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Abstract This study deals with a novel model of forced vibrational analysis of nonlocal transversely isotropic
thermoelastic nanobeam resonators due to ramp-type heating and due to time varying exponentially decay-
ing load with multi-dual-phase-lag theory of thermoelasticity. The mathematical model is prepared for the
nanobeam in a closed form with the application of Euler–Bernoulli (E–B) beam theory using nonlocal gener-
alized thermoelasticity with multi-dual phase lags. The nonlocal nanobeam theory has a nonlocal parameter
to depict small-scale effect. The Laplace Transform technique has been used to find the expressions for
lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic temper-
ature for (i) clamped–clamped, (ii) simply supported–simply supported, (iii) clamped–simply supported, (iv)
clamped–free, and (v) free–free nanobeam in the transformed domain. The general algorithm of the inverse
Laplace Transform is developed to compute the results numerically in physical domain. The results exhibit
that the amplitude of deflection and thermal moment is attenuated and depends upon the schematic design of
the nanobeam being considered. Also, it can be found from both the numerical calculations and the analytic
results that nonlocal multi-dual-phase-lag theory of thermoelasticity with two temperatures due to time varying
exponentially decaying load has significant effect on deflection and thermal moment. The effect of different
theories of nonlocal thermoelasticity, due to time varying exponentially decaying load, has been depicted on
the various quantities. Some particular cases have also been deduced.

Keywords Transversely isotropic thermoelastic · Nanobeam · Multi-dual-phase-lag theory of thermoelas-
ticity · Time varying load · Nonlocal nanobeam · Laplace transform
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τq Phase lag of heat flux
ci jkl Elastic parameters
ϕ conductive temperature
T Absolute temperature
ei j Strain tensors
CE Specific heat
ρ Medium density
ui Components of displacement
ai j Two temperature parameters
αi j Linear thermal expansion coefficient
Ki j Thermal conductivity
� Frequency of the applied load
�u Displacement vector
δ(x) Dirac delta function
ξ Nonlocal parameter
ti j Stress tensors
τθ Phase lag of temperature gradient
τ0 Relaxation time
I Moment of inertia

1 Introduction

In last decade, nanomaterials have gained interest in the field of engineering due to their special properties
like electronic, electrical and mechanical. Due to these properties, nano-materials are used in nano-beams
as elementary structural components in micro-electromechanical system (MEMS)/nano-electromechanical
systems (NEMS) and piezoelectric devices.

Nonlocal theory of elasticity is adopted to deal with many applications in nano-mechanics. Eringen [1–3]
introduced the theory of nonlocal continuum mechanics to deal with the small-scale structure problems. The
theories of nonlocal continuum consider the state of stress at a point as a function of the states of strain of
all points in the medium. But in classical continuum mechanics the state of stress at a certain point uniquely
depends on the state of strain on that samepoint. Lu et al. [4] proposed amodel on nonlocal plate depending upon
nonlocal Kirchhoff and Mindlin plate theories using the Eringen’s theory of nonlocal continuum mechanics.

The thermoelastic damping in a micro-beam resonator by the modified couple stress theory was examined
byGhader et al. [5]. Guo et al. [6] presented the problem of thermoelastic damping in ventedMEMS beamwith
Galerkin finite element and eigenvalue formulationmethod. Simsek andReddy [7] and Shaat et al. [8] examined
the bending and vibration of functionally graded micro-beams using the modified couple stress theory and
higher order beam theory. Allam and Abouelregal [9] investigated the thermoelastic waves prompted by pulsed
laser and varying heat of nano-beam. Abouelregal and Zenkour [10] discussed the axially moving micro-beam
with combined effects of the pulse-width of thermally originated vibration, varying speed and the transverse
excitation. Zenkour [11] discussed the nonlocal elasticity theory for analysing the vibration in a single-layered
graphene sheet fixed in viscoelastic medium. Abouelregal and Zenkour [12] studied the linear nonlocal theory
for isotropic and semi-infinite medium using an ultra-short pulsed laser heating. Abouelregal [13] presented a
new model for thermo-elastic vibrations using fractional derivatives in a nonlocal nanobeams.

Despite these several researchers as Marin [14,15], Yu et al. [16], Park and Gao [17], Sun et al. [18]
Li and Cheng [19], Sharma [20], Chakraborty [21], Lazar and Agiasofitou [22], Abd-Elaziz et al. [23,24],
Zhang and Fu [25], Abbas and Marin [26], Sharma and Kaur [27], Zenkour and Abouelregal [28], Fantuzzi
et al. [29], Abouelregal and Zenkour [30], Aksoy [31], Kumar and Devi [32], Riaz et al. [33], Karami et al.
[34,35], Zhang et al. [36], Bhatti et al. [37,38], Sharma and Marin [39], Sharma and Grover [40], Marin and
Craciun [41,42], AbbasR [43],Lata and Kaur [44–49], Bhatti and Michaelides [50] worked on different theory
of thermoelasticity.

The present investigation deals with the problem of forced vibrations in a transversely Isotropic thermoe-
lastic thin nanobeam in the context of nonlocal thermoelasticity theory with multi-dual-phase-lag heat transfer
due to ramp-type heating and due to time varying exponentially decaying load. The Laplace Transform tech-
nique has been used to find the expressions for lateral deflection, conductive temperature, thermal moment,
nonlocal axial stress and thermodynamic temperature for (i) clamped–clamped (CC), (ii) simply supported–



Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators 319

simply supported (SS), (iii) clamped–simply supported (CS), (iv) clamped–free (CF), and (v) free–free (FF)
nanobeam in the transformed domain.

2 Basic equations

Following Eringen [1], Chakraborty [21] the constitutive relation for an anisotropic thermoelastic medium is:

ti j − ξ∇2ti j = ci jklekl − βi j T, (1)

where ξ = (e0a)2, a is internal characteristic length and e0 is a constant appropriate to each material, the
characteristic length for macro-scale problems is relatively small, i.e. ξ = 0, so Eq. (1) changes to classi-
cal stress–strain relations. Following Zenkour [51] heat conduction equation with multi-dual-phase-lag heat
transfer is:

Ki jLθϕ,i j = Lq
∂

∂t

(
βi j T0ui, j+ρCET

)
. (2)

Here the superimposed dot indicates derivative w.r.t. time variable t and a comma denotes derivative w.r.t.
space variable x. The two differential parameters Lθ and Lq are of the form

Lθ = 1 +
R1∑

j=1

τ
j
θ ∂ j

j !∂t j ,

and

Lq =
(

�+τ0
∂

∂t
+

∑R2

j=2

τ
j
q ∂ j

j !∂t j
)

.

(0 ≤ τθ < τq ), and � is a non-dimension parameter (=0 or 1 as per the thermoelasticity theory).
where

T = ϕ − ai jϕ,i j , (3)

βi j = ci jklαi j , (4)

ei j = 1

2

(
ui, j + u j,i

)
, i, j = 1, 2, 3. (5)

βi j = βiδi j , Ki j = Kiδi j ,

i is not summed [47].
ci jklare elastic parameters and having symmetry due to homogeneous transversely isotropic medium. The

basis of these symmetries of ci jkl is due to the following facts

i. The stress tensor is symmetric, which is only possible if (ci jkl = c jikl)
ii. If a strain energy density exists for the material, the elastic stiffness tensor must satisfy ci jkl = ckli j
iii. From stress tensor and elastic stiffness tensor symmetries infer (ci jkl = ci jlk) and ci jkl = ckli j = c jikl =

ci jlk
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Fig. 1 Schematic design of the nanobeam: (i) clamped–clamped (CC), (ii) simply supported–simply supported (SS), (iii) clamped–
simply supported (CS), (iv) clamped–free (CF), (v) free–free (FF) nanobeam

3 Formulation of the problem

We study a homogeneous TIT rectangular nano-beam (Fig. 1) of length (0 ≤ x ≤ L), width
(− b

2 ≤ y ≤ b
2

)

and thickness
(− h

2 ≤ z ≤ h
2

)
, where x, y and z are the Cartesian axes denotes the length, width and thickness

of the nano-beam. The x-axis coincides with the nano-beam axis and y, z axis coincide with the end (x = 0)
with the origin located at the axis of the beam. In equilibrium, the nano-beam is kept at uniform temperature
T0, unstrained and unstressed. Moreover, initially there is no flow of heat along the upper and lower surface
of the nanobeam so that

∂ϕ

∂z
= 0, at z = ±h

2
, t = 0. (6)

and its axial ends are presumed to be at isothermal conditions.
According to the fundamental E-B theory for small deflection of a simple bending problem, the displacement
components are given by Rao (2007)

u (x, y, z, t) = −z
∂w

∂x
, v (x, y, z, t) = 0, w (x, y, z, t) = w (x, t) , (7)

where w (x, t) is the lateral deflection of the nanobeam and t is the time. Also the temperature distribution
function T and conductive temperature ϕ can be expressed as

T = T (x, z, t) , ϕ = ϕ (x, z, t) (8)

From Eqs. (3) and (8), we have

T = ϕ − a1
∂2ϕ

∂x2
− a3

∂2ϕ

∂z2
(9)

According to Eringen’s nonlocal theory of elasticity the one-dimensional constitutive equation obtained
from Eq. (1) with the help of Eq. (7) becomes

t11 − ξ
∂2t11
∂x2

= −c11z
∂2w

∂x2
− β1T (10)

where t11 is the nonlocal stress, β1 = (c11+c13)α1+C13α3 is the thermoelastic coupling parameter and α1, α3
are the coefficient of linear thermal expansion along and perpendicular to plane of isotropy. The thermoelastic
parameter β3 = 2c13α1 + c33α3 along z-axis does not appear due to E-B hypothesis.

The flexural moment of the cross section of the nanobeam following Rao [52] is given by

M (x, z, t) = −
∫ h

2

−h
2

bt11zdz (11)
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Multiply Eq. (10) by z and integrate w.r.t z and by using Eq. (11) we obtain

M (x, t) − ξ
∂2M

∂x2
= c11 I

∂2w

∂x2
− β1MT (12)

where

MT (x, z, t) = b
∫ h

2

−h
2

T zdz (13)

MT is the thermal moment of inertia of the nano-beam and β1MT is the thermal moment of the nano-beam.
In addition, I = bh3

12 is the moment of inertia of cross section and c11 I is the flexural rigidity of the nano-beam.
The equation of transverse motion of the nano-beam is given by Rao [52]

∂2M

∂x2
+ ρA

∂2w

∂t2
= q (x, t) , (14)

where A = bh is the area of cross section and q(x, t) represents the load acting on the nano-beam along the
thickness direction. Using Eq. (12) in Eq. (14), we get

c11 I
∂4w

∂x4
+ ρA

∂2

∂t2

(
1 + ξ

∂2w

∂x2

)
+ β1

∂2MT

∂x2
=

(
1 − ξ

∂2

∂x2

)
q(x, t). (15)

According to Lifshitz and Roukes [53] no thermal gradient exists in the y-direction. Therefore, Eq. (1)
under such situation using Eq. (7) becomes

K1

(
1+

∑R1

r=1

τ rθ ∂ r

r!∂tr
∂2ϕ

∂x2

)
+ K3

(
1+

∑R1

r=1

τ rθ ∂
r

r!∂tr
∂2ϕ

∂z2

)
=

(
�+τ0

∂

∂t

+
∑R2

r=2

τ rq∂
r

r!∂tr
)[

T0

(
β1

∂2w

∂x2

)
+ ρCE

{
ϕ − a1

∂2ϕ

∂x2
− a3

∂2ϕ

∂z2

}]
. (16)

To facilitate the solution, the following dimensionless quantities are introduced:

x
′ = x

L
, z

′ = z

h
, w

′ = w

h
, β

,
1 = β1T0

C11
, M

′
T = MT

T0Ah
, T

′

= T

T0
, ϕ

′ = ϕ

T0
, K = K3

K1
, aR = L

h
, a

′
1

= a1
L2 , a

′
3 = a3

h2
, ρc21 = c11, q1

(
x

′
, t

′)

= L2

c11Ah
q (x, t) , t

′
11 = t11

c11
, ξ

′ = ξ

L2 , (τ
′
0, τ

′
θ , τ

′
q , t

′
)

= c1
L

(τ 0, τθ , τ q , t). (17)

Now applying the dimensionless quantities from (17) in Eqs. (12) and (13), after, suppressing the prime,
we get

1

12a2R

∂4w

∂x4
+ ∂2

∂t2

(
1 + ξ

∂2w

∂x2

)
+ β1

∂2MT

∂x2
+ ∂2w

∂t2
=

(
1 − ξ

∂2

∂x2

)
q1(x, t), (18)

1

Ka2R

(
1+

∑R1

r=1

τ rθ ∂
r

r!∂tr
)

∂2ϕ

∂x2
+

(
1+

∑R1

r=1

τ rθ ∂
r

r!∂tr
)

∂2ϕ

∂z2
=

(
�+τ0

∂

∂t

+
∑R2

r=2

τ rq∂
r

r!∂tr
) [

δ1

(
z
∂2w

∂x2

)
+ δ2

{
ϕ − a1

∂2ϕ

∂x2
− a3

∂2ϕ

∂z2

}]
, (19)
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where

δ1 = −β1T0h2

K3a2R
,δ2 = ρCEh2

K3

The nonlocal axial stress defined in Eq. (10) after using Eq. (9) and the dimensionless quantities defined by
Eq. (17) and suppressing primes become

t11 − ξ
∂2t11
∂x2

= − 1

a2R
z
∂2w

∂x2
− β1

{
ϕ − a1

∂2ϕ

∂x2
− a3

∂2ϕ

∂z2

}
, (20)

For a very thin nano-beam, assuming that the increase in temperature varies along the thickness of the
nano-beam as function of sin π z

h (i.e. varies sinusoidally) given by

ϕ (x, z, t) = �(x, t) sin
π z

h
, (21)

The temperature in Eq. (9) after using dimensionless quantities and suppressing primes and using (21)
becomes

T (x, z, t) = sin
π z

h

[(
1 + a3

π2

h2

)
� (x, t) − a1

∂2� (x, t)

∂x2

]
(22)

Using Eq. (21) in Eq. (20) gives nonlocal axial stress as

t11 − ξ
∂2t11
∂x2

= − 1

a2R
z
∂2w

∂x2
− β1 sin

π z

h

[(
1 + a3

π2

h2

)
�(x, t) − a1

∂2� (x, t)

∂x2

]
(23)

Using Eq. (9) in Eq. (13) and then using Eq. (21)

MT (x, t) = δ3� (x, t) + δ4
∂2� (x, t)

∂x2
(24)

where δ3 = 2h2

π2

{(
1 + a3

π2

h2

)}
, δ4 = − 2h2a1

π2 .

Now using the value of MT from Eq. (24) in (18) we get

1

12a2R

∂4w

∂x4
+ ∂2

∂t2

(
1 + ξ

∂2

∂x2

)
w + β1

∂2

∂x2

(
δ3� + δ4

∂2�

∂x2

)
=

(
1 − ξ

∂2

∂x2

)
q1(x, t), (25)

Using Eq. (21) in Eq. (19) and multiplying by z and integrating both sides w.r.t z for −h
2 ≤ z ≤ h

2 , gives

1

Ka2R

(
1+

∑R1

r=1

τ rθ ∂
r

r!∂tr
)

∂2�

∂x2

−π2

h2

(
1+

∑R1

r=1

τ rθ ∂
r

r!∂tr
)

� =
(

�+τ0
∂

∂t

+
∑R2

r=2

τ rq∂
r

r!∂tr
)[

δ1hπ2

12

(
∂2w

∂x2

)
+ δ2

(
1 + a3

π2

h2

)
� − δ2a1

∂2�

∂x2

]
. (26)

Let us take the Laplace transform defined by

L [ f (t)] =
∞∫

0

e−st f (t) dt = f̄ (s). (27)

By applying Laplace Transform defined by Eq. (27) in Eqs. (21) and (22), we get

ϕ̄ (x, z, s) = �̄ (x, s) sin
π z

h
, (28)
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T̄ (x, z, s) = T̄ (x, s) sin
π z

h
= sin

π z

h

[(
1 + a3

π2

h2

)
− a1D

2
]

�̄ (x, s) (29)

Which implies

T̄ (x, s) =
[(

1 + a3
π2

h2

)
− a1D

2
]

�̄ (x, s) . (30)

By applying Eq. (27) in Eq. (24)–(26), we get

M̄T (x, s) = (
δ3 + δ4D

2) �̄ (x, s) (31)

[
δ5D

4 + s2
(
1 + ξD2)] w̄ (x, s) + [

β1δ3D
2 + β1δ4D

4] �̄ (x, s) =
(
1 − ξ

∂2

∂x2

)
q̄1(x, s), (32)

δ6D
2w̄ (x, s) + {

δ7D
2 + δ8

}
�̄ (x, s) = 0, (33)

where

D = d

dx
, δ5 = 1 + s2ξ

12a2R
, δ6 =

(
�+τ0s+

∑R2

r=2

τ rqs
r

r!
)

δ1hπ2

12
, δ7

= −
[

1

Ka2R

(
1+

∑R1

r=1

τ rθ s
r

r!
)

+ δ2a1

(
�+τ0s+

∑R2

r=2

τ rqs
r

r!
)]

, δ8 =
[
π2

h2

(
1+

∑R1

r=1

τ rθ s
r

r!
)

+δ2

(
1 + a3

π2

h2

)(
�+τ0s+

∑R2

r=2

τ rqs
r

r!
)]

.

Now consider a dimensionless time varying exponentially decaying load of the form

q1(x, t) = −q0
(
1 − δe−�t) (34)

where q0 is the dimensionless magnitude of the point load and � represents the dimensionless frequency of
the applied load. For uniformly distributed load we take δ = 0. Taking Laplace transform of Eq. (34), we have

q̄1 (x, s) == −q0

(
1

s
− δ

s + �

)
(35)

Therefore Eq. (31) using Eq. (34) becomes

[
δ5D

4 + s2
(
1 + ξD2)] w̄ (x, s) + [

β1δ3D
2 + β1δ4D

4] �̄ = −q0

(
1

s
− δ

s + �

)
, (36)

Eliminating �̄ from Eqs. (33) and (36), we get
[
D6 − pD4 + qD2 − r

]
w̄ (x, s) = Q, (37)

where

p = −δ7s2ξ + δ3δ6β1 − δ8δ5

δ7δ5 − δ4δ6β1
, q = δ8s2ξ + δ7s2

δ7δ5 − δ4δ6β1
,

r = −δ8s2

δ7δ5 − δ4δ6β1
, Q = q0δ8

δ7δ5 − δ4δ6β1

(
1

s
− δ

s + �

)

For simplification of solution let us take q0 = 0, i.e. load on nano-beam is assumed to be zero.
The differential equation governing the lateral deflection w̄ (x, s) , Eq. (37) can take the form

(
D2 − λ21

) (
D2 − λ22

) (
D2 − λ23

)
w̄(x, s) = 0, (38)

where ±λ1, ±λ2 and ±λ3 are the characteristics roots of the equation λ6 − pλ4 + qλ2 − r = 0 and hence,

λ21 + λ22 + λ23 = p,
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λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3 = q,

λ21λ
2
2λ

2
3 = r,

Let the lateral deflection w̄ (x, s) is given by

w̄ (x, s) =
∑3

i=1

[
Aie

−λi x + Ai+3e
λi x

]
, (39)

where Ai = Ai (s) and Ai+3 = Ai+3(s), i = 1, 2, 3.
Now using Eq. (32) in Eq. (35) gives

�̄ (x, s) = ζ1Q + (
ζ2D

4 + ζ3D
2+ζ 4

)
w̄ (x, s) (40)

where ζ1 = δ27
β1δ

2
8δ4−δ3δ7δ8β1

, ζ2 = −(
δ27δ5+δ4δ6δ7β1

)

β1δ
2
8δ4−δ3δ7δ8β1

, ζ3 = δ3δ6δ7β1−δ4δ6δ8β1−s2ξδ27
β1δ

2
8δ4−δ3δ7δ8β1

, ζ 4 = −s2δ27
β1δ

2
8δ4−δ3δ7δ8β1

The general solution for Eq. (39) using Eq. (38) is given by

�̄ (x, s) =
3∑

i=1

Bi
[
Aie

−λi x + Ai+3e
λi x

] + ζ1Q, (41)

where Bi = (
ζ2λ

4
i + ζ3λ

2
i +ζ 4

)
, i = 1, 2, 3.

Using Eq. (41) in Eq. (28) the expression for conductive temperature is given by

ϕ̄ (x, z, s) =
{∑3

i=1
Bi

[
Aie

−λi x + Ai+3e
λi x

] + ζ1Q

}
sin

π z

h
. (42)

By putting the value of �̄ (x, s) from Eq. (41) in Eq. (31), we get thermal moment of inertia of the
nano-beam which is M̄T (x, s) as

M̄T (x, s) =
3∑

i=1

Ci
[
Aie

−λi x + Ai+3e
λi x

] + δ3ζ1Q (43)

where

Ci = Bi
(
δ3 + δ4λ

2
i

)
, i = 1, 2, 3.

The expression for thermal moment of nano-beam is β1M̄T (x, s) as

β1M̄T (x, s) =
3∑

i=1

β1Ci
[
Aie

−λi x + Ai+3e
λi x

] + β1δ3ζ1Q (44)

using (23) and (27) the nonlocal axial stress t̄11 (x, z, s) can be written as

(
ξD2 − 1

)
t̄11 (x, z, s) = 1

a2R
zD2w̄ (x, s) + β1 sin

π z

h

[(
1 + a3

π2

h2

)
− a1D

2
]

�̄ (x, s) (45)

Using Eqs. (39) and (41) in Eq. (42) gives

(
D2 − 1

ξ

)
t̄11 (x, z, s) =

3∑

i=1

Di
[
Aie

−λi x + Ai+3e
λi x

] + β1

ξ
sin

π z

h
ζ1Q (46)

where Di =
{

1
a2Rξ

zλ2i + β1
ξ
sin π z

h Bi
[(

1 + a3
π2

h2

)
− a1λ2i

]}
, ξ = (e0a)2 , i = 1, 2, 3.

Solving Eq. (44) gives nonlocal axial stress as

t̄11 (x, z, s) = E1e
x√
ξ + E2e

−x√
ξ +

3∑

i=1

Di

λ2i − ξ

[
Aie

−λi x + Ai+3e
λi x

] − β1

ξ2
sin

π z

h
ζ1Q (47)
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where E1, E2 are constants.
The expression for thermodynamic temperature from Eq. (30) and (41) is given by

T̄ (x, z, s) = sin
π z

h

3∑

i=1

Fi
[
Aie

−λi x + Ai+3e
λi x

] + ζ1Q (48)

where Fi = Bi
[(

1 + a3
π2

h2

)
− a1λ2i

]
and Bi = (

ζ2λ
4
i + ζ3λ

2
i +ζ 4

)
, i = 1, 2, 3.

4 Initial conditions

The homogeneous nanobeam is initially at rest, is undeformed state and is at uniform temperature T0. Thus
the dimensionless initial conditions will be

w (x, t)|t=0 = ∂w (x, t)

∂t

∣
∣∣∣
t=0

= 0, � (x, t)|t=0 = ∂� (x, t)

∂t

∣
∣∣∣
t=0

= 0, (49)

Using the Laplace transform defined by Eq. (27) in the boundary conditions (45) yields

w̄ (x, s)|s=0 = 0, �̄ (x, s)
∣∣
s=0 = 0, (50)

5 Mechanical boundary conditions

Consider the ends of the nanobeam are subjected to (i) clamped–clamped (CC), (ii) simply supported–simply
supported (SS), (iii) clamped–simply supported (CS), (iv) clamped–free (CF), and (v) free–free (FF) conditions.
Thus at its dimensionless ends x = 0 and x = 1, the boundary conditions are:

Case I Clamped–clamped (CC) or pinned or hinged nanobeam
At the fixed ends the lateral deflection and the slope of lateral deflection are zero.

w (x, t)|x=0,1 = ∂w (x, t)

∂x

∣∣
∣∣
x=0,1

= 0, (51)

Using the Laplace transform defined by Eq. (27) in the boundary conditions (51) yields

w̄ (x, s)|x=0,1 = ∂w̄ (x, s)

∂x

∣
∣∣
∣
x=0,1

= 0, (52)

Case II Simply supported–simply supported (SS) nanobeam. Here the transverse lateral deflection and bend-
ing moment are zero at the ends.

w (x, t)|x=0,1 = ∂2w (x, t)

∂x2

∣∣
∣∣
x=0,1

= 0, (53)

Using the Laplace transform defined by Eq. (27) in the boundary conditions (53) yields

w̄ (x, s)|x=0,1 = ∂2w̄ (x, s)

∂x2

∣
∣∣
∣
x=0,1

= 0, (54)

Case III Clamped–simply supported (CS) nanobeam.
At the fixed ends the transverse lateral deflection and the slope of lateral deflection are zero and
at simply supported end the transverse displacement and bending moment are zero. If the beam is
clamped at x = 0 and simply supported at x = 1, then boundary conditions can be written as

w (x, t)|x=0,1 = ∂w (x, t)

∂x

∣
∣∣
∣
x=0

= ∂2w (x, t)

∂x2

∣
∣∣
∣
x=1

, (55)

Using the Laplace transform defined by Eq. (27) in the boundary conditions (55) yields

w̄ (x, s)|x=0,1 = ∂w (x, s)

∂x

∣∣
∣∣
x=0

= ∂2w̄ (x, s)

∂x2

∣∣
∣∣
x=1

, (56)
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Case IV Clamped–free (CF)/cantilever nanobeam. The bending moment and shear force are zero at the free
end and at the fixed ends the transverse lateral deflection and the slope of displacement are zero. If
the nanobeam is fixed at x = 0 and free at x = 1, then the boundary conditions are:

w (x, t)|x=0 = ∂w (x, t)

∂x

∣∣
∣∣
x=0

= ∂2w (x, t)

∂x2

∣∣
∣∣
x=1

= ∂3w (x, t)

∂x3

∣∣
∣∣
x=1

, (57)

Using the Laplace transform defined by Eq. (27) in the boundary conditions (57) yields

w̄ (x, s)|x=0 = ∂w̄ (x, s)

∂x

∣∣
∣∣
x=0

= ∂2w̄ (x, s)

∂x2

∣∣
∣∣
x=1

= ∂3w̄ (x, s)

∂x3

∣∣
∣∣
x=1

, (58)

Case V Free–free (FF) nanobeam The bending moment and shear force are zero at the ends in this case.

∂2w (x, t)

∂x2

∣
∣∣
∣
x=0,1

= ∂3w (x, t)

∂x3

∣
∣∣
∣
x=0,1

= 0, (59)

Using the Laplace transform defined by Eq. (27) in the boundary conditions (59) yields

∂2w̄ (x, s)

∂x2

∣∣
∣∣
x=0,1

= ∂3w̄ (x, s)

∂x3

∣∣
∣∣
x=0,1

= 0, (60)

6 Applications: thermal boundary conditions

Consider the nanobeam is thermally loaded on the boundary x = 0. Therefore by Eq. (21) we have

� (x, t) = θ0 f (x, t) onx = 0 (61)

where θ0 is a constant and f (x, t) is a ramp-type function given by

f (x, t)|x=0 =
⎧
⎨

⎩

0 f or t ≤ 0
t
t0
f or0 ≤ t ≤ t0

1 f or t > t0
(62)

where t0 is ramp-type parameter. The temperature at the boundary x = 1 is given by

∂� (x, t)

∂x

∣
∣∣
∣
x=1

= 0, (63)

Using the Laplace transform defined by Eq. (27) in the thermal boundary conditions defined by (61)–(63)
yields

�̄ (x, s)
∣
∣
x=0 = θ0

(
1 − e−t0s

t0s2

)
= Ḡ (s) , (64)

∂�̄ (x, s)

∂x

∣∣
∣∣
x=1

= 0 (65)

By applying the mechanical boundary conditions and thermal boundary conditions, we have

Case I Substituting the values of w̄ and �̄ from Eqs. (39) and (41) in the mechanical and thermal boundary
conditions (52), (64) and (65), we obtain the value of Ai as

Ai = �i

�
, i = 1, 2, 3, 4, 5, 6. (66)
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and

� =

∣∣
∣∣
∣∣
∣∣
∣∣∣

1 1 1
e−λ1 e−λ2 e−λ3

−λ1 −λ2 −λ3

1 1 1
eλ1 eλ2 eλ3

λ1 λ2 λ3
−λ1e−λ1 −λ2e−λ2 −λ3e−λ3

B1 B2 B3
B1e−λ1 B2e−λ2 B3e−λ3

λ1eλ1 λ2eλ2 λ3eλ3

B1 B2 B3
B1eλ1 B2eλ2 B3eλ3

∣∣
∣∣
∣∣
∣∣
∣∣∣

�i (i = 1, 2, 3, . . . , 6) are obtained by replacing the columns by
[
0, 0, 0, 0, Ḡ (s) − ζ1Q, 0

]
in

�.
Case II Substituting the values of w̄ and �̄ from Eqs. (39) and (41) in the mechanical and thermal boundary

conditions (54), (64) and (65), we obtain the value of Ai as

Ai = �i

�
, i = 1, 2, 3, 4, 5, 6. (67)

and

� =

∣
∣∣
∣∣
∣∣
∣∣∣
∣

1 1 1
e−λ1 e−λ2 e−λ3

λ21 λ22 λ23

1 1 1
eλ1 eλ2 eλ3

λ21 λ22 λ23
λ21e

−λ1 λ22e
−λ2 λ23e

−λ3

B1 B2 B3
B1e−λ1 B2e−λ2 B3e−λ3

λ21e
λ1 λ22e

λ2 λ23e
λ3

B1 B2 B3
B1eλ1 B2eλ2 B3eλ3

∣
∣∣
∣∣
∣∣
∣∣∣
∣

�i (i = 1, 2, 3, . . . , 6) are obtained by replacing the columns by
[
0, 0, 0, 0, Ḡ (s) − ζ1Q, 0

]
in

�.
Case III Substituting the values of w̄ and �̄ from Eqs. (39) and (41) in the mechanical and thermal boundary

conditions (56), (64) and (65), we obtain the value of Ai as

Ai = �i

�
, i = 1, 2, 3, 4, 5, 6. (68)

and

� =

∣
∣∣
∣∣
∣∣
∣∣
∣∣

1 1 1
e−λ1 e−λ2 e−λ3

−λ1 −λ2 −λ3

1 1 1
eλ1 eλ2 eλ3

λ1 λ2 λ3
λ21e

−λ1 λ22e
−λ2 λ23e

−λ3

B1 B2 B3
B1e−λ1 B2e−λ2 B3e−λ3

λ21e
λ1 λ22e

λ2 λ23e
λ3

B1 B2 B3
B1eλ1 B2eλ2 B3eλ3

∣
∣∣
∣∣
∣∣
∣∣
∣∣

�i (i = 1, 2, 3, . . . , 6) are obtained by replacing the columns by
[
0, 0, 0, 0, Ḡ (s) − ζ1Q, 0

]
in

�.
Case IV Substituting the values of w̄ and �̄ from Eqs. (39) and (41) in the mechanical and thermal boundary

conditions (58), (64) and (65), we obtain the value of Ai as

Ai = �i

�
, i = 1, 2, 3, 4, 5, 6. (69)

and

� =

∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

1 1 1

λ21e
−λ1 λ22e

−λ2 λ23e
−λ3

−λ1 −λ2 −λ3

λ21

1 1 1

eλ1 λ22e
λ2 λ23e

λ3

λ1 λ2 λ3
−λ31e

−λ1 −λ32e
−λ2 −λ33e

−λ3

B1 B2 B3
B1e−λ1 B2e−λ2 B3e−λ3

λ31e
λ1 λ32e

λ2 λ33e
λ3

B1 B2 B3
B1eλ1 B2eλ2 B3eλ3

∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

�i (i = 1, 2, 3, . . . , 6) are obtained by replacing the columns by
[
0, 0, 0, 0, Ḡ (s) − ζ1Q, 0

]
in

�.
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Case V Substituting the values of w̄ and �̄ from Eqs. (39) and (41) in the mechanical and thermal boundary
conditions (60), (64) and (65), we obtain the value of Ai as

Ai = �i

�
, i = 1, 2, 3, 4, 5, 6. (70)

and

� =

∣
∣∣
∣∣
∣∣
∣∣
∣∣
∣

λ21 λ22 λ23
λ21e

−λ1
λ22e

−λ2
λ23e

−λ3

−λ31 −λ32 −λ33

λ21 λ22 λ23
λ21e

λ1
λ22e

λ2 λ23e
λ3

λ31 λ32 λ33−λ31e
−λ1 −λ32e

−λ2 −λ33e
−λ3

B1 B2 B3
B1e−λ1 B2e−λ2 B3e−λ3

λ31e
λ1 λ32e

λ2 λ33e
λ3

B1 B2 B3
B1eλ1 B2eλ2 B3eλ3

∣
∣∣
∣∣
∣∣
∣∣
∣∣
∣

�i (i = 1, 2, 3, . . . , 6) are obtained by replacing the columns by
[
0, 0, 0, 0, Ḡ (s) − ζ1Q, 0

]
in

�.

7 Inversion of Laplace transform

To find the solution of the problem in physical domain, we must invert the transforms in equations (40), (42),
(43), (46)–(48), (66)–(70). These equations are functions of x, the parameter of Laplace transform s and hence,
are of the form f̄ (x, s). To get the function f (x, t) in the physical domain, first we invert the Laplace transform
using

f (x, t) = 1

2π i

e+i∞∫

e−i∞

f̄ (x, s) e−stds. (71)

The integral in Eq. (71) is evaluated using the method described in Press et al. [54].

8 Particular cases

i. If we take q0 = 0, in equations (39), (42), (44), (47) and (48) we obtain expressions for lateral deflection,
conductive temperature, thermal moment, nonlocal axial stress and thermodynamic temperature of a
transversely isotropic thermoelastic nanobeam for nonlocal thermoelasticity with free vibrations and two
temperatures for all the five mechanical boundary conditions.

ii. If we take q0 = 0,c11 = c33 = λ + 2μ, c12 = c13 = λ, c44 = μ, a1 = a3 = a, β1 = β3 = β,α1 = α3 =
α

′
, K1 = K3 = K , K ∗

1 = K ∗
3 = K ∗, in equations (39), (42), (44), (47) and (48), we obtain expressions

for lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic
temperature of an isotropic thermoelastic nanobeam for nonlocal thermoelasticity with free vibrations
and two temperatures for all the five mechanical boundary conditions.

iii. If we take c11 = c33 = λ + 2μ, c12 = c13 = λ, c44 = μ, a1 = a3 = a, β1 = β3 = β,α1 = α3 =
α

′
, K1 = K3 = K , K ∗

1 = K ∗
3 = K ∗, in equations (39), (42), (44), (47) and (48), we obtain expressions

for lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic
temperature of an isotropic thermoelastic nanobeam for nonlocal thermoelasticity with forced vibrations
and two temperatures for all the five mechanical boundary conditions.

iv. If τθ , τq → 0, τ0 > 0 and � = 1, in equations (39), (42), (44), (47) and (48) we obtain expressions
for lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic
temperature of a transversely isotropic thermoelastic nanobeam for nonlocal thermoelasticity with forced
vibrations and two temperatures with Lord-Shulman (LS) theory for all the five mechanical boundary
conditions.
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v. If τθ = τq = τ0 = 0 and � = 1, in equations (39), (42), (44), (47) and (48), we obtain expressions
for lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic
temperature of a transversely isotropic thermoelastic nanobeam for nonlocal thermoelasticity with forced
vibrations and two temperaturewithCoupledTheory of Thermoelasticity (CTE) for all the fivemechanical
boundary conditions.

vi. If τ0 → τq ,R1 = R2 = 1 and � = 1, in equations (39), (42), (44), (47) and (48), we obtain expressions
for lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic
temperature of a transversely isotropic thermoelastic nanobeam for nonlocal thermoelasticity with forced
vibrations and two temperatures with dual phase-lag theory for all the five mechanical boundary condi-
tions.

vii. If τ0 → τq ,R1 = 1,R2 = 2 and � = 1, in Eqs. (39), (42), (44), (47) and (48) we obtain expressions
for lateral deflection, conductive temperature, thermal moment, nonlocal axial stress and thermodynamic
temperature of a transversely isotropic thermoelastic nanobeam for nonlocal thermoelasticity with forced
vibrations and two temperatures with refined multi-dual-phase-lag heat transfer theory and more refine-
mentmay be obtained by taking higher values ofR1 andR2 for all the fivemechanical boundary conditions.

9 Numerical results and discussion

In order to illustrate our theoretical results in the proceeding section and to show the effect of different theories
of nonlocal thermoelasticity, we now present some numerical results. Cobalt material is chosen from Dhaliwal
and Singh [55] for the purpose of numerical calculation, which is transversely isotropic. Physical data for a
single crystal of cobalt is given by:

c11 = 3.07 × 1011 Nm−2, c12 = 1.650 × 1011 Nm−2,

c13 = 1.027 × 1010 Nm−2, c33 = 3.581 × 1011 Nm−2,

c44 = 1.510 × 1011 Nm−2, CE = 4.27 × 102 Jkg−1deg−1,

β1 = 7.04 × 106 Nm−2rmdeg−1, β3 = 6.90 × 106Nm−2rmdeg−1,

K1 = 0.690 × 102 Wm−1rmK deg−1, K3 = 0.690 × 102 Wm−1K−1,

K ∗
1 = 0.02 × 102 Ns−2rmdeg−1, K ∗

3 = 0.04 × 102NSec−2rmdeg−1,

L/h = 10, b/h = 0.5, ρ = 8.836 × 103 kg−3.

The following five cases are considered in numerical computations for dimensionless lateral deflection,
thermal moment, conductive temperature and thermodynamic temperature studied with various theories of
thermoelasticity (like LS, CTE, DPL and MDPL) by taking ξ = 0.1, h = 0.1, a1 = 0.03, a3 = 0.06, and
0 < L < 1.

Case I Clamped–clamped (CC) or pinned or hinged nanobeam
Case II Simply supported–simply supported (SS) nanobeam.
Case III Clamped–simply supported (CS) nanobeam.
Case IV Clamped–free (CF)/cantilever nanobeam.
Case V Free–free (FF) nanobeam

The numerical results are obtained and graphically presented in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16 17, 18, 19, 20 and 21. In the graphs, the solid red line with centre symbol circle represents CTE Theory and
solid black line represents LS theory, the solid blue line with centre symbol diamond represents DPL Theory
and the solid green line with centre symbol circle represents MDPL Theory.
Case I: Clamped–clamped (CC) or pinned or hinged nanobeam

Figure 2 shows the variation in the lateral deflection w w.r.t. length of the beam for various theories of
thermoelasticity (like LS, CTE, DPL and MDPL). It is found that the DPL has the highest effect and CTE
theory has the least effect on the lateral deflection w. Lateral deflection decreases gradually and reaches to
zero for all the theories of thermoelasticity. Figure 3 illustrates the variation of thermal moment w.r.t. length
of the beam for various theories of thermoelasticity (like LS, CTE, DPL and MDPL). It is found that the DPL
has the highest effect and CTE theory has the least effect on the thermal moment. Thermal moment decreases
gradually and reaches to zero for all the theories of thermoelasticity.
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Fig. 2 Variation in lateral deflection w with length of nanobeam

Fig. 3 Variation of thermal moment with length of the nanobeam

Figure 4 demonstrates the variation of conductive temperature w.r.t. length of the beam for various theories
of thermoelasticity (like LS, CTE, DPL and MDPL). It is found that the DPL has the highest effect and MPDL
theory has the least effect on the conductive temperature. Conductive temperature decreases gradually and
reaches to zero for all the theories of thermoelasticity.

Figure 5 exhibits the variation of thermodynamic temperature w.r.t. length of the beam for various theories
of thermoelasticity (like LS, CTE, DPL and MDPL). It is found that the DPL has the highest effect and
CTE theory has the least effect on the thermodynamic temperature. Thermodynamic temperature decreases
gradually and reaches to zero for all the theories of thermoelasticity.
Case II: Simply supported–simply supported (SS) nanobeam
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Fig. 4 Variation in the conductive temperature with respect to length of nanobeam

Fig. 5 Variation in the thermodynamic temperature with respect to length of nanobeam

Figures 6, 7, 8 and 9 show the variation in the lateral deflection, thermal moment, conductive temperature
and thermodynamic temperature w.r.t. length of the beam for various various theories of thermoelasticity (like
LS, CTE, DPL andMDPL). It is found that the CTE has the highest effect andMDPL theory of thermoelasticity
has the least effect on lateral deflection, thermal moment, conductive temperature in simply supported–simply
supported (SS) nanobeam, whereas DPL has the highest effect and CTE theory of thermoelasticity has the
least effect thermodynamic temperature. All these parameters decrease gradually and reach to zero for all the
theories of thermoelasticity.
Case III: Clamped–simply supported (CS) nanobeam

Figures 10, 11, 12 and 13 show the variation in the lateral deflection, thermal moment, conductive temper-
ature and thermodynamic temperature w.r.t. length of the beam for various various theories of thermoelasticity



332 I. Kaur et al.

Fig. 6 Variation in lateral deflection w with length of nanobeam

Fig. 7 Variation of thermal moment with length of the nanobeam

(like LS, CTE, DPL and MDPL). It is found that the LS has the highest effect and CTE theory of thermoe-
lasticity has the least effect on these parameters in clamped–simply supported (CS) nanobeam, whereas DPL
and MDPL have approximately equal effect on these parameters.

Case IV: Clamped–free (CF)/cantilever nanobeam
Figures 14, 15, 16 and 17 show the variation in the lateral deflection, thermal moment, conductive temper-

ature and thermodynamic temperature w.r.t. length of the beam for various theories of thermoelasticity (like
LS, CTE, DPL and MDPL). It is found that the LS has the highest effect on lateral deflection and thermal
moment and DPL theory of thermoelasticity has the highest effect on conductive temperature and thermody-



Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators 333

Fig. 8 Variation in the conductive temperature with respect to length of nanobeam

Fig. 9 Variation in the thermodynamic temperature with respect to length of nanobeam

namic temperature in clamped–simply supported (CS) nanobeam, whereas MDPL has approximately lowest
effect on these parameters.

Case V: Free–free (FF) nanobeam

Figures 18, 19, 20 and 21 show the variation in the lateral deflection, thermal moment, conductive temper-
ature and thermodynamic temperature w.r.t. length of the beam for various various theories of thermoelasticity
(like LS, CTE, DPL and MDPL). It is found that the CTE has the highest effect and MDPL theory of thermoe-
lasticity has the least effect on these parameters in free–free (FF) nanobeam. All these parameters decrease
gradually and reach to zero for all the theories of thermoelasticity.
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Fig. 10 Variation in lateral deflection w with length of nanobeam

Fig. 11 Variation of thermal moment with length of the nanobeam

10 Conclusions

• The proposed model is designed to predict the thermomechanical response of transversely isotropic ther-
moelastic thin nanobeam in the context of nonlocal and multi-dual-phase-lag theories of thermoelasticity
with two temperatures due to time varying exponentially decaying load and due to ramp-type heating at
the end x = 0 by using E–B Beam theory and Laplace transform technique.

• The ends of the nanobeam are subjected to: clamped–clamped (CC), simply supported–simply supported
(SS), clamped–simply supported (CS), clamped–free (CF), free–free (FF) boundary conditions.

• Sinusoidally varying conductive temperature has been considered.
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Fig. 12 Variation in the conductive temperature with respect to length of nanobeam

Fig. 13 Variation in the thermodynamic temperature with respect to length of nanobeam

• Variation in the lateral deflection, thermal moment, conductive temperature and thermodynamic tempera-
ture with various theories of nonlocal thermoelasticity (like LS, CTE, DPL and MDPL with two temper-
atures) due to time varying exponentially decaying load are studied and shown graphically to depict the
effects successfully.

• From the analysis, it is observed that the nonlocal multi-dual-phase-lag theory of thermoelasticity with two
temperatures due to time varying exponentially decaying load has significant effect on lateral deflection,
thermal moment, conductive temperature and thermodynamic temperature. In addition, for the change in
boundary conditions at the ends of the nanobeam, there is significant effect on the lateral deflection, thermal
moment, conductive temperature and thermodynamic temperature with different theories.
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Fig. 14 Variation in lateral deflection w with length of nanobeam

Fig. 15 Variation of thermal moment with length of the nanobeam

• A novel mathematical solutions has been given for the thin nanobeam in the context of nonlocal and
multi-dual-phase-lag theories of thermoelasticity with two temperatures due to time varying exponentially
decaying load, which is consequently easier for design and construction of beam-type MEMS/NEMS,
accelerometers, sensors, resonators and other branches of engineering.
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Fig. 16 Variation in the conductive temperature with respect to length of nanobeam

Fig. 17 Variation in the thermodynamic temperature with respect to length of nanobeam
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Fig. 18 Variation in lateral deflection w with length of nanobeam

Fig. 19 Variation of thermal moment with length of the nanobeam
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Fig. 20 Variation in the conductive temperature with respect to length of nanobeam

Fig. 21 Variation in the thermodynamic temperature with respect to length of nanobeam
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7. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory

and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013). https://doi.org/10.1016/j.ijengsci.2012.12.002
8. Shaat, M., Mahmoud, F.F., Gao, X.-L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on

a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014). https://doi.org/10.1016/j.
ijmecsci.2013.11.022

9. Allam, M.N.M., Abouelregal, A.E.: The thermoelastic waves induced by pulsed laser and varying heat of inhomogeneous
microscale beam resonators. J. Therm. Stress. 37, 455–470 (2014). https://doi.org/10.1080/01495739.2013.870858

10. Abouelregal, A.E., Zenkour, A.M.: Effect of phase lags on thermoelastic functionally graded microbeams subjected to
ramp-type heating. Iran. J. Sci. Technol. Trans. Mech. Eng. 38, 321–335 (2014). https://doi.org/10.22099/ijstm.2014.2498

11. Zenkour,A.M.: Free vibration of amicrobeam resting onPasternak’s foundation via theGreen-Naghdi thermoelasticity theory
without energy dissipation. J. Low Freq. Noise Vib. Act. Control. (2016). https://doi.org/10.1177/0263092316676405

12. Abouelregal, A.E., Zenkour, A.M.: Nonlocal thermoelastic semi-infinite medium with variable thermal conductivity due to
a laser short-pulse. J. Comput. Appl. Mech. 50, 90–98 (2019). https://doi.org/10.22059/jcamech.2019.276608.366

13. Abouelregal, A.E.: The effect of temperature-dependent physical properties and fractional thermoelasticity on nonlocal
nanobeams. Open Access J. Math. Theor. Phys. (2018). https://doi.org/10.15406/oajmtp.2018.01.00009

14. Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32, 1229–1240
(1994). https://doi.org/10.1016/0020-7225(94)90034-5

15. Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. Comptes Rendus Acad. Sci. Paris Ser. II.
321, 475–480 (1995)

16. Yu, T.X., Yang, J.L., Reid, S.R., Austin, C.D.: Dynamic behaviour of elastic–plastic free–free beams subjected to impulsive
loading. Int. J. Solids Struct. 33, 2659–2680 (1996). https://doi.org/10.1016/0020-7683(95)00169-7

17. Park, S.K., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16,
2355–2359 (2006). https://doi.org/10.1088/0960-1317/16/11/015

18. Sun, Y., Fang, D., Saka, M., Soh, A.K.: Laser-induced vibrations of micro-beams under different boundary conditions. Int.
J. Solids Struct. 45, 1993–2013 (2008). https://doi.org/10.1016/j.ijsolstr.2007.11.006

19. Li, Y., Cheng, C.-J.: A nonlinear model of thermoelastic beams with voids, with applications. J. Mech. Mater. Struct. 5,
805–820 (2010). https://doi.org/10.2140/jomms.2010.5.805

20. Sharma, J.N.: Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J. Therm. Stress. 34,
650–666 (2011). https://doi.org/10.1080/01495739.2010.550824

21. Chakraborty, A.:Wave propagation in anisotropic media with non-local elasticity. Int. J. Solids Struct. 44, 5723–5741 (2007).
https://doi.org/10.1016/j.ijsolstr.2007.01.024

22. Lazar,M., Agiasofitou, E.: Screw dislocation in nonlocal anisotropic elasticity. Int. J. Eng. Sci. 49, 1404–1414 (2011). https://
doi.org/10.1016/j.ijengsci.2011.02.011

23. Abd-Elaziz, E.M., Othman, M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic
porous medium with energy dissipation. ZAMM J. Appl. Math. Mech. (2019). https://doi.org/10.1002/zamm.201900079

24. Abd-Elaziz, E., Marin, M., Othman, M.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under
G–N electromagnetic theory. Symmetry (Basel). 11, 413 (2019). https://doi.org/10.3390/sym11030413

25. Zhang, J., Fu, Y.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory.
Meccanica 47, 1649–1658 (2012). https://doi.org/10.1007/s11012-012-9545-2

26. Abbas, I.A., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys. E
Low-Dimens. Syst. Nanostruct. 87, 254–260 (2017). https://doi.org/10.1016/j.physe.2016.10.048

27. Sharma, J.N., Kaur, R.: Transverse vibrations in thermoelastic-diffusive thin micro-beam resonators. J. Therm. Stress. 37,
1265–1285 (2014). https://doi.org/10.1080/01495739.2014.936252

28. Zenkour, A.M., Abouelregal, A.E.: Thermoelastic vibration of an axially moving microbeam subjected to sinusoidal pulse
heating. Int. J. Struct. Stab. Dyn. 15, 1450081 (2015). https://doi.org/10.1142/S0219455414500813

29. Fantuzzi, N., Trovalusci, P., Dharasura, S.: Mechanical behavior of anisotropic composite materials as micropolar continua.
Front. Mater. 6, 1–11 (2019). https://doi.org/10.3389/fmats.2019.00059

https://doi.org/10.1016/0020-7225(74)90033-0
https://doi.org/10.1016/0020-7225(74)90033-0
https://doi.org/10.1063/1.332803
https://doi.org/10.1098/rspa.2007.1903
https://doi.org/10.1007/s00707-012-0622-3
https://doi.org/10.1016/j.ijmecsci.2013.04.013
https://doi.org/10.1016/j.ijengsci.2012.12.002
https://doi.org/10.1016/j.ijmecsci.2013.11.022
https://doi.org/10.1016/j.ijmecsci.2013.11.022
https://doi.org/10.1080/01495739.2013.870858
https://doi.org/10.22099/ijstm.2014.2498
https://doi.org/10.1177/0263092316676405
https://doi.org/10.22059/jcamech.2019.276608.366
https://doi.org/10.15406/oajmtp.2018.01.00009
https://doi.org/10.1016/0020-7225(94)90034-5
https://doi.org/10.1016/0020-7683(95)00169-7
https://doi.org/10.1088/0960-1317/16/11/015
https://doi.org/10.1016/j.ijsolstr.2007.11.006
https://doi.org/10.2140/jomms.2010.5.805
https://doi.org/10.1080/01495739.2010.550824
https://doi.org/10.1016/j.ijsolstr.2007.01.024
https://doi.org/10.1016/j.ijengsci.2011.02.011
https://doi.org/10.1016/j.ijengsci.2011.02.011
https://doi.org/10.1002/zamm.201900079
https://doi.org/10.3390/sym11030413
https://doi.org/10.1007/s11012-012-9545-2
https://doi.org/10.1016/j.physe.2016.10.048
https://doi.org/10.1080/01495739.2014.936252
https://doi.org/10.1142/S0219455414500813
https://doi.org/10.3389/fmats.2019.00059


Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators 341

30. Abouelregal, A.E., Zenkour, A.M.: Thermoelastic response of nanobeam resonators subjected to exponential decaying time
varying load. J. Theor. Appl. Mech. 55, 937–948 (2017). https://doi.org/10.15632/jtam-pl.55.3.937

31. Aksoy, H.G.:Wave propagation in heterogeneousmedia with local and nonlocal material behavior. J. Elast. 122, 1–25 (2016).
https://doi.org/10.1007/s10659-015-9530-9

32. Kumar, R., Devi, S.: Interactions of thermoelastic beam in modified couple stress theory. Appl. Appl. Math. Int. J. 12,
910–923 (2017)

33. Riaz, A., Ellahi, R., Bhatti,M.M.,Marin,M.: Study of heat andmass transfer in the Eyring–Powell model of fluid propagating
peristaltically through a rectangular compliant channel. Heat Transf. Res. 50, 1539–1560 (2019). https://doi.org/10.1615/
HeatTransRes.2019025622

34. Karami, B., Janghorban, M., Tounsi, A.: Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles.
Steel Compos. Struct. 27, 201–216 (2018). https://doi.org/10.12989/scs.2018.27.2.201

35. Karami, B., Janghorban, M., Rabczuk, T.: Forced vibration analysis of functionally graded anisotropic nanoplates resting on
Winkler/Pasternak-foundation. Comput. Mater. Contin. 62, 607–629 (2020). https://doi.org/10.32604/cmc.2020.08032

36. Zhang, L., Bhatti, M.M., Michaelides, E.E.: Thermally developed coupled stress particle-fluid motion with mass transfer
and peristalsis. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09871-w

37. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M., Ijaz, N.: Numerical study of heat transfer and Hall current impact on
peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B. 33, 1950439 (2019).
https://doi.org/10.1142/S0217984919504396

38. Bhatti, M.M., Yousif, M.A., Mishra, S.R., Shahid, A.: Simultaneous influence of thermo-diffusion and diffusion-thermo on
non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana
93, 88 (2019). https://doi.org/10.1007/s12043-019-1850-z

39. Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conductingmicrop-
olar thermoelastic solids. Analele Univ. “Ovidius” Constanta Ser. Mater. 22, 151–176 (2014). https://doi.org/10.2478/auom-
2014-0040

40. Sharma, J.N., Grover, D.: Thermoelastic vibrations in micro-/nano-scale beam resonators with voids. J. Sound Vib. 330,
2964–2977 (2011). https://doi.org/10.1016/j.jsv.2011.01.012

41. Marin, M., Craciun, E.M.: Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite
materials. Compos. B Eng. 126, 27–37 (2017). https://doi.org/10.1016/j.compositesb.2017.05.063

42. Marin, M., Craciun, E.M., Pop, N.: Some results in green—lindsay thermoelasticity of bodies with dipolar structure. Math-
ematics (2020). https://doi.org/10.3390/math8040497

43. Abbas, I.A.: Free vibrations of nanoscale beam under two-temperature Green and Naghdi model. Int. J. Acoust. Vib. 23,
289–293 (2018). doi.org/10.20855/ijav.2018.23.31051

44. Lata, P., Kaur, I.: A study of transversely isotropic thermoelastic beam with Green–Naghdi type-II and type-III theories of
thermoelasticity. Appl. Appl. Math. Int. J. 14, 270–283 (2019)

45. Kaur, I., Lata, P.: Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag
heat transfer and diffusion. Int. J. Mech. Mater. Eng. 14, 5–6 (2019). https://doi.org/10.1186/s40712-019-0108-3

46. Kaur, I., Lata, P.: Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and
rotation. GEM Int. J. Geomath. 11, 1–17 (2020). https://doi.org/10.1007/s13137-020-0140-8

47. Kaur, I., Lata, P., Singh, K.: Effect of Hall current in transversely isotropic magneto-thermoelastic rotating medium with
fractional-order generalized heat transfer due to ramp-type heat. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-
01718-2

48. Kaur, I., Lata, P.: Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with
two temperature and fractional order heat transfer. SN Appl. Sci. 1, 5–9 (2019). https://doi.org/10.1007/s42452-019-0942-1

49. Kaur, I., Lata, P.: Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and
heat source. Int. J. Mech. Mater. Eng. (2019). https://doi.org/10.1186/s40712-019-0107-4

50. Bhatti, M.M., Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a
Riga plate. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09492-3

51. Zenkour, A.M.: Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-
lag model. J. Phys. Chem. Solids 137, 109213 (2019). https://doi.org/10.1016/j.jpcs.2019.109213

52. Rao, S.S.: Vibration of Continuous Systems. Wiley, NJ (2007)
53. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B. 61, 5600–5609

(2000). https://doi.org/10.1103/PhysRevB.61.5600
54. Press, W.H., Teukolsky, S.A., Flannery, B.P.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1980)
55. Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publication Corporation, New Delhi (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.15632/jtam-pl.55.3.937
https://doi.org/10.1007/s10659-015-9530-9
https://doi.org/10.1615/HeatTransRes.2019025622
https://doi.org/10.1615/HeatTransRes.2019025622
https://doi.org/10.12989/scs.2018.27.2.201
https://doi.org/10.32604/cmc.2020.08032
https://doi.org/10.1007/s10973-020-09871-w
https://doi.org/10.1142/S0217984919504396
https://doi.org/10.1007/s12043-019-1850-z
https://doi.org/10.2478/auom-2014-0040
https://doi.org/10.2478/auom-2014-0040
https://doi.org/10.1016/j.jsv.2011.01.012
https://doi.org/10.1016/j.compositesb.2017.05.063
https://doi.org/10.3390/math8040497
https://doi.org/10.1186/s40712-019-0108-3
https://doi.org/10.1007/s13137-020-0140-8
https://doi.org/10.1007/s12648-020-01718-2
https://doi.org/10.1007/s12648-020-01718-2
https://doi.org/10.1007/s42452-019-0942-1
https://doi.org/10.1186/s40712-019-0107-4
https://doi.org/10.1007/s10973-020-09492-3
https://doi.org/10.1016/j.jpcs.2019.109213
https://doi.org/10.1103/PhysRevB.61.5600

	Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators with multi-dual-phase-lag theory
	Abstract
	1 Introduction
	2 Basic equations
	3 Formulation of the problem
	4 Initial conditions
	5 Mechanical boundary conditions
	6 Applications: thermal boundary conditions
	7 Inversion of Laplace transform
	8 Particular cases
	9 Numerical results and discussion
	10 Conclusions
	Funding
	References




