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Abstract Based on fracture extreme theory (FET), the size effect on initial fracture toughness K ini
I and unstable

fracture toughness K un
I of concrete for three-point bendingbeamwas investigated.Ninegroups of geometrically

similar specimen were simulated to obtain peak load and critical crack mouth opening displacement, of which
specimen depthwas from 200 to 1000mmand initial crack length-to-depth ratioswere from 0.1 to 0.6. The K ini

I
and K un

I were calculated by FET and double-K method, in which FET adopted the linear, bilinear, and trilinear
cohesive stress distribution assumptions and double-K method only used the linear cohesive stress distribution
assumption. With linear cohesive stress distribution assumption, K ini

I and K un
I determined by FET and double-

K method were compared. Then, the influence of specimen depth on K ini
I and K un

I was discussed. In addition,
K ini
I /K un

I calculated via FET using different cohesive stress distribution assumptions were analyzed.

Keywords Concrete · Size effect · Fracture extreme theory · Cohesive stress distribution assumption ·
Double-K fracture parameters

1 Introduction

The fracture process zone (FPZ) exists at the crack tip in the crack propagation of concrete, which leads to
the size effect of fracture parameters [1]. The linear elastic fracture mechanics (LEFM) is not applicable for
quasi-brittle materials if the FPZ is not sufficiently small compared with the specimen size. Hence, various
nonlinear fracture models considering the FPZ were proposed in determining fracture parameters of quasi-
brittle materials [2–8]. The fictitious crack model (FCM) [2] regards the FPZ as a fictitious crack which can
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transfer cohesive stress. The tensile softening curve can describe the relationship between the cohesive stress
and crack opening displacement, in which the cohesive stress decreases as the crack opening displacement
increases.

The fracture process of concrete can be divided into three main stages, i.e., crack initiation, stable crack
propagation, and unstable crack propagation,which has been verified by several studies [8,9]. Xu andReinhardt
[8] proposed the double-K fracture model using initial fracture toughness K ini

I and unstable fracture toughness
K un
I to characterize these three stages. A simplified method of determining K ini

I and K un
I of concrete for

three-point bending beams was developed [9]. The determination of double-K fracture parameters requires
experimental peak load Pmax and critical crack mouth opening displacement CMODc. To further simplify the
calculation, Kumar and Barai [10,11] utilized the weight function method to determine the stress intensity
factor caused by cohesive stress KC

I and double-K fracture parameters of concrete. Furthermore, Qing et
al. [12–14] proposed the fracture extreme theory (FET) to obtain K ini

I of concrete for wedge splitting and
compact tension specimens [12], three-point bending beams [13], central notched cube, and cylinder split-
tension specimens [14]. It should be noted that only the Pmax of one specimen is required and measurement
of CMODc is avoided in FET.

The size effect is a key problem that deserves to be extensively studied. Bažant pointed out that the main
physicalmechanism that causes the size effect is the crack front blunting of any type [3,5]. Alexander andBlight
[15] tested notched beams with depths varying from 100 mm to 800 mm and found that fracture toughness
increases as the depth of the beams increases. Issa et al. [16] performed a lot of investigations on size effects in
concrete fracture, which pointed out that the growth rate of fracture toughness increases with both specimen
size and maximum aggregate size. Nallthambi et al. [17] proposed an expression for fracture toughness in
terms of material properties, specimen size, notch depth, and maximum aggregate size. Perdikaris et al. [18]
observed size effect on the fracture toughness in the static and fatigue tests and suggested that fracture toughness
cannot be considered to be material parameters. The presence of FPZ ahead of the crack in concrete affects
the fracture parameters based on assumed linear behavior. Kumar and Barai [19] followed the methodology
of Planas and Elices [20] to compare the size effect predictions of double-K fracture model with that of FCM.
It was found that FCM and double-K fracture model predict almost the same fracture behavior for laboratory
size three-point bending beam. Choubey et al. [21] compared the K ini

I and K un
I determined by FET and weight

function method for laboratory size specimens. Comparably, relatively limited studies on size effect analysis
of K ini

I and K un
I , and the corresponding relationship between K ini

I and K un
I for large size range are available.

In this study, nine groups of geometrically similar three-point bending concrete beam were used to inves-
tigate the size effect on initial fracture toughness K ini

I and unstable fracture toughness K un
I . The specimen

depths were from 200 to 1000 mm, and the crack length-to-depth ratios a0/D vary from 0.1 to 0.6 in each
group. Then, the peak load Pmax and critical crack mouth opening displacement CMODc were obtained by
simulation. The corresponding K ini

I and K un
I of concrete were calculated by FET and double-K method.

Linear, bilinear, and trilinear cohesive stress distribution assumptions were adopted in FET, while double-K
method only used linear cohesive stress distribution assumption. The comparison of K ini

I and K un
I determined

by FET and double-K method with linear cohesive stress distribution assumption was carried out. Finally, the
K ini
I /K un

I obtained by FET with three cohesive stress distribution assumptions were analyzed.

2 Fracture extreme theory of concrete

Figure 1 shows a typical P − a/D curve of concrete [13], where a0, a, D, and P represent the initial crack
length, the effective crack length, the specimen depth, and the external load, respectively. The crack starts to
propagate when P reaches the initial fracture load Pini, and then, P increases nonlinearly with a. When P
reaches the peak load Pmax, a reaches its critical value ac. Subsequently, P decreases with the increase of
a. According to the assumption of FET, the partial derivative of P to a at P = Pmax is continuous, and the
extreme point of the P − a/D curve can be described by Eq. (1) [13]

∂P

∂a

∣
∣
∣
∣
a=ac

= 0 (1)
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Fig. 1 A typical P − a/D curve of concrete [13]
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Fig. 2 Cohesive stress distribution in FPZ

3 The cohesive stress distribution assumption

The real cohesive stress distribution and the linear, bilinear, and trilinear cohesive stress distribution assump-
tions in FPZ are shown in Fig. 2, respectively. In Fig. 2, the kink point as is defined as the middle point of a0
and a in the bilinear cohesive stress distribution assumption, i.e., as = (a0 + a)/2. The kink points as1 and as2
are defined as the three equal points of a0 and a in the trilinear cohesive stress distribution assumption, i.e.,
as1 = 2a0/3 + a/3, as2 = a0/3 + 2a/3.

The nonlinear tensile softening curve [22] is adopted to describe the relationship between the cohesive
stress and crack opening displacement, in which the cohesive stress at crack tip σs(CTOD) as well as the
cohesive stress at the kink points σs(ωs), σs(ωs1), and σs(ωs2) all can be expressed by Eq. (2). The crack
opening displacement ω of the effective crack can be expressed by Eq. (3) [4]. Comparably, except for the
cohesive stress and crack opening displacement at the points a0 and ac satisfy the tensile softening curve in
those three cohesive stress distribution assumptions, and the cohesive stress and crack opening displacement
at kink points as, as1, and as2 also satisfy the tensile softening curve.

σs(ω) = ft

{[

1 +
(
c1ω

ω0

)3
]

e
−c2ω

ω0 − ω

ω0

(

1 + c31
)

e−c2

}

(2)

where c1, c2, and ω0 are material parameters.

ω = CMOD

{(

1 − ai
a

)2 +
(

−1.149
a

D
+ 1.081

) [
ai
a

−
(ai
a

)2
]}1/2

(3)
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Fig. 3 Calculating g(a) of bilinear cohesive stress distribution assumption

where the crack mouth opening displacement CMOD is expressed by the following equation [23]:

CMOD = 24Pa

BDE

[

0.76 − 2.28
a

D
+ 3.87

( a

D

)2 − 2.04
( a

D

)3 + 0.66

(1 − a/D)2

]

(4)

where B is the width of the specimen and E is the elastic modulus.
The expression of stress intensity factor caused by cohesive stress KC

I can be expressed as follows:

KC
I =

√

2

πa
g(a) (5)

where g(a) is calculated by four-term weight function [11]. Taking the bilinear cohesive stress distribution as
an example, g(a) can be obtained by superimposing red shadow parts of (1)–(3) in Fig. 3.

g(a) = g1(a) + g2(a) − g3(a) (6)

where

gi (a) = Ai
1a

(

2s1/2i + M1si + 2

3
M2s

3/2
i + 1

2
M3s

2
i

)

+Ai
2a

2
[
4

3
s3/2i + M1

2
s2i + 4

15
M2s

5/2
i +

M3

6

{

1 −
(ai
a

)3 − 3si
ai
a

}]

(7)

when i = 1, 3, ai = as; when i = 2, ai = a0.
where

s1 = s3 = 1 − as/a (8)

s2 = 1 − a0/a (9)

A1
1 = σs(ωs) (10)

A1
2 = ( ft − σs(ωs)) /(a − as) (11)

A2
1 = σs(CTOD) (12)

A2
2 = (σs(ωt) − σs(CTOD)) /(a − a0) (13)

A3
1 = σs(ωs) (14)

A3
2 = (σs(ωt) − σs(ωs)) /(a − as) (15)

σs(ωt) is the cohesive stress corresponding to the effective crack length a on the linear extended line of σs
(CTOD) and σs(ωs).

σs(ωt) = 2 × σs(ωs) − σs(CTOD) (16)

The expressions of M1, M2, and M3 are shown as follows:
When j = 1 or 3,

Mj = 1
(

1 − a
D

)3/2

[

a j + b j
a

D
+ c j

( a

D

)2 + d j

( a

D

)3 + e j
( a

D

)4 + f j
( a

D

)5
]

(17)
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Table 1 Values of coefficients in Mj [11]

j a j b j c j d j e j f j

1 0.057201 − 0.8741603 4.0465668 − 7.89441845 7.8549703 − 3.18832479
2 0.4935455 4.43649375 – – – –
3 0.340417 3.9534104 − 16.1903942 − 16.0958507 14.6302472 − 6.1306504

When j = 2,

Mj = a j + b j
a

D
(18)

The coefficients in Eqs. (17) and (18) are listed in Table 1.

4 Calculating the fracture parameters using FET

Based on the initial fracture toughness criterion [24], the external load of three-point bending beams can be
expressed as follows [13]:

P = 2BD2

3S
√
ak (α)

[

KC
I + K ini

I

] − W

2
(19)

where S is the span of the specimen, W is the weight of the specimen, α = a/D, KC
I is calculated by Eq. (5).

k(α) is shown as follows [23]:

k (α) = 1.99 − α (1 − α)
[

2.15 − 3.93α + 2.7 (α)2
]

(1 + 2α) (1 − α)3/2
(20)

Thus, the ∂P/∂a in Eq. (1) can be expressed as follows:

∂P

∂a
= ζ

′
(a) + η

′
(a)K ini

I (21)

where

ζ
′
(a) = 4BD2

3
√
2π S

g
′
(a)k(α)a − g(a)[k ′

(α)a + k(α)]
k2(α)a2

(22)

η
′
(a) = −2BD2

3S

[

a−1/2k(α) + a1/2k
′
(α)

2ak2(α)

]

(23)

where g′(a) and k′(α) are shown in “Appendix.”
Combining Eqs. (1) and (21), the critical effective crack length ac can be obtained. Substituting a = ac,

P = Pmax into Eq. (19), the initial fracture toughness K ini
I can be obtained.

K ini
I = 3S (2Pmax + W )

√
ack (αc)

4BD2 − 2√
2πac

g (ac) (24)

The first term on the right side in Eq. (24) is K un
I .

K un
I = 3S (2Pmax + W )

4BD2

√
ack (αc) (25)

Finally, K ini
I and K un

I can be determined using FETwith three different cohesive stress distribution assump-
tions.
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Fig. 4 Numerical model of three-point bending beam (Unit: mm)

Table 2 Concrete properties used in the numerical simulation

Poisson’s ratio 0.2
Young’s modulus 39.3 GPa
Fracture energy 112.6 N / m
Tensile strength 3.72 N/mm2

Crack width 2 mm
Cohesive elements width 0.2 mm

5 Numerical simulation

Nine groups of geometrically similar three-point bending concrete beams with depths from 200 to 1000 mm
were simulated to obtained peak loadPmax and critical crack mouth opening displacement CMODc. The a0/D
in each group ranges from 0.1 to 0.6. Figure 4 shows the loading and boundary conditions for three-point
bending beam, where D, B, and S are the depth, width, and span of the specimen and S = 4D.

The whole fracture processes of three-point bending beams were simulated with the finite element program
of ABAQUS. The loading and boundary conditions of the model are applied according to the particularities
of the test setup. The cohesive element technique of finite element analysis [25] was adopted to model the
cracking region in the middle of the bending beam in the study, which has been verified by comparing the
simulation results with the experimental data in Refai and Swartz [26]. Table 2 represents themodel parameters
used in the simulation. The finite element model is shown in Fig. 5 in which the Lagrange eight-node solid
elements with different dimensions are used.

6 Calculated results and discussions

Figure 6 shows the simulated load–crackmouth opening displacement (P−CMOD) curves of the geometrically
similar three-point bending beams. The simulated values of Pmax and CMODc as well as the double-K fracture
parameters calculated by FET and double-K method are listed in Table 3. The double-K fracture parameters
determined by FET with linear, bilinear, and trilinear cohesive stress distribution assumptions are denoted by
the superscript L, B, and T. For instance, K ini−L

I , K ini−B
I , and K ini−T

I denote the initial fracture toughness
obtained by three cohesive stress distribution assumptions in FET, respectively. The K ini−WF

I represents the
initial fracture toughness determined by double-K method using the four-term weight function with linear
cohesive stress distribution [11]. It should be pointed out that only the simulated Pmax was required in FET,
while both simulated Pmax and CMODc are needed in double-K method.

Figures 7 and 8 show the comparisons of KC/K ini
I and KC/K un

I with lch/D calculated by FET and double-
K method using linear cohesive stress distribution assumption, respectively, where the characteristic length
lch = EGF/ f 2t and the critical value of stress intensity factor KC = √

GFE are proposed in FCM. It can be
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Fig. 5 Finite element model with three-dimensional mesh

seen from Fig. 7, KC/K ini
I determined by FET are closed to those obtained by double-K method with the same

a0/D and scarcely changed with lch/D. In Fig. 8, KC/K un
I determined by FET increase with lch/D while

those determined by double-K method almost not change with lch/D. Besides, when a0/D in the region of
0.1 to 0.4 and lch/D are smaller than 0.6, i.e., specimen depths exceed 600 mm, KC/K un

I determined by FET
were smaller than those obtained by double-K method. As a0/D = 0.5 and 0.6, KC/K un

I determined by FET
were generally larger than those obtained by double-K method. The possible reason is that FET adopts only
the peak load Pmax in determining K un

I , and the double-K method is affected by both the peak load Pmax and
the critical crack mouth opening displacement CMODc. The measurement error of CMODc would influence
the calculated results, which is avoided in FET.

Figure 9 compares K ini
I /K un

I obtained by FET with different cohesive stress distribution assumptions.
With bilinear and trilinear cohesive stress distribution assumptions, K ini

I /K un
I slightly fluctuates around 0.5

and hardly affected by lch/D, which is same as the conclusion drawn by Jenq and Shah [4] and Yon et al. [27]
by the empirical estimation. While K ini

I /K un
I calculated using linear cohesive stress distribution assumption

are smaller than 0.5. Results show that the specimen depth has no obvious effect on K ini
I /K un

I in FET with
bilinear and trilinear cohesive stress distribution assumptions.

Table 3 shows that when the same specimen depth and a0/D were adopted, the initial fracture toughness
determined by FET using linear cohesive stress distribution assumption K ini−L

I is slightly smaller than those
determined with bilinear and trilinear cohesive stress distribution assumptions (K ini−B

I and K ini−T
I ), the

values of K un−B
I and K un−T

I obtained with bilinear and trilinear cohesive stress distribution assumptions are
smaller than those obtained with linear cohesive stress distribution assumption (K un−L

I ), and the difference
between K ini−B

I and K ini−T
I as well as K un−B

I and K un−T
I is small. The same phenomenon can be observed

in Ref. [28] for the laboratory size specimens. However, the linear cohesive stress distribution assumption
leads to an overestimation of KC

I as shown in Fig. 2. Therefore, accurate double-K fracture parameters can be
obtained using the bilinear cohesive stress distribution assumption.

7 Conclusion

The size effect on double-K fracture parameters was theoretically investigated in this study. Nine groups of
similar concrete three-point bending beams with specimen depths from 200 to 1000 mm and a0/D from 0.1 to
0.6 were established. The initial fracture toughness K ini

I and unstable fracture toughness K un
I were calculated

by FET and double-K method. The linear, bilinear, and trilinear cohesive stress distribution assumptions
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Fig. 6 P−CMOD curves for three-point bending beams

were used in FET; the double-K method only adopted the linear cohesive stress distribution assumption. The
following conclusions can be drawn from this study:
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Fig. 6 continued

(1) The KC/K ini
I determined by FET with linear cohesive stress distribution assumption were close to those

obtained by double-K method, which were almost not affected by specimen depth.
(2) With linear cohesive stress distribution assumption, KC/K un

I determined by FET increased with lch/D,
while, KC/K un

I obtained via double-K method slightly changed with lch/D.
(3) When bilinear and trilinear cohesive stress distribution assumptions were adopted in FET, the difference

between KC/K ini
I and KC/K un

I is not obvious, and the K ini
I /K un

I is stable and slightly fluctuates around
0.5

(4) Based on FET, the bilinear cohesive stress distribution assumption was recommended to determine the
double-K fracture parameters. The linear cohesive stress distribution assumption overestimated KC

I ,
while the bilinear cohesive stress distribution assumption can effectively avoid and has relatively small
computational complexity.
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Fig. 7 Comparisons of KC/K ini
I obtained by FET and double-K method with linear cohesive stress distribution assumption
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Fig. 8 Comparisons of KC/K un
I obtained by FET and double-K method with linear cohesive stress distribution assumption
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I obtained by FET with different cohesive stress distribution assumptions
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Table 3 Calculated results of the fracture parameters

Specimen
depth (mm)

a0/D Pmax

(kN)
CMODc

(μm)
Fracture extreme theory Double-K method

K ini−L
I

(MPa m1/2)
K ini−B
I

(MPa m1/2)
K ini−T
I

(MPa m1/2)
K un−L
I

(MPa m1/2)
K un−B
I

(MPa m1/2)
K un−T
I

(MPa m1/2)
K ini−WF
I

(MPa m1/2)
K un−WF
I

(MPa m1/2)

200 0.1 21.52 37.31 0.226 0.303 0.325 1.248 1.234 1.200 0.205 1.537
0.2 16.94 49.79 0.247 0.334 0.356 1.287 1.260 1.229 0.233 1.587
0.3 14.41 79.17 0.417 0.493 0.512 1.349 1.307 1.280 0.469 1.918
0.4 10.81 105.01 0.432 0.492 0.511 1.314 1.275 1.249 0.517 2.025
0.5 74.2 114.48 0.368 0.428 0.445 1.237 1.207 1.182 0.434 1.865
0.6 5.00 165.41 0.375 0.427 0.440 1.181 1.161 1.140 0.530 2.085

300 0.1 51.91 58.66 0.491 0.592 0.612 1.540 1.446 1.409 0.493 1.994
0.2 40.58 79.59 0.514 0.628 0.655 1.594 1.495 1.458 0.518 2.070
0.3 31.41 93.34 0.532 0.641 0.664 1.580 1.478 1.445 0.542 2.017
0.4 22.96 104.62 0.500 0.596 0.619 1.512 1.418 1.387 0.504 1.892
0.5 16.26 163.43 0.484 0.569 0.591 1.439 1.360 1.330 0.555 2.193
0.6 10.79 173.39 0.463 0.531 0.552 1.355 1.296 1.269 0.530 1.977

400 0.1 86.68 64.54 0.493 0.639 0.667 1.706 1.543 1.496 0.470 2.032
0.2 67.00 85.15 0.488 0.657 0.695 1.760 1.591 1.543 0.465 2.055
0.3 50.92 94.68 0.477 0.641 0.672 1.725 1.554 1.511 0.459 1.917
0.4 37.79 117.37 0.476 0.620 0.652 1.661 1.504 1.463 0.459 1.911
0.5 26.92 142.77 0.475 0.599 0.625 1.578 1.445 1.409 0.466 1.885
0.6 18.32 203.49 0.509 0.602 0.624 1.492 1.393 1.363 0.542 2.066

500 0.1 127.32 56.38 0.453 0.654 0.693 1.859 1.616 1.556 0.454 1.859
0.2 99.39 79.00 0.467 0.696 0.741 1.923 1.680 1.621 0.468 1.921
0.3 76.65 124.34 0.489 0.706 0.744 1.899 1.657 1.603 0.463 2.168
0.4 57.78 126.14 0.524 0.713 0.749 1.842 1.616 1.568 0.512 1.936
0.5 41.70 163.35 0.553 0.709 0.739 1.754 1.563 1.521 0.540 1.987
0.6 28.01 212.20 0.563 0.684 0.708 1.636 1.493 1.458 0.569 2.034

600 0.1 176.74 69.74 0.437 0.695 0.737 2.012 1.696 1.624 0.435 2.024
0.2 137.93 82.46 0.451 0.738 0.791 2.067 1.770 1.696 0.490 1.927
0.3 106.47 107.78 0.479 0.751 0.801 2.043 1.745 1.678 0.500 1.954
0.4 81.13 134.82 0.542 0.777 0.821 1.997 1.713 1.655 0.551 1.963
0.5 58.68 174.31 0.586 0.775 0.814 1.904 1.656 1.607 0.574 2.007
0.6 39.64 231.45 0.613 0.760 0.791 1.773 1.584 1.543 0.607 2.080

700 0.1 238.12 65.28 0.472 0.774 0.822 2.159 1.792 1.708 0.529 1.966
0.2 182.51 85.92 0.442 0.781 0.845 2.186 1.860 1.769 0.527 1.940
0.3 140.68 113.02 0.469 0.791 0.848 2.159 1.831 1.749 0.527 1.965
0.4 107.37 145.39 0.543 0.824 0.875 2.118 1.795 1.726 0.570 2.002
0.5 77.73 186.48 0.590 0.823 0.866 2.030 1.734 1.676 0.592 2.033
0.6 48.54 243.55 0.457 0.660 0.697 1.829 1.572 1.522 0.438 2.025

800 0.1 296.56 68.82 0.405 0.764 0.822 2.237 1.846 1.742 0.494 1.975
0.2 229.66 91.60 0.400 0.792 0.864 2.268 1.931 1.822 0.520 1.967
0.3 178.07 121.68 0.447 0.813 0.882 2.248 1.907 1.808 0.528 2.005
0.4 134.19 154.60 0.492 0.823 0.880 2.196 1.851 1.767 0.542 2.016
0.5 94.92 190.80 0.490 0.776 0.829 2.091 1.756 1.685 0.515 1.979
0.6 65.02 274.63 0.568 0.787 0.829 1.976 1.688 1.632 0.553 2.165

900 0.1 365.0 71.33 0.378 0.783 0.850 2.317 1.917 1.791 0.505 1.989
0.2 280.18 97.40 0.354 0.791 0.873 2.331 1.997 1.867 0.501 1.992
0.3 217.83 128.94 0.408 0.819 0.900 2.316 1.972 1.856 0.516 2.028
0.4 163.60 161.84 0.448 0.822 0.892 2.261 1.907 1.807 0.526 2.019
0.5 116.21 222.74 0.457 0.786 0.848 2.164 1.811 1.727 0.467 2.120
0.6 80.88 278.00 0.579 0.830 0.879 2.073 1.754 1.690 0.574 2.131

1000 0.1 461.15 75.17 0.494 0.910 0.980 2.448 2.036 1.896 0.638 2.075
0.2 331.90 99.23 0.282 0.766 0.864 2.377 2.050 1.898 0.486 1.971
0.3 260.10 166.96 0.364 0.817 0.908 2.372 2.031 1.897 0.388 2.285
0.4 197.0 171.74 0.431 0.840 0.917 2.327 1.973 1.857 0.526 2.051
0.5 142.69 221.52 0.491 0.846 0.913 2.252 1.893 1.798 0.535 2.084
0.6 99.66 299.28 0.625 0.899 0.950 2.170 1.834 1.763 0.622 2.199
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8 Appendix

The g′(a) and k′(α) in Eq. (22) are shown as follows:

k
′
(α) = 1

D(1 + 2α2)(1 − α)3
× {(−2.15 + 12.16α − 19.89α2 + 10.8α3) × (1 + 2α) (1 − α)3/2

− (

1.99 − 2.15α + 6.08α2 − 6.63α3 + 2.7α4) ×
[

2(1 − α)3/2 − 3

2
(1 + 2α)(1 − α)1/2

]}

(A1)

g′(a) = g′
1(a) + g′

2(a) − g′
3(a) (A2)

where

g′
i (a) =
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Ai
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1
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)(
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3
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]
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]

+ Ai
2a

2
[

2s1/2i s′
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[
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[

1 −
(ai
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)3 − 3si
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]]

+ Ai
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+
(

2Ai
2a + A′

2a
2
)

×
[
4

3
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2
s2i + 4

15
M2s

5/2
i + M3
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{

1 −
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a

)3 − 3s1
ai
a

}]

(A3)

when i = 1, 3, ai = as; when i = 2, ai = a0.

f1,3(a) = M3

2

(

−
(as
a

)2 a − 2as
2a2

− s′
i
as
a

− si
a − 2as
2a2

)

(A4)

f2(a) = M3

2

(

a30
a4

− s′
i
a0
a

+ si
a0
a2

)

(A5)

where

s′
1,3 = −a − 2as

2a2
(A6)

s′
2 = a0

a2
(A7)

A1
1
′ = ∂σs (ωs)

∂a
= ∂σs (ωs)

∂ωs

∂ωs

∂a
(A8)

A1
2
′ = − A2

1
′
(a − as) + (

ft − A2
1

)

/2

(a − as)2
(A9)

A2
1
′ = ∂σs (CTOD)

∂a
= ∂σs (CTOD)

∂CTOD

∂CTOD

∂a
(A10)

A2
2
′ =

(

σ ′
s(ωt) − A2

1
′)

(a − a0) − (

σs(ωt) − A2
1

)

(a − a0)2
(A11)

A3
1
′ = A1

1
′

(A12)

A3
2
′ =

(

σ ′
s(ωt) − A1

1
′)

(a − as) − (

σs(ωt) − A1
1

)

/2

(a − as)2
(A13)

where
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∂σs (ω)

∂ω
= ft

[

exp

(

−c2ω

w0

) [

3c1
w0

(
c1ω

w0

)2
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(
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(
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(A14)
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6PS

BD2E
×

[

0.76 − 4.56α + 11.61α2 − 8.16α3 + 0.66

(1 − α)2
+ 1.32α

(1 − α)3

]}

×
{(

1 − a0
a

)2 + (1.081 − 1.149α)

[
a0
a

−
(a0
a

)2
]}1/2

+ 3PSa

BD2E
×

(

0.76 − 2.28α + 3.87α2 − 2.04α3 + 0.66

(1 − α)2

)

×
{(

1 − a0
a

)2 + (1.081 − 1.149α)

[
a0
a

−
(a0
a

)2
]}−1/2

×
{

2
(

1 − a0
a

) a0
a2

− 1.149

D

[
a0
a

−
(a0
a

)2
]

− (1.081 − 1.149α)

(

a0
a2

− 2
a20
a3

)}

(A15)

∂ωs

∂a
=

{
6PS

BD2E
×

[

0.76 − 4.56α + 11.61α2 − 8.16α3+
0.66

(1 − α)2
+ 1.32α

(1 − α)3

]}

×
{(

1 − as
a

)2 + (1.081 − 1.149α)

(
as
a

−
(as
a

)2
)} 1

2

+ 3PSa

BD2E
×

(

0.76 − 2.28α + 3.87α2 − 2.04α3+
0.66

(1 − α)2

)

×
((

1 − as
a

)2 + (1.081 − 1.149α)

(
as
a

−
(as
a

)2
)− 1

2

×
{

2
(

1 − as
a

) a0
2a2

+
(

−1.149

D

) [
as
a

−
(as
a

)2
]

− (1.081 − 1.149α)
[ a0
2a2

− a0as
a3

]}

(A16)

σ ′
s(ωt) = 2A1

1
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3
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(A17)

The partial derivatives of Mj to a are expressed as follows:
when j = 1 or 3,

M ′
j = 1
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×
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b j

D
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when j = 2,

M ′
j = b j

D
(A19)
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