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Abstract Based on fracture extreme theory (FET), the size effect on initial fracture toughness K- Ii“i and unstable
fracture toughness K" of concrete for three-point bending beam was investigated. Nine groups of geometrically
similar specimen were simulated to obtain peak load and critical crack mouth opening displacement, of which
specimen depth was from 200 to 1000 mm and initial crack length-to-depth ratios were from 0.1 to 0.6. The K™
and K I”“ were calculated by FET and double-K method, in which FET adopted the linear, bilinear, and trilinear
cohesive stress distribution assumptions and double- K method only used the linear cohesive stress distribution
assumption. With linear cohesive stress distribution assumption, K{™ and K" determined by FET and double-
K method were compared. Then, the influence of specimen depth on Kli“i and K" was discussed. In addition,

KIi“i /K" calculated via FET using different cohesive stress distribution assumptions were analyzed.

Keywords Concrete - Size effect - Fracture extreme theory - Cohesive stress distribution assumption -
Double-K fracture parameters

1 Introduction

The fracture process zone (FPZ) exists at the crack tip in the crack propagation of concrete, which leads to
the size effect of fracture parameters [1]. The linear elastic fracture mechanics (LEFM) is not applicable for
quasi-brittle materials if the FPZ is not sufficiently small compared with the specimen size. Hence, various
nonlinear fracture models considering the FPZ were proposed in determining fracture parameters of quasi-
brittle materials [2—-8]. The fictitious crack model (FCM) [2] regards the FPZ as a fictitious crack which can
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transfer cohesive stress. The tensile softening curve can describe the relationship between the cohesive stress
and crack opening displacement, in which the cohesive stress decreases as the crack opening displacement
increases.

The fracture process of concrete can be divided into three main stages, i.e., crack initiation, stable crack
propagation, and unstable crack propagation, which has been verified by several studies [8,9]. Xu and Reinhardt
[8] proposed the double-K fracture model using initial fracture toughness K™ and unstable fracture toughness

K™ to characterize these three stages. A simplified method of determining Kli“i and K" of concrete for
three-point bending beams was developed [9]. The determination of double-K fracture parameters requires
experimental peak load Ppax and critical crack mouth opening displacement CMOD.. To further simplify the
calculation, Kumar and Barai [10,11] utilized the weight function method to determine the stress intensity
factor caused by cohesive stress KIC and double-K fracture parameters of concrete. Furthermore, Qing et
al. [12-14] proposed the fracture extreme theory (FET) to obtain KIini of concrete for wedge splitting and
compact tension specimens [12], three-point bending beams [13], central notched cube, and cylinder split-
tension specimens [14]. It should be noted that only the Ppax of one specimen is required and measurement
of CMOD; is avoided in FET.

The size effect is a key problem that deserves to be extensively studied. BaZant pointed out that the main
physical mechanism that causes the size effect is the crack front blunting of any type [3,5]. Alexander and Blight
[15] tested notched beams with depths varying from 100 mm to 800 mm and found that fracture toughness
increases as the depth of the beams increases. Issa et al. [16] performed a lot of investigations on size effects in
concrete fracture, which pointed out that the growth rate of fracture toughness increases with both specimen
size and maximum aggregate size. Nallthambi et al. [17] proposed an expression for fracture toughness in
terms of material properties, specimen size, notch depth, and maximum aggregate size. Perdikaris et al. [18]
observed size effect on the fracture toughness in the static and fatigue tests and suggested that fracture toughness
cannot be considered to be material parameters. The presence of FPZ ahead of the crack in concrete affects
the fracture parameters based on assumed linear behavior. Kumar and Barai [19] followed the methodology
of Planas and Elices [20] to compare the size effect predictions of double-K fracture model with that of FCM.
It was found that FCM and double-K fracture model predict almost the same fracture behavior for laboratory
size three-point bending beam. Choubey et al. [21] compared the K{™ and K™ determined by FET and weight
function method for laboratory size specimens. Comparably, relatively limited studies on size effect analysis
of K{™ and K", and the corresponding relationship between K™ and K™ for large size range are available.

In this study, nine groups of geometrically similar three-point bending concrete beam were used to inves-
tigate the size effect on initial fracture toughness K™ and unstable fracture toughness K. The specimen
depths were from 200 to 1000 mm, and the crack length-to-depth ratios ag/D vary from 0.1 to 0.6 in each
group. Then, the peak load Pp,x and critical crack mouth opening displacement CMOD, were obtained by
simulation. The corresponding K™ and K" of concrete were calculated by FET and double-K method.
Linear, bilinear, and trilinear cohesive stress distribution assumptions were adopted in FET, while double-K
method only used linear cohesive stress distribution assumption. The comparison of K{™ and K" determined
by FET and double-K method with linear cohesive stress distribution assumption was carried out. Finally, the
K™ /K" obtained by FET with three cohesive stress distribution assumptions were analyzed.

2 Fracture extreme theory of concrete

Figure 1 shows a typical P — a/D curve of concrete [13], where ag, a, D, and P represent the initial crack
length, the effective crack length, the specimen depth, and the external load, respectively. The crack starts to
propagate when P reaches the initial fracture load Pj,;, and then, P increases nonlinearly with a. When P
reaches the peak load Pp,x, a reaches its critical value a.. Subsequently, P decreases with the increase of
a. According to the assumption of FET, the partial derivative of P to a at P = Ppj,x is continuous, and the
extreme point of the P — a/D curve can be described by Eq. (1) [13]

aP

da a=a.

=0 (1)
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Fig. 2 Cohesive stress distribution in FPZ

3 The cohesive stress distribution assumption

The real cohesive stress distribution and the linear, bilinear, and trilinear cohesive stress distribution assump-
tions in FPZ are shown in Fig. 2, respectively. In Fig. 2, the kink point g is defined as the middle point of ag
and a in the bilinear cohesive stress distribution assumption, i.e., as = (ao + a)/2. The kink points as; and as
are defined as the three equal points of ap and a in the trilinear cohesive stress distribution assumption, i.e.,
as1 = 2ao/3 +a/3,axp = ap/3 + 2a/3.

The nonlinear tensile softening curve [22] is adopted to describe the relationship between the cohesive
stress and crack opening displacement, in which the cohesive stress at crack tip o,(CTOD) as well as the
cohesive stress at the kink points og(ws), os(ws1), and og(wsy) all can be expressed by Eq. (2). The crack
opening displacement w of the effective crack can be expressed by Eq. (3) [4]. Comparably, except for the
cohesive stress and crack opening displacement at the points ag and a. satisfy the tensile softening curve in
those three cohesive stress distribution assumptions, and the cohesive stress and crack opening displacement
at kink points ag, ag1, and ag also satisfy the tensile softening curve.

3 —CHyw
os(w) = ﬁ{ 1+ <%> e -2 (1 +C?)e—cz} 2

20) wQ

where ¢y, ¢3, and wg are material parameters.

® = CMOD {(1 - %)2 n (—1.149% + 1.081) [% - (%)2“1/2 3)
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Fig. 3 Calculating g(a) of bilinear cohesive stress distribution assumption

where the crack mouth opening displacement CMOD is expressed by the following equation [23]:

24Pa a a\2 a3 0.66
CMOD = 2% 10.76 —2.28% 4+ 3.87 (-) —2.04 (—) T )
BDE D D D (1 —a/D)?

where B is the width of the specimen and E is the elastic modulus.
The expression of stress intensity factor caused by cohesive stress K IC can be expressed as follows:

C 2
Ky =y 8@ ®)

where g(a) is calculated by four-term weight function [11]. Taking the bilinear cohesive stress distribution as
an example, g(a) can be obtained by superimposing red shadow parts of (1)—(3) in Fig. 3.

gla) = gi(a) + g2(a) — g3(a) (6)

where

. 2 1
gi(a) = ’1a<2si1/2+M1s,-+— 25 4 = 3s,-2>

3 2
+A§a2 [gsf/z + %s,z + 14—5M2si5/2+% {1 — (%)3 — 3si%” (7N
wheni =1, 3, a; = as; wheni = 2, a; = ayg.
where
s1=s3=1—as/a (8)
sp =1—ap/a )
A} = o5(wy) (10)
A} = (fi = os(@y)) /(@ — a5) (1)
A? = 65(CTOD) (12)
A3 = (o5(wy) — 05(CTOD)) /(a — ag) (13)
A? = og(ws) (14)
A3 = (os(@) — o5(y)) /(@ — ay) (15)

os(wy) is the cohesive stress corresponding to the effective crack length a on the linear extended line of oy
(CTOD) and o (ws).
os(wy) =2 X og(ws) — 05(CTOD) (16)

The expressions of M1, M>, and M3 are shown as follows:
When j = 1or 3,

= e s (5 v (5w (5) 45 (5)]
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Table 1 Values of coefficients in M; [11]

j aj bj cj d; ej fi
1 0.057201 —0.8741603 4.0465668 —7.89441845 7.8549703 —3.18832479
2 0.4935455 4.43649375 - - - -
3 0.340417 3.9534104 —16.1903942 —16.0958507 14.6302472 —6.1306504
When j =2,
a
Mj=a;+bj— 18
J J J D ( )

The coefficients in Eqs. (17) and (18) are listed in Table 1.

4 Calculating the fracture parameters using FET

Based on the initial fracture toughness criterion [24], the external load of three-point bending beams can be
expressed as follows [13]:

p_ 2BD?
©3Sak (o)

where S is the span of the specimen, W is the weight of the specimen, « = a/D, KIC is calculated by Eq. (5).
k(o) is shown as follows [23]:

(19)

| =

[KE -+ K{"] —

1.99 —a (1 —a) [2.15 — 3.93c + 2.7 (@)?]

k(o) = 20
@ (14 2a) (1 — )’/ 0
Thus, the d P/da in Eq. (1) can be expressed as follows:
aP ’ 4 1111
5, = ¢ @ +n @Kk 21
a
where
/ 4BD? g (@k(a)a — g(a)[k (@)a + k()]
= 22
¢ @) = o= TR (22)
' 2BD*|a '?k(@) +a'k (@)
ni@ === [ 2ak2 () 23)

where g/(a) and k/(«) are shown in “Appendix.”
Combining Egs. (1) and (21), the critical effective crack length a. can be obtained. Substituting a = ac,
P = Ppax into Eq. (19), the initial fracture toughness K™ can be obtained.

. 35Q2Pp w k 2
Klml _ (2 Pmax + )«/a_c (ac) _ ¢ (ac) (24)
4BD? J2mac
The first term on the right side in Eq. (24) is K.
3S 2P w
KIun _ (2 Pmax + )\/a_ck (ate) (25)

4B D?

Finally, K Ii“i and K™ can be determined using FET with three different cohesive stress distribution assump-
tions.



432 L. Qing et al.

P .
i /7 Cohesive element

-D———p

i E Initial J i E [ ———B———P
y crack

3 A
4-20-Pe S = 4D P20

Support Support

Fig. 4 Numerical model of three-point bending beam (Unit: mm)

Table 2 Concrete properties used in the numerical simulation

Poisson’s ratio 0.2

Young’s modulus 39.3 GPa
Fracture energy 1126 N/ m
Tensile strength 3.72 N/mm?
Crack width 2 mm
Cohesive elements width 0.2 mm

5 Numerical simulation

Nine groups of geometrically similar three-point bending concrete beams with depths from 200 to 1000 mm
were simulated to obtained peak load Pp,,x and critical crack mouth opening displacement CMOD... The ag/D
in each group ranges from 0.1 to 0.6. Figure 4 shows the loading and boundary conditions for three-point
bending beam, where D, B, and § are the depth, width, and span of the specimen and S = 4D.

The whole fracture processes of three-point bending beams were simulated with the finite element program
of ABAQUS. The loading and boundary conditions of the model are applied according to the particularities
of the test setup. The cohesive element technique of finite element analysis [25] was adopted to model the
cracking region in the middle of the bending beam in the study, which has been verified by comparing the
simulation results with the experimental data in Refai and Swartz [26]. Table 2 represents the model parameters
used in the simulation. The finite element model is shown in Fig. 5 in which the Lagrange eight-node solid
elements with different dimensions are used.

6 Calculated results and discussions

Figure 6 shows the simulated load—crack mouth opening displacement (P —CMOD) curves of the geometrically
similar three-point bending beams. The simulated values of Pp,x and CMOD, as well as the double-K fracture
parameters calculated by FET and double-K method are listed in Table 3. The double-K fracture parameters
determined by FET with linear, bilinear, and trilinear cohesive stress distribution assumptions are denoted by
the superscript L, B, and T. For instance, KIm“L, KIm“B, and KI“‘“T denote the initial fracture toughness

obtained by three cohesive stress distribution assumptions in FET, respectively. The KI”“_WF represents the
initial fracture toughness determined by double-K method using the four-term weight function with linear
cohesive stress distribution [11]. It should be pointed out that only the simulated Pp,x was required in FET,
while both simulated Pax and CMOD, are needed in double-K method.

Figures 7 and 8 show the comparisons of Kc/K;™ and K¢ /K" with [¢/ D calculated by FET and double-
K method using linear cohesive stress distribution assumption, respectively, where the characteristic length
lch = EGr/ ft2 and the critical value of stress intensity factor K¢ = +/GgE are proposed in FCM. It can be
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Fig. 5 Finite element model with three-dimensional mesh

seen from Fig. 7, Kc /K Ii“i determined by FET are closed to those obtained by double- K method with the same
ao/D and scarcely changed with Iy /D. In Fig. 8, Kc/K{" determined by FET increase with [ch /D while
those determined by double-K method almost not change with /., /D. Besides, when ag/D in the region of
0.1to 0.4 and I,/ D are smaller than 0.6, i.e., specimen depths exceed 600 mm, K¢/ KI“n determined by FET
were smaller than those obtained by double-K method. As ag/D = 0.5 and 0.6, K¢ /K" determined by FET
were generally larger than those obtained by double-K method. The possible reason is that FET adopts only
the peak load Ppax in determining K™, and the double-K method is affected by both the peak load Ppax and
the critical crack mouth opening displacement CMOD,. The measurement error of CMOD, would influence
the calculated results, which is avoided in FET.

Figure 9 compares I(Ii“i /K" obtained by FET with different cohesive stress distribution assumptions.
With bilinear and trilinear cohesive stress distribution assumptions, Kli“i /K™ slightly fluctuates around 0.5
and hardly affected by /., / D, which is same as the conclusion drawn by Jenq and Shah [4] and Yon et al. [27]
by the empirical estimation. While K™ /K" calculated using linear cohesive stress distribution assumption
are smaller than 0.5. Results show that the specimen depth has no obvious effect on Kli“i /K™ in FET with
bilinear and trilinear cohesive stress distribution assumptions.

Table 3 shows that when the same specimen depth and ag/D were adopted, the initial fracture toughness
determined by FET using linear cohesive stress distribution assumption K Em_L is slightly smaller than those
determined with bilinear and trilinear cohesive stress distribution —assumptions (KI"“*B and KI‘““T), the
values of KI“n_B and K fm_T obtained with bilinear and trilinear cohesive stress distribution assumptions are
smaller than those obtained with linear cohesive stress distribution assumption (KF“_L), and the difference

between K" P and K"~ as well as K" and K™~ " is small. The same phenomenon can be observed
in Ref. [28] for the laboratory size specimens. However, the linear cohesive stress distribution assumption
leads to an overestimation of KIC as shown in Fig. 2. Therefore, accurate double-K fracture parameters can be
obtained using the bilinear cohesive stress distribution assumption.

7 Conclusion

The size effect on double-K fracture parameters was theoretically investigated in this study. Nine groups of
similar concrete three-point bending beams with specimen depths from 200 to 1000 mm and ag/ D from 0.1 to
0.6 were established. The initial fracture toughness K™ and unstable fracture toughness K" were calculated
by FET and double-K method. The linear, bilinear, and trilinear cohesive stress distribution assumptions
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Fig. 6 P—CMOD curves for three-point bending beams
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were used in FET; the double- K method only adopted the linear cohesive stress distribution assumption. The

following conclusions can be drawn from this study:
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Fig. 6 continued

(1) The Kc/K Iini determined by FET with linear cohesive stress distribution assumption were close to those
obtained by double-K method, which were almost not affected by specimen depth.
(2) With linear cohesive stress distribution assumption, K¢ /K" determined by FET increased with [ch /D,
while, Kc/K{" obtained via double-K method slightly changed with I,/ D.
(3) When bilinear and trilinear cohesive stress distribution assumptions were adopted in FET, the difference
between Kc/K{™ and Kc/K™ is not obvious, and the K™ /K{" is stable and slightly fluctuates around

0.5

(4) Based on FET, the bilinear cohesive stress distribution assumption was recommended to determine the
double-K fracture parameters. The linear cohesive stress distribution assumption overestimated KC,
while the bilinear cohesive stress distribution assumption can effectively avoid and has relatively small

computational complexity.
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Table 3 Calculated results of the fracture parameters

Specimen ao/D  Prax CMOD, Fracture extreme theory Double-K method
depth (mm) (kN) (pum)

K]ini—L KIini—B K[ini—T K]un—L KIun—B Klun—T K]ini—WF KIun—WF
(MPa m'/2) (MPa m'/?) (MPa m!/?) (MPa m'/?2) (MPa m!/?) (MPa m!/2) (MPa m'/?) (MPa m!/?)

200 0.1 2152 3731 0.226 0.303 0.325 1.248 1.234 1.200 0.205 1.537
02 1694 49.79 0.247 0.334 0.356 1.287 1.260 1.229 0.233 1.587
03 1441  79.17 0.417 0.493 0.512 1.349 1.307 1.280 0.469 1.918
04  10.81 105.01 0.432 0.492 0.511 1.314 1.275 1.249 0.517 2.025
05 742 114.48  0.368 0.428 0.445 1.237 1.207 1.182 0.434 1.865
0.6  5.00 16541  0.375 0.427 0.440 1.181 1.161 1.140 0.530 2.085
300 0.1 5191  58.66 0.491 0.592 0.612 1.540 1.446 1.409 0.493 1.994
02 4058  79.59 0.514 0.628 0.655 1.594 1.495 1.458 0.518 2.070
03 3141 93.34 0.532 0.641 0.664 1.580 1.478 1.445 0.542 2.017
04 2296 10462  0.500 0.596 0.619 1.512 1.418 1.387 0.504 1.892
05 1626 163.43  0.484 0.569 0.591 1.439 1.360 1.330 0.555 2.193
0.6 1079 17339  0.463 0.531 0.552 1.355 1.296 1.269 0.530 1.977
400 0.1 86.68  64.54 0.493 0.639 0.667 1.706 1.543 1.496 0.470 2.032
02 67.00 85.15 0.488 0.657 0.695 1.760 1.591 1.543 0.465 2.055
03 5092  94.68 0.477 0.641 0.672 1.725 1.554 1.511 0.459 1.917
04 3779 117.37  0.476 0.620 0.652 1.661 1.504 1.463 0.459 1.911
05 2692 14277 0475 0.599 0.625 1.578 1.445 1.409 0.466 1.885
0.6 1832 20349  0.509 0.602 0.624 1.492 1.393 1.363 0.542 2.066
500 0.1 12732 56.38 0.453 0.654 0.693 1.859 1.616 1.556 0.454 1.859
02 9939  79.00 0.467 0.696 0.741 1.923 1.680 1.621 0.468 1.921
03 76.65 12434  0.489 0.706 0.744 1.899 1.657 1.603 0.463 2.168
04 5778  126.14  0.524 0.713 0.749 1.842 1.616 1.568 0.512 1.936
0.5 41.70 16335  0.553 0.709 0.739 1.754 1.563 1.521 0.540 1.987
0.6 28.01 21220 0.563 0.684 0.708 1.636 1.493 1.458 0.569 2.034
600 0.1 176.74  69.74 0.437 0.695 0.737 2.012 1.696 1.624 0.435 2.024
02 13793 8246 0.451 0.738 0.791 2.067 1.770 1.696 0.490 1.927
03 10647 107.78  0.479 0.751 0.801 2.043 1.745 1.678 0.500 1.954
04  81.13 13482  0.542 0.777 0.821 1.997 1.713 1.655 0.551 1.963
05 58.68 17431  0.586 0.775 0.814 1.904 1.656 1.607 0.574 2.007
0.6 39.64 23145 0.613 0.760 0.791 1.773 1.584 1.543 0.607 2.080
700 0.1 23812 6528 0.472 0.774 0.822 2.159 1.792 1.708 0.529 1.966
02 18251 8592 0.442 0.781 0.845 2.186 1.860 1.769 0.527 1.940
03  140.68 113.02  0.469 0.791 0.848 2.159 1.831 1.749 0.527 1.965
04 107.37 14539  0.543 0.824 0.875 2.118 1.795 1.726 0.570 2.002
05 7773  186.48  0.590 0.823 0.866 2.030 1.734 1.676 0.592 2.033
0.6 4854 24355 0457 0.660 0.697 1.829 1.572 1.522 0.438 2.025
800 0.1  296.56 68.82 0.405 0.764 0.822 2.237 1.846 1.742 0.494 1.975
02 229.66 91.60 0.400 0.792 0.864 2.268 1.931 1.822 0.520 1.967
03 178.07 121.68  0.447 0.813 0.882 2.248 1.907 1.808 0.528 2.005
04 13419 15460  0.492 0.823 0.880 2.196 1.851 1.767 0.542 2.016
05 9492  190.80  0.490 0.776 0.829 2.091 1.756 1.685 0.515 1.979
0.6 6502 274.63  0.568 0.787 0.829 1.976 1.688 1.632 0.553 2.165
900 0.1 3650 71.33 0.378 0.783 0.850 2.317 1.917 1.791 0.505 1.989
0.2  280.18 97.40 0.354 0.791 0.873 2.331 1.997 1.867 0.501 1.992
03  217.83 12894  0.408 0.819 0.900 2.316 1.972 1.856 0.516 2.028
04 163.60 161.84  0.448 0.822 0.892 2.261 1.907 1.807 0.526 2.019
05 11621 22274  0.457 0.786 0.848 2.164 1.811 1.727 0.467 2.120
0.6 80.88 278.00  0.579 0.830 0.879 2.073 1.754 1.690 0.574 2.131
1000 0.1 461.15 7517 0.494 0.910 0.980 2.448 2.036 1.896 0.638 2.075
02 33190 99.23 0.282 0.766 0.864 2.377 2.050 1.898 0.486 1.971
03  260.10 16696  0.364 0.817 0.908 2.372 2.031 1.897 0.388 2.285
04 1970 171.74 0431 0.840 0.917 2.327 1.973 1.857 0.526 2.051
0.5 142,69 221.52  0.491 0.846 0.913 2.252 1.893 1.798 0.535 2.084

0.6 99.66 299.28  0.625 0.899 0.950 2.170 1.834 1.763 0.622 2.199
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8 Appendix
The g/(a) and k/(«) in Eq. (22) are shown as follows:

1

@) = i 2and —a)

x {(—2.15 + 12.16a — 19.89¢% + 10.8°) x (1 + 2a) (1 — )*/?

3
— (199 — 2.15¢ + 6.080 — 6.630” +2.7a*) x [2(1 —a)’? = S+ 201 = 05)1/2:|} (A1)

g'(a) = g1 (a) + gh(a) — g5(a)

where

. . 2 1 ;
gi(a) = (All + A’I,a> <2si1/2 + Mis; + M5 4 —Mgsl-z) + Aja [ —12g [+ Mis; + Mys; + M3s;

3 ! 2
i 2,302 o0 i 2 1/2/
+ Ala 3M2s + Mss;s; + §M3s,- + Asa” | 2s,

, 4 M, \3 , ,
+ Aba® |:15M’ o2 4 ?3 [1 — (a—l) — 3siﬁ]] + Aba? fi(a)

a

3% 2 5 6

+<2A§a+A’2a2)X[ 3/2+ﬂ 2+1 M 5/2+_{1_<;~>3

wheni =1, 3, a; = as; wheni = 2, a; = ayp.

M; as\2 a — 2a. d; a — 2a
o) = 5 (= () g -

a 2a 2a?
M;3 aé , 40 ag
ﬁ“”*?(;‘*?**ﬁ
where
o= a — 2ag
1 3 2612
;4o
32 = p
A]’ _ dos (ws) _ do (ws) %
! da dws 0da
A AV @—a)+(fi—4}) 2
g (a — as)?
2 _ 20:(CTOD) _ 4o, (CTOD) 4CTOD
L= da ~  3CTOD da
o (ol = 4Y) @ = ap) — (os(@) — A})
A5 =
: (a — ap)?
A3/ _ Ai/
o (slen =AY @=ay = (o) - A1) /2
A; =
z (a — as)2
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dog (w) Cow 3c1 (clw 2 ) clw 3 1 3
= fi |:exp (——) — (—) -—— |1+ (—) - — (1 + cl) exp (—c2) | (Al4)
ow wo wo \ wo wo wo wo

9CTOD _ [ 6PS 0.66 N 1.32c
da | BD2E 1-w)? Q-0

X {(1 _ 6;_0>2 + (1.081 — 1.149) [‘il_o B (c;_0>2i|}1/2

3PSa
BD?E

x [0.76 — 4.560 + 11.61a% — 8.16a° +

0.66
x (O.76 —2.28c + 3.87a% — 2.040” + —2>
(I—-a)

X {(1 _ ‘;_0>2 + (1.081 — 1.149) |:aa_0 _ (czl_o>2:|}1/2

ap\ ap  1.149 [ ag ap\2 ap aé
x {2 (1 - ;> - [; - (Z) ] — (1.081 — 1.1490) (a—2 -2% (A15)
ds _{ 6PS 0.66 1.3 “
BD2E 1-a)? (d-a)?

x {(1 - %)2 4 (1.081 — 1.149) (% - (%)ﬁ}é

n 3PSa
BD?E

3 x [0.76 — 4.56a + 11.61a® — 8.16a°+
a

0.66
x (().76 —2.28x + 3.87a% — 2.04(x3+—2>
(1I—-a)
1

x ((1 — %)2 4 (1.081 — 1.149a) (% - (%)2>2

x {2 (1 _ %) % n (—%)49) [% - (%)2} — (1.081 — 1.149) [% _ %” (A16)
ol(w) =241 — A (A17)

The partial derivatives of M; to a are expressed as follows:
when j = 1 or 3,

1 bj a a? a’ a*

o (-8 g e () () +a (5) + 0 (5)] @
W = % (A19)
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