + k2B ′BsT

11

)]
s33 = − [(

D11 + DT
11

)
α4 + (

D22 + DT
22

)
β4 + (

2D12 + 4D66 + DT
22 + DT

11

)
α2β2 + AT

11α
2 + AT

22β
2
]

s34 = k1A′ (Ds
11 + DsT

11

)
α4 − (

k1A′ + k2B ′) (Ds
12 + 2Ds

66

)
α2β2 + (

k1A′DsT
11 + k2B ′DsT

22

)
α2β2

+k2B ′ (Ds
22 + DsT

22

)
μ4

s44 = − (
k1A′)2 (

Hs
11 + HsT

11

)
α4 −

(
2k1A′k2B ′Hs

12 + (
k1A′ + k2B ′)2 Hs

66 + (
k2B ′)2 HsT

11 + (
k1A′)2 HsT

22

)
α2β2

− (
k2B ′)2 (Hs

22 + HsT
22 )β4 − (k1A′)2α2As

55 − (k2B ′)2β2As
44

m11 = m22 = I0, m12 = 0

m13 = −α I1, m14 = α k1A
′
J1, m23 = −β I1

m24 = β k2B
′
J1, m33 = I0 + I2(α

2 + β2), m34 = −J2(k1A
′
α2 + k2B

′
β2)

m44 = K2((k1A
′
)2α2 + (k2B

′
)2β2). (30b)
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Fig. 2 Variation of elastic modulus versus non-dimensional thickness (z/h) of FG plate in room temperature field and different
values of power law index (p)
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Fig. 3 Variation of elastic modulus versus non-dimensional thickness (z/h) of FG plate in linear temperature field and different
values of power law index (p)

3 Results and discussion

Various numerical results calculated using the present theory are presented in this section for temperature-
dependent FG plates by considering two different types of FG plates such as ZrO2/Ti−6Al−4V and
Si3N4/SUS304 (see Table 1). The non-dimensional frequency parameter is taken as [22,30].

ω = ω(a2/h)
[
ρb(1 − ν2)/Eb

]1/2
(31)

where Eb and ρb are at T0 = 300(K ).
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Fig. 4 Variation of elastic modulus versus non-dimensional thickness (z/h) of FG plate in nonlinear temperature field and
different values of power law index (p)
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Fig. 5 Variation of elastic modulus versus non-dimensional thickness (z/h) of FG plate in sinusoidal temperature field and
different values of power law index (p)

3.1 Material properties in thermal conditions

The variation of Young modulus across the thickness of FG plates subjected to a uniform (room temperature),
linear, nonlinear and sinusoidal thermal conditions is presented in Figs. 2 to 6, respectively. Room temperature
is defined as T0 = 300(K ) for all thermal conditions. The temperature rise in linear form is Tb = Tt = 600(K ),
the nonlinear thermal conditions are Tb = 0(K ) and Tt = 600(K ) and the sinusoidal thermal conditions are
Tb = 300(K ) and Tt = 500(K ).

Figure 2 and 3 present the variation of the elastic modulus through the thickness in uniform and sinusoidal
thermal loads, respectively. It can be seen that the variations of Young’s modulus are similar in the two cases,
but the curves move to smaller values with the linear temperature load. It is also clear that the increase of the
power law index leads to the decrease of the Young’s modulus. For nonlinear and sinusoidal thermal loads,
the values of Young’s modulus as shown in Figs. 4 and 5 increase close to the lower surface then decrease
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Fig. 6 Variation of elasticmodulus versus non-dimensional thickness (z/h) of FGplate in uniform, linear, nonlinear and sinusoidal
temperature field and different values of power law index (p)

when p � 1. On the other hand, they decrease then increase close to the upper surface when p > 1. In
Fig. 6, a comparison study on Young’s modulus is undertaken for uniform, linear, nonlinear and sinusoidal
thermal conditions. From these figures, it can be concluded that the behavior of Young’s modulus in uniform
and linear thermal conditions is completely different from that in nonlinear and sinusoidal temperature cases,
which means that the environmental conditions type affect considerably the variation of the elastic modulus.

3.2 Numerical results and validation

In order to prove and validate the efficiency of this theory, the non-dimensional natural frequencies are cal-
culated for temperature-dependent and temperature-independent FG plates and they are compared with those
obtained by Shahrjerdi et al. [30] using a second-order shear deformation theory (SSDT), Huang and Shen
[22] based on a third-order shear deformation theory (TSDT) and Attia et al. [38] using four variables higher-
order shear deformation theory (third plate theory (TPT), sinusoidal plate theory (SPT), hyperbolic plate
theory (HPT), exponential plate theory (EPT) as presented in Table 2 and 3, respectively. Verifications are
implemented by supposing the following conditions parameters: h = 0.025 m, a = b = 0.2 m.

In Table 2, a FG plate made of ZrO2/Ti−6Al−4V is analyzed. In this example, Young’s modulus and
thermal expansion coefficient of thesematerials are considered to be temperature-dependent [22,30]. However,
a same value of Poisson’s ratio ν for both ceramic and metal is supposed to be ν = 0.3. From this Table, it
can be seen that the comparison of non-dimensional natural frequencies is carried out for different values
of power law index and thermal conditions loads (temperature-dependent and temperature-independent) FG
plates (FGP). Therefore, the obtained results using the present theory are found to be in very good agreement
with the results of Attia et al. [38] using various efficient higher-order shear deformation theories (TPT, SPT,
HPT and EPT) Huang and Shen [22] and Shahrjerdi et al. [30].

In Table 3, comparisons are made using a FG Si3N4/SUS304 plate. For these materials, the Poisson’s ratio
is taken ν = 0.28. The computed dimensionless fundamental frequencies are compared with those given by
Attia et al. [38], Shahrjerdi et al [30] andHuang and Shen [22] in Table 4 for different values of power law index
p. As a result, this comparison shows that the present results are in very good agreement with existing results
for all values of power law index p, either for the case of temperature-dependent and temperature-independent
FG plates (FGP).

In the next example, a ZrO2/Ti−6Al−4V and Si3N4/SUS304 plates are considered and the obtained
results are compared to those of Huang and Shen [22] and Shahrjerdi et al. [30] as shown in Tables 4 and 5,
respectively. It can be seen that the computed results are in good agreement with the previously published
results [22,30] and these for different considered shape mode.
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Table 2 Non-dimensional natural frequencies of simply supported (ZrO2/Ti−6Al−4V) FG plate in thermal environments

Mode (1,1) Nat-
ural frequency of
FGP (ZrO2 and
Ti−6Al−4V)

Tb = 300(K )

Tt = 300(K ) Tt = 400(K ) Tt = 600(K )

Temperature-
dependent

Temperature-
independent

Temperature-
dependent

Temperature-
independent

ZrO2
SSDT(a) 8.333 7.614 7.892 5.469 6.924
TSDT(b) 8.273 7.868 8.122 6.685 7.686
TPT(c) 8.278 7.807 8.130 6.533 7.826
SPT(c) 8.278 7.808 8.131 6.534 7.826
HPT(c) 8.278 7.808 8.131 6.534 7.826
EPT(c) 8.280 7.809 8.132 6.536 7.828
Present method 8.281 7.810 8.061 6.536 7.604

p = 0.5
SSDT(a) 7.156 6.651 6.844 5.255 6.175
TSDT(b) 7.139 6.876 7.154 6.123 6.776
TPT(c) 7.111 6.781 7.005 5.931 6.789
SPT(c) 7.112 6.782 7.006 5.931 6.789
HPT(c) 7.112 6.782 7.006 5.931 6.789
EPT(c) 7.113 6.783 7.001 5.993 6.772
Present method 7.113 6.784 6.962 5.933 6.648

p = 1
SSDT(a) 6 .700 6.281 6.446 5.167 5.904
TSDT(b) 6.657 6.437 6.592 5.819 6.362
TPT(c) 6.657 6.375 6.565 5.664 6.378
SPT(c) 6.657 6.375 6.565 5.665 6.378
HPT(c) 6.657 6.375 6.565 5.665 6.378
EPT(c) 6.658 6.376 6.556 5.668 6.350
Present method 6.659 6.377 6.531 5.667 6.267

p = 2
SSDT(a) 6.333 5.992 6.132 5.139 5.711
TSDT(b) 6.286 6.101 6.238 5.612 6.056
TPT(c) 6.287 6.047 6.208 5.467 6.049
SPT(c) 6.287 6.047 6.208 5.467 6.049
HPT(c) 6.287 6.047 6.208 5.467 6.049
EPT(c) 6.288 6.049 6.194 5.469 6.003
Present method 6.289 6.049 6.184 5.469 5.968

Ti–6Al–4V
SSDT(a) 5.439 5.103 5.333 4.836 5.115
TSDT(b) 5.400 5.322 5.389 5.118 5.284
TPT(c) 5.403 5.303 5.361 5.132 5.275
SPT(c) 5.403 5.303 5.361 5.132 5.275
HPT(c) 5.403 5.303 5.361 5.132 5.275
EPT(c) 5.404 5.304 5.300 5.133 5.091
Present method 5.405 5.303 5.362 5.130 5.274

Bold values used in this table is just to differenciate between the obtained results and the others
(a) Shahrjerdi et al. [30]
(b) Huang and Shen [22]
(c) Attia et al. [38]

In what follow, the non-dimensional natural frequencies are calculated using the expression as written
below:

ω = ω(b2/π2) [I0/D0]
1/2 (32)

where I0 = ρh and D0 = Eh3/12(1 − ν2)
The variation of the first-four dimensionless frequencies of simply supported square FG plate made of

ZrO2/Ti−6Al−4V subjected to a uniform (room temperature), linear, nonlinear and sinusoidal thermal loads
is shown in Figs. 7 to 10, respectively. The results show that natural frequencies reduce with the increase in
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Table 3 Non-dimensional natural frequencies of simply supported (Si3N4/SUS304) FG plate in thermal environments

Mode (1,1) Nat-
ural frequency of
FGP (Si3N4 and
SUS304)

Tb = 300(K )

Tt = 300(K ) Tt = 400(K ) Tt = 600(K )

Temperature-
dependent

Temperature-
independent

Temperature-
dependent

Temperature-
independent

Si3N4

SSDT(a) 12.506 12.175 12.248 11.461 11.716
TSDT(b) 12.495 12.397 12.382 11.984 12.213
TPT(c) 12.507 12.307 12.376 11.886 12.113
SPT(c) 12.507 12.307 12.378 11.887 12.114
HPT(c) 12.507 12.307 12.378 11.886 12.114
EPT(c) 12.509 12.309 12.380 11.889 12.116
Present method 12.508 12.308 12.378 11.887 12.114

p = 0.5
SSDT(a) 8.652 8.361 8.405 7.708 7.887
TSDT(b) 8.675 8.615 8.641 8.269 8.425
TPT(c) 8.609 8.453 8.498 8.117 8.272
SPT(c) 8.609 8.453 8.499 8.118 8.273
HPT(c) 8.609 8.453 8.499 8.118 8.273
EPT(c) 8.611 8.455 8.500 8.120 8.274
Present method 8.610 8.454 8.499 8.119 8.273

p = 1
SSDT(a) 7.584 7.306 7.342 6.674 6.834
TSDT(b) 7.555 7.474 7.514 7.171 7.305
TPT(c) 7.544 7.399 7.437 7.082 7.217
SPT(c) 7.544 7.399 7.437 7.082 7.218
HPT(c) 7.544 7.399 7.437 7.082 7.218
EPT(c) 7.546 7.401 7.439 7.083 7.219
Present method 7.545 7.399 7.437 7.082 7.218

p = 2
SSDT(a) 6.811 6.545 6.575 5.929 6.077
TSDT(b) 6.777 6.693 6.728 6.398 6.523
TPT(c) 6.771 6.631 6.664 6.323 6.447
SPT(c) 6.770 6.631 6.665 6.323 6.447
HPT(c) 6.770 6.631 6.665 6.323 6.447
EPT(c) 6.772 6.633 6.665 6.324 6.448
Present method 6.771 6.632 6.665 6.323 6.447

SUS304
SSDT(a) 5.410 5.161 5.178 4.526 4.682
TSDT(b) 5.405 5.311 5.335 4.971 5.104
TPT(c) 5.410 5.272 5.295 4.922 5.055
SPT(c) 5.410 5.278 5.300 4.945 5.071
HPT(c) 5.410 5.278 5.299 4.945 5.071
EPT(c) 5.411 5.279 5.301 4.946 5.073
Present method 5.411 5.279 5.300 4.945 5.072

Bold values used in this table is just to differenciate between the obtained results and the others
(a) Shahrjerdi et al. [30]
(b) Huang and Shen [22]
(c) Attia et al. [38]

temperature which is due to the decreasing of elastic modulus with the temperature raise. Also, the decrease
of the frequencies in the higher modes is important compared to that in the smaller modes. At the same field
of temperature, the difference between two consecutive higher modes is less than that of the case of two
successive lower modes. It is obvious that the effect of the temperature distribution in the case of a uniform
thermal field is more significant compared to the other thermal conditions, this can be explained by the fact
that the decrease of the frequency under linear thermal loadings, nonlinear and sinusoidal is almost identical,
while the decrease in frequency is important in the case of a uniform thermal loading.
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Table 4 Non-dimensional natural frequency parameter of simply supported (ZrO2/Ti–6Al–4V) FG plate in thermal
environments(p = 2)

Modenumbers of
FGP (ZrO2 and
Ti–6Al–4V)

Tb = 300(K )

Tt = 300(K ) Tt = 400(K ) Tt = 600(K )

Temperature-
Dependent

Temperature-
Independent

Temperature-
Dependent

Temperature-
Independent

(1,1)
SSDT(a) 6.333 5.992 6.132 5.139 5.711
TSDT(b) 6.286 6.101 6.238 5.612 6.056
TPT(c) 6.287 6.047 6.208 5.467 6.049
SPT(c) 6.287 6.047 6.208 5.467 6.049
HPT(c) 6.287 6.047 6.208 5.467 6.049
EPT(c) 6.288 6.049 6.194 5.469 6.003
Present method 6.289 6.049 6.184 5.469 5.968

(1,2)
SSDT(a) 14.896 14.383 14.684 13.260 14.253
TSDT(b) 14.625 14.372 14.655 13.611 14.474
TPT(c) 14.665 14.265 14.581 13.416 14.412
SPT(c) 14.666 14.267 14.583 13.416 14.414
HPT(c) 14.665 14.265 14.581 13.413 14.413
EPT(c) 14.672 14.273 14.589 13.421 14.420
Present method 14.670 14.271 14.558 13.419 14.331

(2,2)
SSDT(a) 22.608 21.942 22.386 20.557 21.935
TSDT(b) 21.978 21.653 22.078 20.652 21.896
TPT(c) 22.123 21.584 22.034 20.489 21.855
SPT(c) 22.127 21.589 22.038 20.494 21.860
HPT(c) 22.123 21.584 22.034 20.489 21.855
EPT(c) 22.140 21.602 22.052 20.507 21.873
Present method 22.133 21.595 22.014 20.499 21.774

(1,3)
SSDT(a) 27.392 26.630 27.163 25.077 26.700
TSDT(b) 26.454 26.113 26.605 24.961 26.435
TPT(c) 26.704 26.081 26.612 24.837 26.427
SPT(c) 26.711 26.089 26.619 24.845 26.435
HPT(c) 26.704 26.081 26.612 24.837 26.427
EPT(c) 26.731 26.108 26.639 24.865 26.454
Present method 26.718 26.096 26.595 24.852 26.346

(2,3)
SSDT(a) 34.106 33.211 33.867 31.425 33.384
TSDT(b) 32.659 32.239 32.840 30.904 32.664
TPT(c) 33.109 32.371 33.013 30.920 32.819
SPT(c) 33.121 32.384 33.025 30.933 32.831
HPT(c) 33.109 32.370 33.013 30.919 32.819
EPT(c) 33.151 32.413 33.055 30.964 32.862
Present method 33.130 32.392 33.000 31.941 32.740

Bold values used in this table is just to differenciate between the obtained results and the others
(a) Shahrjerdi et al. [30]
(b) Huang and Shen [22]
(c) Attia et al. [38]

3.3 Parametric study

In this section, the effects of different parameters such as the power law index, the mode numbers, plate
geometry, and temperature fields on the frequency of FG plates are investigated here.

The non-dimensional frequencies values are listed in Tables 6 and 7 for FG ZrO2/Ti−6Al−4V and
Si3N4/SUS304 plates, respectively. The non-dimensional natural frequency parameter is defined as ω =
ω(a2/h)

[
ρb(1 − ν2)/Eb

]1/2
, where Eb and ρb are at T0 = 300(K ). The effect of power law index p on
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Table 5 Non-dimensional natural frequency parameter of simply supported (Si3N4/SUS304) FG plate in thermal environments
(p = 2)

Mode numbers
of FGP
(Si3N4/SUS304)

Tb = 300(K )

Tt = 300(K ) Tt = 400(K ) Tt = 600(K )

Temperature-
dependent

Temperature-
independent

Temperature-
dependent

Temperature-
independent

(1,1)
SSDT(a) 6.811 6.445 6.575 5.929 6.077
TSDT(b) 6.777 6.693 6.728 6.398 6.523
TPT(c) 6.770 6.631 6.664 6.323 6.447
SPT(c) 6.770 6.631 6.664 6.323 6.447
HPT(c) 6.770 6.631 6.664 6.323 6.447
EPT(c) 6.770 6.631 6.665 6.325 6.448
Present method 6.771 6.632 6.665 6.323 6.447

(1,2)
SSDT(a) 16.017 15.708 15.769 15.002 15.262
TSDT(b) 15.809 15.762 15.836 15.384 15.632
TPT(c) 15.812 15.628 15.699 15.229 15.472
SPT(c) 15.814 15.631 15.702 15.231 15.474
HPT(c) 15.812 15.628 15.699 15.229 15.472
EPT(c) 15.820 15.636 15.707 15.237 15.480
Present method 15.814 15.631 15.702 15.231 15.474

(2,2)
SSDT(a) 24.307 23.958 24.047 23.154 23.517
TSDT(b) 23.806 23.786 23.893 23.327 23.685
TPT(c) 23.874 23.652 23.755 23.167 23.517
SPT(c) 23.879 23.657 23.760 23.173 23.522
HPT(c) 23.874 23.652 23.755 23.167 23.516
EPT(c) 23.893 23.671 23.774 23.187 23.536
Present method 23.879 23.657 23.761 23.173 23.522

(1,3)
SSDT(a) 29.446 29.071 29.177 28.204 28.632
TSDT(b) 28.687 28.686 28.816 28.185 28.609
TPT(c) 28.831 28.586 28.709 28.049 28.463
SPT(c) 28.839 28.594 28.717 28.057 28.471
HPT(c) 28.831 28.586 28.709 28.049 28.462
EPT(c) 28.860 28.614 28.738 28.078 28.491
Present method 28.839 28.594 28.717 28.058 28.471

(2,3)
SSDT(a) 36.657 36.247 36.376 35.290 35.809
TSDT(b) 35.466 35.491 35.648 34.918 35.436
TPT(c) 35.768 35.489 35.640 34.879 35.383
SPT(c) 35.782 35.503 35.654 34.893 35.397
HPT(c) 35.768 35.489 35.640 34.878 35.383
EPT(c) 35.814 35.535 35.686 34.925 35.429
Present method 35.782 35.503 35.654 34.893 35.397

Bold values used in this table is just to differenciate between the obtained results and the others
(a) Shahrjerdi et al. [30]
(b) Huang and Shen [22]
(c) Attia et al. [38]

the frequencies can be seen by considering the same value of thermal load and shape mode. The results for
FG plates are found to be between those for pure material plates, since Young’s modulus increases from pure
metal to pure ceramic. The frequencies decrease by increasing the temperature difference between top and
bottom surfaces for the same value of power law index and shape mode that represent the effects of thermal
loads. The comparison between temperature-dependent and independent FG plates in Tables 6 and 7 reveals
the smaller frequencies in temperature-dependent FG plates, which proves the accuracy and effectiveness of
temperature-dependent material properties.
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Fig. 7 First four Non-dimensional frequency parameters versus uniform temperature field for simply supported (ZrO2/
Ti−6Al−4V) FGP when (a/h = 10), (a = 0.2), (p = 1)
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Fig. 8 First fourNon-dimensional frequency parameters versus linear temperature field for simply supported (ZrO2/Ti−6Al−4V)
FGP when (a/h = 10), (a = 0.2), (p = 1)

In Figs. 11, 12, 13 and 14, the effect of side-to-side ratio on the variation of dimensionless frequencies versus
the variation of different temperature fields of a simply supported FG ZrO2/Ti−6Al−4V plate is examined.
From these figures, it is observed that the frequencies increase with the increase of the ratio b/a when b/a � 2.
It is also noted that the frequencies decrease as temperature change increases in all types of temperature fields;
this is due to the decrease of the Young’s modulus with the increasing of temperature. It is also noted that the
decrease of the frequencies in the case where b/a = 2 is important compared to the other ratios b/a when the
side-to-thickness ratio a/h = 10. The uniform temperature fields affect the frequencies more significantly than
the linear, nonlinear and sinusoidal temperature fields.
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Fig. 9 First four Non-dimensional frequency parameters versus nonlinear temperature field for simply supported (ZrO2/Ti −
6Al − 4V) FGP when a/h = 10, a = 0.2, p = 1
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Fig. 10 First four Non-dimensional frequency parameters versus sinusoidal temperature field for simply supported
(ZrO2/Ti−6Al−4V) FGP when a/h = 10, a = 0.2, p = 1



876 F. Z. Zaoui et al.

Table 6 Non-dimensional natural frequency of temperature dependent (ZrO2/Ti–6Al–4V) FG plate in thermal environments for
different modes of vibration

Mode numbers of
FGP
(ZrO2/Ti−6Al−4V)
b = a = 0.2, h =
0.025 ν = 0.3

Tb = 300(K )

Tt = 300(K ) Tt = 400(K ) Tt = 600(K )

Temperature-
dependent

Temperature-
independent

Temperature-
dependent

Temperature-
independent

ZrO2
(1,1) 8.281 7.810 8.061 6.536 7.604
(1,2) 19.348 18.582 19.116 16.847 18.641
(2,2) 29.225 28.192 28.978 26.009 28. 479
(1,3) 35.301 34.104 34.046 31.640 34.531

p = 0.5
(1,1) 7.118 6.784 6.962 5.933 6.648
(1,2) 16.635 16.097 16.474 14.906 16.148
(2,2) 25.144 24.421 24.974 22.913 24.630
(1,3) 30.383 29.547 30.208 27.844 29.853

p = 1
(1,1) 6.659 6.377 6.531 5.667 6.267
(1,2) 15.562 15.098 15.426 14.087 15.150
(2,2) 23.510 22.888 23.366 21.601 23.076
(1,3) 28.402 27.683 28.253 26.227 27.953

p = 2
(1,1) 6.289 6.049 6.184 5.469 5.968
(1,2) 14.670 14.271 14.558 13.419 14.331
(2,2) 22.133 21.595 22.014 20.499 21.774
(1,3) 26.718 26.096 26.595 24.852 26.346

Ti–6Al–4V
(1,1) 5.405 5.303 5.362 5.130 5.274
(1,2) 12.628 12.441 12.582 12.093 12.490
(2,2) 19.074 18.812 19.026 18.309 18.927
(1,3) 23.040 22.731 22.989 22.134 22.888

4 Conclusions

A two-dimensional higher-order shear deformation theory has been presented for dynamic analysis of FG
plates subjected to uniform, linear, nonlinear and sinusoidal temperature fields. The displacement fields of the
presented theory are chosen based on a parabolic distribution of transverse shear strains through the thickness
and satisfy the zero traction boundary conditions. The FG plates are assumed to be simply supported with
temperature-dependent and independent material properties according to a power law variation. Numerical
results are presented for temperature-dependent and temperature-independent FG plate and compared with
available results in the literature to check the accuracy of the proposed theory. It can be found that the present
theory is efficient and simple in investigating the free vibration response of FG plates exposed to thermal
loading. Thus, this work can be used as a reference to assess the validity and establish the accuracy of various
approximate theories and to solve the free vibration problems of FG plates under different boundary and
environmental conditions.
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Table 7 Non-dimensional natural frequency of temperature dependent (Si3N4/SUS304) FG plate in thermal environments for
different modes of vibration

Mode numbers
of FGP (Si3N4 et
SUS304)
b = a =
0.2, h = 0.025
ν = 0.28

Tb = 300(K )

Tt = 300(K ) Tt = 400(K ) Tt = 600(K )

Temperature-
dependent

Temperature-
independent

Temperature-
dependent

Temperature-
independent

Si3N4
(1,1) 12.507 12.307 12.377 11.887 12.114
(1,2) 29.260 28.964 29.121 28.371 28.843
(2,2) 44.236 43.853 44.090 43.103 43.796
(1,3) 53.460 53.024 53.309 52.176 53.005
(2,3) 66.382 65.310 66.240 64.886 65.906

p = 0.5
(1,1) 8.609 8.453 8.498 8.118 8.272
(1,2) 20.137 19.921 20.020 19.473 19.784
(2,2) 30.441 30.172 30.318 29.621 30.070
(1,3) 36.788 36.485 36.661 35.871 36.405
(2,3) 45.680 45.331 45.547 44.627 45.281

p = 1
(1,1) 7.544 7.399 7.437 7.082 7.217
(1,2) 17.641 17.444 17.528 17.029 17.298
(2,2) 26.661 26.420 26.542 25.913 26.301
(1,3) 32.215 31.946 32.092 31.384 31.970
(2,3) 39.995 39.688 39.867 39.046 39.608

p = 2
(1,1) 6.770 6.631 6.664 6.323 6.447
(1,2) 15.814 15.631 15.702 15.231 15.474
(2,2) 23.879 23.657 23.760 23.173 23.522
(1,3) 28.839 28.594 28.717 28.057 28.471
(2,3) 35.782 35.503 35.654 34.893 35.397

SUS304
(1,1) 5.410 5.278 5.300 4.945 5.071
(1,2) 12.657 12.495 12.539 12.054 12.301
(2,2) 19.135 18.947 19.012 18.407 18.760
(1,3) 23.126 22.920 22.908 22.320 22.738
(2,3) 28.715 28.487 28.581 27.803 28.310
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Fig. 11 Non-dimensional frequency parameters versus uniform temperature field for different values of side-to-side ratio (b/a)
and simply supported (ZrO2/Ti−6Al−4V) FGP when a/h = 10 and a = 0.2, p = 2
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Fig. 12 Non-dimensional frequency parameters versus linear temperature field for different values of side-to-side ratio (b/a) and
simply supported (ZrO2/Ti−6Al−4V) FGP when a/h = 10 and a = 0.2, p = 2
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Fig. 13 Non-dimensional frequency parameters versus nonlinear temperature field for different values of side-to-side ratio (b/a)
and simply supported (ZrO2/Ti−6Al−4V) FGP when a/h = 10 and a = 0.2, p = 2
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Fig. 14 Non-dimensional frequency parameters versus sinusoidal temperature field for different values of side-to-side ratio (b/a)
and simply supported (ZrO2/Ti−6Al−4V) FGP when a/h = 10 and a = 0.2, p = 2
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1. Şimşek, M.: Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having
different boundary conditions. Compos. Struct. 149, 304–314 (2016). https://doi.org/10.1016/j.compstruct.2016.04.034

2. Ebrahimi, M.J., Najafizadeh, M.M.: Free vibration analysis of two-dimensional functionally graded cylindrical shells. Appl.
Math. Model. 38, 308–324 (2014). https://doi.org/10.1016/j.apm.2013.06.015

3. Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling analysis of CNT reinforced functionally graded laminated composite plates.
Compos. Struct. 152, 62–73 (2016). https://doi.org/10.1016/j.compstruct.2016.05.047

4. Mehditabar, A., Rahimi, G.H., Vahdat, S.E.: Integrity assessment of functionally graded pipe produced by centrifugal casting
subjected to internal pressure: experimental investigation. Arch. Appl.Mech. 90, 1723–1736 (2020). https://doi.org/10.1007/
s00419-020-01692-5

5. Belkhodja, Y., Ouinas, D., Zaoui, F.Z., Fekirini, H.: A higher order exponential-trigonometric shear deformation theory for
bending, vibration, and buckling analysis of functionally graded material (FGM) plates: Part I. Advanced Compos Letters
28, 1–19 (2019). https://doi.org/10.1177/0963693519875739

6. Mantari, J.L., Soares, C.G.: A quasi-3D tangential shear deformation theory with four unknowns for functionally graded
plates. Acta Mech. 226, 625–642 (2015). https://doi.org/10.1007/s00707-014-1192-3

7. Sayyad, A.S., Ghugal, Y.M.: A unified shear deformation theory for the bending of isotropic, functionally graded, laminated
and sandwich beams and plates. Int. J. Appl. Mech. 9, 1750007 (2017)

8. Li, S., Ma, H.: Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping. Arch.
Appl. Mech. 90, 1285–1304 (2020). https://doi.org/10.1007/s00419-020-01664-9

9. Li, Q., Iu, V., Kou, K.: Three-dimensional vibration analysis of functionally graded material plates in thermal environment.
J. Sound Vibr. 324(3–5), 733–750 (2009). https://doi.org/10.1016/j.jsv.2009.02.036

10. Zaoui, F.Z., Tounsi, A., Ouinas, D.: Free vibration of functionally graded plates resting on elastic foundations based on
quasi-3D hybrid-type higher order shear deformation theory. Smart Struct. Syst. Int. J. 20(4), 509–524 (2017). https://doi.
org/10.12989/sss.2017.20.4.509

11. Zenkour, A.M., Radwan, A.F.: Hygrothermo-mechanical buckling of FGM plates resting on elastic foundations using a
quasi-3D model. Int. J. Comput. Methods Eng. Sci. Mech. 20(2), 85–98 (2019). https://doi.org/10.1080/15502287.2019.
1568618

12. Hieu, P.T., Van Tung, H.: Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and
toroidal shell segments with tangentially restrained edges. Arch. Appl. Mech. 90, 1529–1546 (2020). https://doi.org/10.
1007/s00419-020-01682-7

13. Woodward, B., Kashtalyan, M.: Three-dimensional elasticity analysis of sandwich panels with functionally graded trans-
versely isotropic core. Arch. Appl. Mech. 89, 2463–2484 (2019). https://doi.org/10.1007/s00419-019-01589-y

https://doi.org/10.1016/j.compstruct.2016.04.034
https://doi.org/10.1016/j.apm.2013.06.015
https://doi.org/10.1016/j.compstruct.2016.05.047
https://doi.org/10.1007/s00419-020-01692-5
https://doi.org/10.1007/s00419-020-01692-5
https://doi.org/10.1177/0963693519875739
https://doi.org/10.1007/s00707-014-1192-3
https://doi.org/10.1007/s00419-020-01664-9
https://doi.org/10.1016/j.jsv.2009.02.036
https://doi.org/10.12989/sss.2017.20.4.509
https://doi.org/10.12989/sss.2017.20.4.509
https://doi.org/10.1080/15502287.2019.1568618
https://doi.org/10.1080/15502287.2019.1568618
https://doi.org/10.1007/s00419-020-01682-7
https://doi.org/10.1007/s00419-020-01682-7
https://doi.org/10.1007/s00419-019-01589-y


880 F. Z. Zaoui et al.

14. Boroujerdy,M.S., Eslami,M.R.:Nonlinear axisymmetric thermomechanical response of piezo-FGMshallow spherical shells.
Arch. Appl. Mech. 83, 1681–1693 (2013). https://doi.org/10.1007/s00419-013-0769-y

15. Guerroudj, H.Z., Yeghnem, R., Kaci, A., Zaoui, F.Z., Benyoucef, S., Tounsi, A.: Eigenfrequencies of advanced composite
plates using an efficient hybrid quasi-3D shear deformation theory. Smart Struct. Syst. Int. J. 22(1), 121–132 (2018). https://
doi.org/10.12989/sss.2018.22.1.121

16. Simsek,M., Cansiz, S.: Dynamics of elastically connected double-functionally graded beam systems with different boundary
conditions under action of a moving harmonic load. Compos. Struct. 94, 2861–2878 (2012). https://doi.org/10.1016/j.
compstruct.2012.03.016

17. Amirani, M.C., Khalili, S.M.R., Nemati, N.: Free vibration analysis of sandwich beam with FG core using the element free
Galerkin method. Compos. Struct. 90, 373–379 (2009). https://doi.org/10.1016/j.compstruct.2009.03.023

18. Mahmoudi A, Benyoucef S, Tounsi A, Benachour A, Adda Bedia EA (2018) On the effect of the micromechanical models
on the free vibration of rectangular FGM plate resting on elastic foundation.Earthquakes Struct Int J 14(2):117-128.https://
doi.org/10.12989/eas.2018.14.2.117

19. Duc, N.D., Tran, Q.Q., Nguyen, D.K.: New approach to investigate nonlinear dynamic response and vibration of imper-
fect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and
temperature. Aerosp. Sci. Technol. 71, 360–372 (2017). https://doi.org/10.1016/j.ast.2017.09.031

20. Shen, H.S.: Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environ-
ments. Int. J. Mech. Sci. 44(3), 561–584 (2002). https://doi.org/10.1016/S0020-7403(01)00103-500103-5

21. Yang, J., Shen, H.S.: Vibration characteristics and transient response of shear-deformable functionally graded plates in
thermal environments. J. Sound Vibr. 255(3), 579–602 (2002). https://doi.org/10.1006/jsvi.2001.4161

22. Huang, X., Shen, H.: Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int.
J. Solids Struct. 41(9–10), 2403–2427 (2004). https://doi.org/10.1016/j.ijsolstr.2003.11.012

23. Kim, Y.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 28(3–5), 531–549
(2005). https://doi.org/10.1016/j.jsv.2004.06.043

24. Chen, C., Chen, T., Chien, R.: Nonlinear vibration of initially stressed functionally graded plates. Thin-Walled Struct. 44(8),
844–851 (2006). https://doi.org/10.1016/j.tws.2006.08.007

25. Zenkour, A.M., Alghamdi, N.A.: Thermoelastic bending analysis of functionally graded sandwich plates. J. Mater. Sci. 43,
2574–89 (2008). https://doi.org/10.1007/s10853-008-2476-6

26. Li, S.R., Su, H.D., Cheng, C.J.: Free vibration of functionally graded material beams with surface-bonded piezoelectric
layers in thermal environment. Appl. Math. Mech. 30(8), 969–982 (2009). https://doi.org/10.1007/s10483-009-0803-7

27. Shariyat, M.: A generalized high-order global-local plate theory for nonlinear bending and buckling analyses of imperfect
sandwich plates subjected to thermo-mechanical loads. Compos. Struct. 92, 130–143 (2010). https://doi.org/10.1016/j.
compstruct.2009.07.007

28. Shariyat, M.: A generalized global-local high-order theory for bending and vibration analyses of sandwich plates subjected
to thermo-mechanical loads. Int. J. Mech. Sci. 52, 495–514 (2010). https://doi.org/10.1016/j.ijmecsci.2009.11.010

29. Mahi, A., Adda Bedia, E.A., Tounsi, A., Mechab, I.: An analytical method for temperature dependent free vibration analysis
of functionally graded beams with general boundary conditions. Compos. Struct. 92, 1877–1887 (2010). https://doi.org/10.
1016/j.compstruct.2010.01.010

30. Shahrjerdi, A., Mustapha, F., Bayat, M., Majid, D.L.A.: Free vibration analysis of solar functionally graded plates with
temperature-dependent material properties using second order shear deformation theory. J. Mech. Sci. Technol. 25(9), 2195–
2209 (2011). https://doi.org/10.1007/s12206-011-0610-x

31. Kiani, Y., Eslami, M.R.: Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM
plates resting on elastic foundation. Arch. Appl. Mech. 82(7), 891–905 (2012). https://doi.org/10.1007/s00419-011-0599-8

32. Malekzadeh, P.,Monajjemzadeh, S.M.:Dynamic response of functionally graded plates in thermal environment undermoving
load. J. Compos. B 45, 1521–1533 (2013). https://doi.org/10.1016/j.compositesb.2012.09.022

33. Zhang,D.:Nonlinear bending analysis of FGMrectangular plateswith various supported boundaries resting on two-parameter
elastic foundations. Arch. Appl. Mech. 84, 1–20 (2014). https://doi.org/10.1007/s00419-013-0775-0

34. Nejati, M., Fard, K.M., Eslampanah, A.: Effects of fiber orientation and temperature on natural frequencies of a functionally
graded beam reinforced with fiber. J. Mech. Sci. Technol. 29, 3363–3371 (2015). https://doi.org/10.1007/s12206-015-0734-
5

35. Fazzolari, F.A.: Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and
non-uniform temperature distributions. Compos. Struct. 121, 197–210 (2015). https://doi.org/10.1016/j.compstruct.2014.10.
039

36. Kar, V.R., Panda, S.K.: Free vibration responses of temperature dependent functionally graded curved panels under thermal
environment. Latin Am. J. Solids Struct. 12(11), 2006–2024 (2015). https://doi.org/10.1590/1679-78251691

37. Attia, A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R.: Free vibration analysis of functionally graded plates with
temperature-dependent properties using various four variable refined plate theories. Steel Compos. Struct. 18(1), 187–212
(2015). https://doi.org/10.12989/scs.2015.18.1.187

38. Ibrahimi, F., Barati, M.R.: Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates
based on nonlocal four-variable refined plate theory. Int. J. Smart Nano Mater. 7(3), 119–143 (2016). https://doi.org/10.
1080/19475411.2016.1223203

39. Wang, Y.Q., Zu, J.W.: Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal
environment. Aerosp. Sci. Technol. 69, 550–562 (2017). https://doi.org/10.1016/j.ast.2017.07.023

40. Taleb, O., Houari, M.S.A., Bessaim, A., Tounsi, A., Mahmoud, S.R.: A new plate model for vibration response of advanced
composite plates in thermal environment. Struct. Eng. Mech. Int. J. 67(4), 369–383 (2018). https://doi.org/10.12989/sem.
2018.67.4.369

41. Shahsavari, D., Shahsavari, M., Li, L., Karami, B.: A novel quasi-3D hyperbolic theory for free vibration of FG plates with
porosities resting onWinkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 72, 134–149 (2018). https://doi.org/10.1016/
j.ast.2017.11.004

https://doi.org/10.1007/s00419-013-0769-y
https://doi.org/10.12989/sss.2018.22.1.121
https://doi.org/10.12989/sss.2018.22.1.121
https://doi.org/10.1016/j.compstruct.2012.03.016
https://doi.org/10.1016/j.compstruct.2012.03.016
https://doi.org/10.1016/j.compstruct.2009.03.023
https://doi.org/10.12989/eas.2018.14.2.117
https://doi.org/10.12989/eas.2018.14.2.117
https://doi.org/10.1016/j.ast.2017.09.031
https://doi.org/10.1016/S0020-7403(01)00103-500103-5
https://doi.org/10.1006/jsvi.2001.4161
https://doi.org/10.1016/j.ijsolstr.2003.11.012
https://doi.org/10.1016/j.jsv.2004.06.043
https://doi.org/10.1016/j.tws.2006.08.007
https://doi.org/10.1007/s10853-008-2476-6
https://doi.org/10.1007/s10483-009-0803-7
https://doi.org/10.1016/j.compstruct.2009.07.007
https://doi.org/10.1016/j.compstruct.2009.07.007
https://doi.org/10.1016/j.ijmecsci.2009.11.010
https://doi.org/10.1016/j.compstruct.2010.01.010
https://doi.org/10.1016/j.compstruct.2010.01.010
https://doi.org/10.1007/s12206-011-0610-x
https://doi.org/10.1007/s00419-011-0599-8
https://doi.org/10.1016/j.compositesb.2012.09.022
https://doi.org/10.1007/s00419-013-0775-0
https://doi.org/10.1007/s12206-015-0734-5
https://doi.org/10.1007/s12206-015-0734-5
https://doi.org/10.1016/j.compstruct.2014.10.039
https://doi.org/10.1016/j.compstruct.2014.10.039
https://doi.org/10.1590/1679-78251691
https://doi.org/10.12989/scs.2015.18.1.187
https://doi.org/10.1080/19475411.2016.1223203
https://doi.org/10.1080/19475411.2016.1223203
https://doi.org/10.1016/j.ast.2017.07.023
https://doi.org/10.12989/sem.2018.67.4.369
https://doi.org/10.12989/sem.2018.67.4.369
https://doi.org/10.1016/j.ast.2017.11.004
https://doi.org/10.1016/j.ast.2017.11.004


Fundamental frequency analysis of functionally 881

42. Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J., Lee, J.: Elastic buckling and free vibration analyses of porous-cellular plates
with uniform and non-uniform porosity distributions. Aerosp. Sci. Technol. 79, 278–287 (2018). https://doi.org/10.1016/j.
ast.2018.06.010

43. Tu, T.M., Quoc, T.H., Van Long, N.: Vibration analysis of functionally graded plates using the eight-unknown higher order
shear deformation theory in thermal environments. Aerosp. Sci. Technol. 84, 698–711 (2019). https://doi.org/10.1016/j.ast.
2018.11.010

44. Zaoui, F.Z., Ouinas, D., Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded
plates on elastic foundations. Compos. Part B Eng. 159, 231–247 (2019). https://doi.org/10.1016/j.compositesb.2018.09.051

45. Azadi, M.: Free and forced vibration analysis of FG beam considering temperature dependency of material properties. J.
Mech. Sci. Technol. 25(1), 69–80 (2011). https://doi.org/10.1007/s12206-010-1015-y

46. Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials. MacMillan, New York (1967)
47. Reddy, J.N., Chin, C.D.: Thermo-mechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21,

593–626 (1998). https://doi.org/10.1080/01495739808956165
48. Javaheri, R., Eslami, M.: Thermal buckling of functionally graded plates based on higher order theory. J. Therm. Stress.

25(7), 603–625 (2002). https://doi.org/10.1080/01495730290074333
49. Mokhtar, B., Abedlouahed, T., Adda Bedia, E.A., Abdelkader, M.: Buckling analysis of functionally graded plates with

simply supported edges. Leonardo J. Sci. 8, 21–32 (2009)
50. Esmaeilzadeh, M., Kadkhodayan, M.: Dynamic analysis of stiffened bi-directional functionally graded plates with porosities

under a moving load by dynamic relaxation method with kinetic damping. Aerosp. Sci. Technol. 93, 105333 (2019). https://
doi.org/10.1016/j.ast.2019.105333

51. Li, Q., Iu, V., Kou, K.: Three-dimensional vibration analysis of functionally graded material plates in thermal environment.
J. Sound Vib. 324(3–5), 733–750 (2009). https://doi.org/10.1016/j.jsv.2009.02.036

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1016/j.ast.2018.06.010
https://doi.org/10.1016/j.ast.2018.06.010
https://doi.org/10.1016/j.ast.2018.11.010
https://doi.org/10.1016/j.ast.2018.11.010
https://doi.org/10.1016/j.compositesb.2018.09.051
https://doi.org/10.1007/s12206-010-1015-y
https://doi.org/10.1080/01495739808956165
https://doi.org/10.1080/01495730290074333
https://doi.org/10.1016/j.ast.2019.105333
https://doi.org/10.1016/j.ast.2019.105333
https://doi.org/10.1016/j.jsv.2009.02.036

	Fundamental frequency analysis of functionally graded plates with temperature-dependent properties based on improved exponential-trigonometric two-dimensional higher shear deformation theory
	Abstract
	1 Introduction
	2 Computational modeling
	2.1 Material properties
	2.2 Temperature field
	2.2.1 Uniform temperature
	2.2.2 Linear temperature
	2.2.3 Nonlinear temperature
	2.2.4 Sinusoidal temperature rise

	2.3 Displacement fields and constitutive relations
	2.4 Plate governing equations
	2.5 Analytical solutions

	3 Results and discussion
	3.1 Material properties in thermal conditions
	3.2 Numerical results and validation
	3.3 Parametric study

	4 Conclusions
	Acknowledgements
	References




